PHYSICAL REVIEW B 81, 099907(E) (2010)

Erratum: Magnetic quantum oscillations in doped antiferromagnetic insulators [Phys. Rev. B 77, 132403 (2008)]

V. V. Kabanov and A. S. Alexandrov (Received 26 January 2010; published 24 March 2010)

DOI: 10.1103/PhysRevB.81.099907 PACS number(s): 75.45.+i, 71.22.+i, 71.18.+v, 72.15.Gd, 99.10.Cd

Our expression for the oscillating part of the magnetic moment $\widetilde{M}(\mathbf{B})$, Eq. (7), based on the energy spectrum Eq. (6) originally derived by Ramazashvili,² predicts the peculiar dependence of dHvA magneto-oscillation amplitudes, M_r , on the azimuthal in-plane angle Φ between the magnetic field \mathbf{B} and the magnetization axis, $M_r \propto \cos[\pi r (m_x m_y)^{1/2} \tan(\Theta) \cos(\Phi)/m_e]$ (Θ is the polar angle between the out-of-plane direction and \mathbf{B} in two-dimensional doped antiferromagnetic insulators).

Here we would like to point out that this expression as well as all following equations are restricted to moderate magnetic fields, $B < B_{SF}$, where B_{SF} is the spin-flop field of the antiferromagnetic background. In sufficiently strong fields $B > B_{SF}$ the magnetization axis rotates remaining perpendicular to **B**, so that our original conclusion should be altered. All our equations can be still applied but with $\Phi = \pi/2$ and $B_{\parallel} = 0$. Hence the g factor is near absent for any field orientation in this strong-field regime. In high temperature superconductors the spin-flop field is relatively small $B_{SF} < 10$ Tesla.³ Therefore the absence of the g factor, recently observed in quantum oscillation experiments⁴ for B > 30 Tesla, is in agreement with the earlier theoretical predictions.^{1,2,5}

¹V. V. Kabanov and A. S. Alexandrov, Phys. Rev. B 77, 132403 (2008).

²R. R. Ramazashvili, Zh. Eksp. Teor. Fiz. **100**, 915 (1991) [Sov. Phys. JETP **73**, 505 (1991)].

³ A. N. Lavrov, H. J. Kang, Y. Kurita, T. Suzuki, Seiki Komiya, J. W. Lynn, S.-H. Lee, Pengcheng Dai, and Yoichi Ando, Phys. Rev. Lett. **92**, 227003 (2004).

⁴S. E. Sebastian, N. Harrison, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Phys. Rev. Lett. **103**, 256405 (2009)

⁵S. A. Brazovskii, I. A. Lukyanchuk, and R. R. Ramazashvili, Pis'ma Zh. Eksp. Teor. Fiz. 49, 557 (1989) [JETP Lett. 49, 644 (1989)].