Perovskite manganites hosting versatile multiferroic phases with symmetric and antisymmetric exchange strictions

Shintaro Ishiwata,^{1[,*](#page-3-0)} Yoshio Kaneko,² Yusuke Tokunaga,² Yasujiro Taguchi,¹ Taka-hisa Arima,³ and Yoshinori Tokura^{1,4}

¹*Cross-Correlated Materials Research Group (CMRG), ASI, RIKEN, Wako 351-0198, Japan*

²*Multiferroics Project, ERATO, Japan Science and Technology (JST), c/o RIKEN, Wako 351-0198, Japan*

3 *Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan*

⁴*Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113–8656, Japan*

(Received 16 January 2010; published 23 March 2010)

Complete magnetoelectric (ME) phase diagrams of orthorhombic R MnO₃ with and without magnetic moments on the *R* ions have been established. Three kinds of multiferroic ground states, the *ab*-cycloidal, the *bc*-cycloidal, and the collinear *E*-type phases, have been identified by the distinct ME responses. The electric polarization of the *E*-type phase dominated by the symmetric spin exchange $(S_i \cdot S_j)$ is more than ten times as large as that of the *bc*-cycloidal phase dominated by the antisymmetric one $(S_i \times S_j)$ and the ME response is enhanced near the bicritical phase boundary between these multiferroic phases of different origins. These findings may provide generic features of the magnetically induced multiferroics.

DOI: [10.1103/PhysRevB.81.100411](http://dx.doi.org/10.1103/PhysRevB.81.100411)

: 75.30 .Kz, $75.80 + q$, $77.80 - e$

It has been a long standing problem how to enhance the correlation between magnetism and ferroelectricity in a solid. Possible solutions can be found in recent studies on the magnetically induced multiferroics, $1,2$ $1,2$ which can be classified into two types; one is driven by antisymmetric exchange striction in the cycloidal spin structure, typified by TbMn O_3 O_3 ,^{3[–5](#page-3-4)} and the other is driven by symmetric exchange striction in the commensurate collinear spin structure. Since orthorhombic (o -) perovskite *RMnO*₃ (*R*=rare earth and Y) contains the both types, it provides an ideal laboratory to compare the respective magnetoelectric (ME) properties and extract the essential ingredients of them.

The ferroelectricity with a cycloidal spin order in o - R MnO₃ has been found for $R = Gd$, Tb, Dy, and $Eu_{1-x}Y_x^{3,6-8}$ $Eu_{1-x}Y_x^{3,6-8}$ $Eu_{1-x}Y_x^{3,6-8}$ $Eu_{1-x}Y_x^{3,6-8}$ $Eu_{1-x}Y_x^{3,6-8}$ Upon the application of magnetic field *B* along the *a* axis in the *ab*-cycloidal phase (in *Pbnm* notation) of $Eu_{1-x}Y_xMnO_3$, the spin-cycloidal plane rotates from *ab* to *bc*, accompanied by the polarization *P* rotation from *a* to *c*. [9,](#page-3-7)[10](#page-3-8) The origin of the ferroelectricity has been discussed in terms of the spin-current model or the inverse Dzyaloshinskii-Moriya (DM) interaction represented by the relation, $P \sim \sum A e_{ij} \times (S_i \times S_j)$, ^{[11](#page-3-9)[–13](#page-3-10)} in which e_{ij} is the unit vector connecting the neighboring spins $(S_i \text{ and } S_j)$ and both the spin-orbit and superexchange interactions are relevant to the coefficient *A*. On the other hand, o -*RMnO*₃ with $R = Ho$, Tm, Yb, Lu shows a commensurate collinear spin order with a propagation vector $q = (0, 1/2, 1)$, which is so-called *E*-type antiferromagnetic order. $14-17$ This phase is allowed to possess *P* along *a* due to symmetric exchange striction, which is independent of the spin-orbit interaction. Sergienko *et al.* proposed the emergence of substantially large *P* up to 0.12 C/m^2 in the *E*-type phase with considering the ferromagnetic nearest-neighbor interaction J_1 mediated by e_g electrons as a major source of the exchange striction.^{18[,19](#page-3-14)}

