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We analyze the combined effect of orbital and Pauli depairing on the superconducting state, and apply the
results to the heavy fermion CeCoIn5. We find that �a� standard extrapolation based on the slope of Hc2�T� in
the vicinity of the transition temperature does not always give accurate values of the orbital upper critical field;
�b� critical value of the Maki parameter, �, which determines onset of the first order transition, depends on the
Fermi surface shape and the symmetry of the gap and is ���3 for CeCoIn5; and �c� the anisotropy of the
thermodynamic and transport coefficients in the low-temperature, low-field part of the phase diagram is es-
sentially insensitive to the Zeeman field and can be used to determine the nodal directions in Pauli-limited
superconductors. The latter result confirms the finding of the dx2−y2 order parameter CeCoIn5.
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I. INTRODUCTION

Magnetic field is one of the most widely utilized and pow-
erful probes of the unconventional superconducting state. It
couples to momentum and spin of the quasiparticles, via the
orbital and Zeeman mechanisms, respectively, and therefore
can be used to probe both the momentum dependence of the
order parameter and the spin structure of the Cooper pairs.

In singlet superconductors both mechanisms are detrimen-
tal to superconductivity. The orbital coupling of the Cooper
pair motion to the vector potential of the field leads, in
type-II superconductors, to the appearance of a mixed state
with partial field penetration. The Cooper pair supercurrents
and the order parameter are spatially modulated and form an
array of Abrikosov vortices. The upper critical field at which
the second order transition into the normal state occurs is
given Hc2

orb��0 /2��2, where �0 is the flux quantum and � is
the superconducting coherence length.1 For unconventional
superconductors, below that field the number of the quasi-
particles outside of the superconducting condensate and,
consequently, entropy-sensitive properties, such as the spe-
cific heat or thermal conductivity, depend on the relative ori-
entation of the field with respect to zeroes �nodes� or deep
minima in the energy gap.2–12 The corresponding measure-
ments have been extensively used to determine the symmetry
of the superconducting state13–25 with the heavy fermion
CeCoIn5 and CeIrIn5 being two examples where a reason-
ably detailed comparison of theory and experiment was car-
ried out.9–11,15,21 Crucially, the anisotropic signal changes
sign depending on the values of T and H in the supercon-
ducting phase diagram so that either minima or maxima cor-
respond to the direction of the field along the nodes.9–11 Con-
sequently, a detailed theoretical analysis is required for the
interpretation of the experimental data. So far, such an analy-
sis has only been carried out for purely orbital coupling.

At the same time measurements on CeCoIn5 clearly show
that the second suppression mechanism, depairing due to
Pauli spin polarization, is important in this compound.26–28

From the theory perspective, magnetic field aligns the spins
of the unpaired electrons while the singlet Cooper pairs
cannot take advantage of the lower energy offered by a
spin-polarized state. As a result, in the absence of the orbital
effects, the normal state is energetically favorable above
the Pauli critical field HP�T=0�=�s /�2�B �for isotropic
superconductors, see below�, where �s is the super-
conducting gap and �B=�e /2mec is the Bohr magneton.29,30

The normal state is reached via a second order transition at
T�T P

� �0.56Tc and a first order transition at low tempera-
tures 0	T	T P

� . In the absence of strong anisotropy of
the spin-orbit coupling, the number of unpaired electrons at
H	HP does not depend on the field orientation and there-
fore whenever this mechanism is dominant it is not immedi-
ately obvious how efficient the field is for determination of
the gap symmetry and when exactly the inversion of the
anisotropy pattern takes place.

Under most circumstances the orbital suppression mecha-
nism dominates, Hc2

orb
HP. Pauli limiting is important in
thin films and other quasi-two-dimensional materials, when
the orbital coupling is inefficient.31–33 In strongly layered
materials even at relatively low fields the Zeeman pairbreak-
ing effect may complicate the extraction of the nodal contri-
bution to the specific heat.3,34 Even in relatively three-
dimensional systems, if the characteristic electron velocity
�Fermi velocity� is low and hence the coherence length is
short, as it is in many heavy fermion and other correlated
superconductors, the orbital upper critical field is high, and
can be comparable to the Pauli limiting field. The question of
what the vortex state anisotropies can tell us about the super-
conducting gap symmetry in this situation has not been ex-
plored before and is the subject of this paper.

We consider a model relevant to CeCoIn5.26,27,35 The situ-
ation when the orbital and Pauli pairbreaking mechanisms
are comparable was considered early on by Gruenberg and
Gunther36 and by Maki37 for an s-wave superconductor with
spherical Fermi surface �FS�. CeCoIn5 has d-wave gap sym-
metry with the main f-electron containing Fermi surface
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sheet open along the c axis.38–41 Consequently, as our first
task, we compute the upper critical field as a function of
temperature for different orientations. We extend previous
calculations42–44 to the Fermi surface in the shape of a cor-
rugated cylinder that gives the correct normal state resistivity
anisotropy and find the temperature T �, below which the
normal to superconducting transition becomes first order.
One of our main findings is that the commonly used criterion
for determining the dominant Pauli limiting regime via the
Maki parameter,37 �=�2Hc2

orb /HP�1 is quantitatively incor-
rect and depends on the symmetry of the gap and on the
shape of the Fermi surface.