The rich variety of magnetic phases of o - R MnO₃ reflects the J_1 - J_2 competition that varies as a function of R -ion radius under the staggered orbital ordering of $3x^2 - r^2$ and $3y^2 - r^2$ type orbitals; as $GdFeO₃$ -type lattice distortion becomes large, the antiferromagnetic next-nearest-neighbor interaction J_2 in the *ab* plane becomes competitive with the ferromagnetic interaction J_1 . So far, ME phase diagrams of o -*R*MnO₃ have been made for *R* from La to Dy or Eu_{0.5}Y_{0.5} [see Figs. [1](#page-1-0)(a) and $1(b)$].^{[7](#page-3-15)[,8](#page-3-6)[,20–](#page-3-16)[22](#page-3-17)} However, since o -*RMnO*₃ with a smaller R ion than Dy needs a high-pressure (HP) technique to synthesize, a complete ME phase diagram of o - R MnO₃ including the neighboring area between the cycloidal and the *E*-type phases is absent. In fact, although the ferroelectricity in the *E*-type phase has been confirmed for o -*R*MnO₃ with *R*=Y, Ho,²³ and Tm,¹⁷ intrinsic ME properties inherent to the Mn-spin arrangement alone remain unclear because of the intervention by the magnetic *R* ions. Besides, the reported *P* values vary widely depending on the materials. As a result, quantitative estimations of *P* of the *E*-type phase and its microscopic origin are under intensive debate.

This Rapid Communication reports complete ME phase diagrams of a series of o - R MnO₃ with nonmagnetic R ions $(R = Eu_{1-x}Y_x$ and $Y_{1-y}Lu_y$ together with the system containing the magnetic R ion $(R=Dy, Ho, Er, Tm, and Yb)$. By using high-quality polycrystalline samples of o - R MnO₃, we have confirmed substantially large *P* of nearly 5000 μ C/m² for the *E*-type phases, and clearly demonstrated the generic transition of the multiferroic ground state from the *ab* cycloidal, to *bc* cycloidal, and eventually to the *E*-type phase upon decreasing the size of the *R* ion. Furthermore, we found an enhanced ME response characteristic of a bicritical phase boundary formed by the different multiferroic phases.

Polycrystalline samples of o -*RMnO*₃ with $R = Dy$ and *R* not larger than Y were synthesized under HP by using hexagonal (h-) $R M n O₃$ as precursors. First, single crystals of h - R MnO₃ were prepared by a floating-zone method and then heat treated for 1 h in the range of 1323–1373 K under a HP of 5.5 GPa. Just for comparison between the single crystalline and polycrystalline specimens, polycrystalline samples of o -Eu_{1−*x*}Y_{*x*}MnO₃ with *x*=0.2, 0.4, 0.6 were synthesized by heat treatment under HP using polycrystalline precursors prepared by grinding the single crystals of the *o* phase. The grain-boundary effects on ME measurements are expected to

FIG. 1. (Color online) Phase diagrams of $o-RMnO₃$ with (a) magnetic $R = Gd$, Tb, Dy, Ho, Er, Tm, and Yb, and (b) nonmagnetic $R = \text{Eu}_{1-x}Y_x$ and $Y_{1-y}Lu_y$ (PM, IC, and AF denote paramagnetic, incommensurate, and antiferromagnetic, respectively), (c) polarization *P* value at 2 K for the compounds with nonmagnetic *R* ions (P^{HP} , which is multiplied by a calibration factor (=6) (Ref. [26](#page-3-21)), is for *P* of the polycrystals, and P_a is for *P* along *a* of the single crystals taken from Ref. [9,](#page-3-7) (d) k in the magnetic propagation vector $q=(0, k, 1)$ (taken from Refs. [5,](#page-3-4) [9,](#page-3-7) [14](#page-3-11)[–17,](#page-3-12) [24,](#page-3-19) and [25](#page-3-20)), and (e) unit-cell volume as a function of the *R*-ion radius, of which coordination number is assumed to be 8 for an orthorhombically distorted perovskite lattice. $T_{\rm N1}$ was determined by magnetic and dielectric measurements. T_{N2} and T_{N3} were determined from the measurements of *P*. T_{N1} and T_{N2} for $R\text{MnO}_3$ with $R = \text{Eu}$, Gd, and Tb were taken from Ref. [7.](#page-3-15) The shaded area in (b) represents a possible phase-coexisting region.

be minimized owing to the high-quality precursors. However, as for o -Eu_{1−*x*}Y_{*x*}MnO₃ with *x*=0.75, 0.9, the attempts to grow crystals gave the mixtures of the *h* and the *o* phases, which were adopted as the precursors. The linear change in the unit-cell volume as a function of the *R*-ion radius ensures the successful syntheses of a series of o - R MnO₃ [Fig. [1](#page-1-0)(e)].

ISHIWATA *et al.* **PHYSICAL REVIEW B 81**, 100411(R) (2010)

FIG. 2. (Color) Temperature dependence of polarization *P* of o - R MnO₃ with (a) nonmagnetic R and (b) magnetic R in the absence of external magnetic field *B*, and (c) *P* of o -Eu_{0.1}Y_{0.9}MnO₃ (multiplied by 2) and (d) P of o -LuMnO₃ measured in external B perpendicular to the applied electric field, and χ measured in external *B* of 0.1 T on increasing temperature. *B* was applied during the poling procedure as well as the measuring process.

For measurements of *P*, gold electrodes were deposited on the polished faces (4 mm^2) of the platelet samples with typically 0.2 mm in thickness. As a poling procedure, an electric field of 800 V/mm was applied at 40 K, followed by cooling to 2 K. The displacement current was measured with increasing temperature at a rate of 5 K/min or sweeping *B* at a rate of 100 Oe/sec and was integrated as a function of time to obtain *P*. Magnetic susceptibility was measured by a superconducting quantum interference device magnetometer.

Figure [2](#page-1-1) shows temperature dependence of *P* o - R MnO₃ prepared by the HP technique with highlighting different responses of *P* to external *B* for o -Eu_{0.1}Y_{0.9}MnO₃ and o -LuMnO₃. As exemplified in Figs. $2(c)$ $2(c)$ and $2(d)$, the compounds undergo a transition to an incommensurate (IC) sinusoidal phase at T_{N1} where χ takes a maximum. Then, they show a second transition to the *E*-type phase at T_{N2} where *P* sets in. In Figs. $2(a)$ $2(a)$ and $2(b)$, *P* in zero magnetic field is plotted against temperature for nonmagnetic and magnetic *R* ions, respectively. The compounds with $R = Eu_{0,1}Y_{0,9}$, $Y_{1-v}Lu_v$, Ho, Er, Tm, and Yb are supposed to possess the *E*-type phase, and all the compounds but for $R=Er$ and $Eu_{0.1}Y_{0.9}$ exhibit fairly large *P* of about 800 μ C/m² at the lowest temperature. By contrast, $R = \text{Eu}_{1-x}Y_x$ ($x = 0.4, 0.6, 0.75$) and Dy samples possess relatively small *P* values, implying the different mechanism of *P* generation. We should note here that $o-YMnO_3$ and o -ErMnO₃ show the stepwise temperature dependence of P . The neutron diffraction studies have suggested the IC *q* vectors of $(0, 0.435, 1)$ and $(0, 0.433, 1)$ for the magnetic ground states in o -YMnO₃ and o -ErMnO₃, respectively.^{24,[25](#page-3-20)} Thus, these stepwise changes may indicate the presence of a small amount of the cycloidal or the sinusoidal phase which competes and thus coexists with the *E*-type phase. The sign for such a phase coexistence was found for o -Eu_{0.1}Y_{0.9}MnO₃ showing smaller *P* and the larger effect of applied *B* on *P* in comparison with $LuMnO_3$ [see Figs. [2](#page-1-1)(c) and 2(d)]. The possible phase coexistence in o -YMnO₃ and o -Eu_{0.1}Y_{0.9}MnO₃ can be attributed to proximity to the firstorder phase boundary, as discussed later. As for o -ErMnO₃, a long-range order of the *E*-type phase is likely to be amenable to the large magnetic moments of Er ions with planar anisotropy, leading to the stepwise change in *P*.

Based on the polarization and magnetization measurements, we established the ME phase diagrams for a series of o - R MnO₃ with magnetic and nonmagnetic R ions, respectively, [Figs. $1(a)$ $1(a)$ and $1(b)$]. Here, one may find that the variation in T_{N1} as a function of the ionic radius of *R* is well systematic when the *R* ions are nonmagnetic whereas it is rather irregular when the *R* ions are magnetic. This difference suggests that the presence of the magnetic moment of the *R* ions gives substantial influence on the transition temperatures as well as the relative stability of the two kinds of cycloidal phases and the E -type phase. Figure $1(c)$ $1(c)$ shows a plot of P at 2 K multiplied by a correction factor $(=6)$ for the compounds with nonmagnetic *R* ions,²⁶ together with P_a in $Eu_{1-x}Y_xMnO_3$, as a function of the *R*-ion radius. Contour plot of the corrected value of P is shown in Fig. $3(a)$ $3(a)$. In the *E*-type phase, *P* reaches nearly 5000 μ C/m², which is more than ten times as large as $P = (-384 \mu C/m^2)$ in $Eu_{0.25}Y_{0.75}MnO_3$, and almost independent of the *R*-ion radius except for $Eu_{0.1}Y_{0.9}MnO_3$. In the cycloidal phases, on the other hand, *P* is critically dependent on the *R*-ion radius. According to the inverse DM model, *P* is proportional to $\sin \theta$, where θ denotes the angle between the nearestneighbor Mn spins. When the *ab*-cycloidal spins are of ideal cycloid and *k* is less than 0.5 ($\theta \leq \pi/2$), *P* ($\propto \sin \theta$) is expected to increase monotonically, as indicated by the broken line in Fig. [1](#page-1-0)(c). However, in the range of $0.4 \le x \le 0.75$, *P* decreases as increasing *x*. This is probably because the ellipticity of the cycloidal spins becomes larger²² or a fraction of the *bc*-cycloidal phase with smaller *P* becomes larger. By further increasing *x*, *P* shows a local minimum at $x=0.75$, where the *bc*-cycloidal state is the magnetic ground state, followed by an abrupt increase that indicates the emergence of the *E*-type phase.

In order to reveal the difference in ME response of each phase of o - R MnO₃ with nonmagnetic R , we have investigated *B* dependence of *P* at representative points $(T=2 K)$ marked with open circles in Fig. $3(a)$ $3(a)$. In Eu_{0.1}Y_{0.9}MnO₃ and LuMnO_{[3](#page-2-0)} [Figs. 3(d) and 3(e)], the normalized *P* shows nearly quadratic behavior as a function of *B* and little dependence on the *B* direction with respect to the *P* direction. The results are in accord with the *E*-type phase as the magnetic ground state for both compounds because *P* of this phase should be proportional to $S_i \cdot S_j$ and thus to $1-aB^2$ when the magnetization is proportional to applied *B*. As clearly seen in Fig. $3(a)$ $3(a)$, the *R*-ion dependence of the transition temperature T_{N2} , below which the system becomes ferroelectric, makes a V-shaped feature near the boundary between the *bc*-cycloidal and the *E*-type phases. This feature reminds us of the bicriticality of two competing phases separated by the first-order phase boundary in the presence of weak randomness[.27](#page-3-22) The *bc*-cycloidal and the *E*-type phases are likely separated by the first-order phase boundary,^{28,[29](#page-3-24)} and $Eu_{1-x}Y_xMnO_3$ has also weak randomness introduced via alloying the *A* site. Since $Eu_{0,1}Y_{0,9}MnO_3$ is located on the verge of the transition from the *E*-type phase to the *bc*-cycloidal phase, the system should be subject to the phase coexistence, leading to the

 (2010)

FIG. 3. (Color) (a) Corrected magnitude of polarization *P* displayed as a contour plot in the phase diagram of $o-RMnO₃$ with nonmagnetic *R* (Eu_{1−*x*}Y_{*x*}, Y_{1−*y*}Lu_{*y*}). Magnetic-field *B* dependence of normalized *P* at 2 K for (b) $Eu_{0.6}Y_{0.4}MnO_3$, (c) $Eu_{0.25}Y_{0.75}MnO_3$, (d) $Eu_{0.1}Y_{0.9}MnO_3$, and (e) $LuMnO_3$ (P was normalized by the value at 2 K). Schematic of the spin rotation from the *bc* cycloidal to the *ab* cycloidal (f) under $B||c$, (g) under $B||P_m$ deviating from *c* to *a* by ϕ , and (h) under $B \perp P_m$ deviating from *c* to *a* by ϕ ($\phi < \pi/4$). These illustrations depict the spin rotation in a single domain both for lattice and spin. The relational expressions between P_m or P'_m and ϕ are shown.

enhancement of the effect of *B* on *P* [Fig. $3(d)$ $3(d)$] and the suppression of P [Fig. [2](#page-1-1)(c)]. As a hallmark of the phase coexistence, the large hysteresis was observed in the *P*-*B* curve of $Eu_{0.1}Y_{0.9}MnO₃$, suggesting that the decrease in *P* by the application of B is not only due to the cant of spins but partly due to the increase in the volume fraction of the cycloidal phase, which is dominated by the Zeeman energy gain $(\propto \chi B^2)$. In accord with this expectation, χ is larger for $Eu_{0,1}Y_{0,9}MnO_3$ containing a small amount of the large- χ cycloidal phase than for $LuMnO₃$ with the purely E -type order [see Figs. $2(c)$ $2(c)$ and $2(d)$].

On the other hand, in the *ab*-cycloidal phase of $Eu_{0.6}Y_{0.4}MnO₃$ $Eu_{0.6}Y_{0.4}MnO₃$ $Eu_{0.6}Y_{0.4}MnO₃$ [Fig. 3(b)] and the *bc*-cycloidal phase of $Eu_{0.25}Y_{0.75}MnO_3$ $Eu_{0.25}Y_{0.75}MnO_3$ [Fig. 3(c)], P changes drastically at critical *B* of about 5 and 3 T, respectively, which signifies the occurrence of the *P* rotation. In fact, the study of a single crystal of $Eu_{0.6}Y_{0.4}MnO_3$ showed the *B*-induced *P* rotation from P_a

RAPID COMMUNICATIONS

to P_c at 4.5 T $(B||a)$.^{[9](#page-3-7)} However, because our samples are polycrystals, we have to consider the relative orientations between *B*, *P*, and the crystallographic axes of a single domain. To explain the drastic change in *P* under *B*, we considered specific situations which satisfy the conditions for the occurrence of the B -induced P rotation (hereafter we formally use P_m and P'_m for measured P before and after the *P* rotation, respectively). The panels in Fig. $3(f)$ $3(f)$ describe the *P* rotation from P_c to P_a upon the application of *B* along *c*. After the *P* rotation, two kinds of domains with positive and negative P_a coexist in an equal amount [only for the *P* rotation to positive P_a is shown in Fig. [3](#page-2-0)(f)] so that P'_m should be zero. When *B* is slightly deviated from *c* to *a* by ϕ , finite P'_m remains after the *P* rotation as shown in Figs. $3(g)$ $3(g)$ and $3(h)$ because the plane of spin spiral inclines to be perpendicular to B to gain the Zeeman energy during the P rotation (see the middle panels) and thereby one of the rotation directions is selected as reported in $Eu_{0.55}Y_{0.45}MnO_3$.^{[10](#page-3-8)} If *B* is slightly deviated from c to b , P'_m should be zero similarly to the case in Fig. $3(f)$ $3(f)$. Here, the normalized *P* after the *P* rotation (P'_m/P_m) for $B||P_m$ and $B\perp P_m$ can be expressed as P'_m/P_m =-tan $\phi P_a/P_c$ and P'_m/P_m =tan($\pi/2-\phi$) P_a/P_c , re-

*ishiwata@riken.jp

- ¹Y. Tokura, Science 312, 1481 (2006).
- 2 S.-W. Cheong and M. Mostovoy, Nature Mater. 6 , 13 (2007).
- ³T. Kimura *et al.*, Nature (London) **426**, 55 (2003).
- 4M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett. **95**, 087206 (2005).
- 5T. Arima, A. Tokunaga, T. Goto, H. Kimura, Y. Noda, and Y. Tokura, Phys. Rev. Lett. 96, 097202 (2006).
- 6T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
- 7T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).
- ⁸ J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B 75, 035118 (2007).
- 9Y. Yamasaki, S. Miyasaka, T. Goto, H. Sagayama, T. Arima, and Y. Tokura, Phys. Rev. B 76, 184418 (2007).
- 10H. Murakawa, Y. Onose, F. Kagawa, S. Ishiwata, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett. 101, 197207 (2008).
- 11H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. **95**, 057205 (2005).
- ¹²M. Mostovoy, Phys. Rev. Lett. **96**, 067601 (2006).
- ¹³ I. A. Sergienko and E. Dagotto, Phys. Rev. B **73**, 094434 (2006).
- ¹⁴ A. Muñoz *et al.*, Inorg. Chem. **40**, 1020 (2001).
- ¹⁵ Y. H. Huang et al., Chem. Mater. **19**, 2139 (2007).
- ¹⁶H. Okamoto et al., Solid State Commun. **146**, 152 (2008).
- ¹⁷ V. Yu. Pomjakushin et al., New J. Phys. **11**, 043019 (2009).
- ¹⁸ I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. **97**,

spectively. Taking the inequations $P_a > P_c$ and $\phi < \pi/4$ into account, the drastic decrease (and even sign reversal) of *P* for $\mathbf{B} \parallel \mathbf{P}_m$ and the increase in *P* for $\mathbf{B} \perp \mathbf{P}_m$ shown in Fig. [3](#page-2-0)(c) can be well explained. The same explanation is applicable for the *P* rotation from P_a to P_c [Fig. [3](#page-2-0)(b)].

In summary, we have revealed the magnetoelectric properties of a whole series of multiferroic o - R MnO₃ with both nonmagnetic and magnetic *R* and estimated the genuine values of *P* (\sim 5000 μ C/m²) in the *E*-type phase, which is more than ten times as large as that of the *bc*-cycloidal phase, yet one order of magnitude smaller than the predicted values. $18,19$ $18,19$ Furthermore, we found the bicritical feature near the phase boundary between the competing *bc*-cycloidal and *E*-type phases.

The authors thank Y. Takahashi, M. Mochizuki, and N. Furukawa for useful discussions. This work was supported in part by Grants-in-Aid for young scientists (B) (Grant No. 21750069) and Grant-in-Aid for Scientific Research on Priority Areas "Novel States of Matter Induced by Frustration" (Grant No. 20046017) from the MEXT, Japan.

227204 (2006).

- 19S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007).
- 20T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura, and Y. Tokura, Phys. Rev. B 72, 220403(R) (2005).
- 21M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 75, 144425 (2007).
- 22M. Mochizuki and N. Furukawa, Phys. Rev. B **80**, 134416 $(2009).$
- 23B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B **76**, 104405 $(2007).$
- ²⁴ A. Muñoz *et al.*, J. Phys.: Condens. Matter **14**, 3285 (2002).
- 25 F. Ye, B. Lorenz, Q. Huang, Y. Q. Wang, Y. Y. Sun, C. W. Chu, J. A. Fernandez-Baca, P. Dai, and H. A. Mook, Phys. Rev. B **76**, 060402(R) (2007).
- 26 From the ratio between the polycrystalline and the single crystalline *P* values in $Eu_{0.6}Y_{0.4}MnO₃$, the correction coefficient to convert the observed *P* value into the expected value for the single crystal was estimated to be 6. All the *P* values in Figs. $1(c)$ $1(c)$ and $3(a)$ $3(a)$ are corrected with this coefficient. This estimation is consistent with the naive expectation that the polycrystalline *P* value, even if fully poled, should be 1/3 of the single crystalline *P* value and even smaller since the poling for the polycrystals cannot be complete because of the random poling directions.
- ²⁷ Y. Tokura, Rep. Prog. Phys. **69**, 797 (2006).
- 28S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Phys. Rev. B 78, 155121 (2008).
- 29N. Furukawa and M. Mochizuki, J. Phys. Soc. Jpn. **79**, 033708 $(2010).$