Second, we analyze the anisotropy of the specific heat and
the thermal conductivity under rotated magnetic field across
the T-H phase diagram including the effects of Pauli limit-
ing. Since the precise details of the behavior of the aniso-
tropy are used to infer the gap symmetry from experiment,
this extension is critical for justifying dx2−y2 symmetry in
CeCoIn5. We show that even moderately high Pauli effect
has little influence on the low-temperature and low-field part
of the phase diagram whereas its consequences near the up-
per critical field are considerable.

II. QUASICLASSICAL FORMULATION

A. Basic equations for superconductors under
Zeeman and orbital field

We use the quasiclassical formalism45,46 at real frequen-
cies, �, which allows to carry out calculations for arbitrary
temperature and field and to self-consistently include effects
of the field and impurities on the order parameter. The qua-
siclassical transport equation for the matrix Green’s function
in particle hole and spin space, ĝ, has the form47

��� +
e

c
v f�p̂�A�R���̂3 − �B · Ŝ − �̂�R,p̂�

− ̂imp�R;��, ĝ�R,p̂;��	 + iv f�p̂� · �Rĝ�R,p̂;�� = 0.

�1�

Here 
E1 ,E2� denotes a commutator, and we carried out the
standard48 separation of the center-of-mass coordinate, R,
and the momentum of the relative motion, p, so that the
Fermi velocity depends on the position on the Fermi surface,
v f�p̂�. The orbital coupling is via the electron charge and the

vector potential, A�R�, and the Zeeman term, �B · Ŝ, is pro-
portional to the electron’s magnetic moment �= �g /2��B
with g factor as a material-specific parameter and the spin
matrix,

Ŝ = �� 0

0 �� � �2�

with � the usual vector of Pauli matrices. The �retarded�
Green’s function in particle hole and spin space,

ĝR = � g + g� �f + f��iy

iy�f� + f��� − g + g�� � , �3�

satisfies normalization ĝ2=−�21̂. Equation �1� is comple-
mented by two other equations. One is the used to determine
the impurity self-energy, which we treat in the self-consistent
t-matrix approximation,49 ̂imp�R ;��=nimpt̂�R ;��, with

t̂�R;�� = u1̂ + uN0�ĝ�R,p̂;��p̂ t̂ , �4�

where N0 is the density of states �DOS� at the Fermi level,
and angle brackets denote Fermi surface average. In writing
this equation we assumed nonmagnetic isotropic scattering
with the individual impurity potential strength u so that the
impurity self-energy does not have any momentum
dependence.49 The second equation is the self-consistency
condition on the order parameter which relates it to the off-
diagonal, in particle-hole space, component of the Green’s
function. Before we write it explicitly, however, it is conve-
nient to rewrite the function ĝ in a different representation.

Recall that we are interested in the regime H�Hc1, when
the vortices form an Abrikosov lattice and are considering
strongly type-II superconductors. In this case the internal
field B is essentially uniform and equal to the applied field,
H. The important point is that for a field which orientation is
the same at all spatial points we can choose the spin quanti-
zation axis along the field H=Hẑ and introduce for all vector
quantities the notation x ·�= x̄z. This choice is rigorously
justified in the absence of spin-orbit interaction. In general,
in heavy fermion systems the superconducting states are
classified by parity, rather than true spin quantum number,
and the selection of the pseudospin quantization axis along
the field is justified only for high symmetry directions. We
employ this simplified description hereafter with the adjust-
able effective g factor to obtain the salient features of the
behavior. Then the 4�4 Green’s function, Eq. �1� consists of
two blocks,

ĝR =�
g + ḡ 0 0 f + f̄

0 g − ḡ − f + f̄ 0

0 f� − f̄� − g + ḡ 0

− f� − f̄� 0 0 − g − ḡ
� , �5�

corresponding to the spin-up and spin-down components.
The impurity self-energy ̂imp assumes the same block form.
Note that here our assumption of the isotropic purely poten-
tial impurities is crucial: inclusion of strongly momentum-
dependent impurity scattering as well as the spin-orbit com-
ponent of the scattering potential makes the problem
significantly more complex, as discussed in detail in Ref. 50.

The block structure allows us to rewrite the equations for
the components of the Green’s function in a simple form. We
explicitly introduce the equations for the two spin compo-

nents, s= �↑�+1� , ↓ �−1�� via gs=g+sḡ and fs= f +s f̄ . These
functions now satisfy independent quasiclassical equations
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and normalization conditions, gs
2− fsfs�=−�2, with the Zee-

man energy shift �→���B for up and down spin, respec-
tively, see also Ref. 51. Now, for example, equation for the
off-diagonal part of the Green’s function takes the form

�− 2i��̃s − s�B� + v f�p̂���R − i
2e

�c
A�R�	� fs�R,p̂;��

= 2�̃s�R;��igs�R,p̂;�� . �6�

Here we introduced the shorthand notations �̃s=�−�s and

�̃s=�+�imp,s explicitly including the diagonal ��s� and off-
diagonal, �imp,s components of

̂imp,s�R;�� � nimpt̂s�R;�� = � �s �imp,s

− �imp,s
� − �s

� . �7�

Inversion of Eq. �4� to obtain closed-form expressions for �s
and �imp,s in terms of Green’s function, scattering rate �
=nimp /�N0 and phase shift �0=tan−1��uN0� is done in Ref.
10. The spins mix only through the self-consistency equation
for the singlet order parameter,

��R,k;�� = �
−�c

+�c d�

4�i
tanh

�

2T

��V�k,p�
f↑�R,p̂;��� + f↓�R,p̂;��p̂, �8�

where V�k ,p� is the pairing potential, and �c is a high en-
ergy cut-off. Equation �6� has the same form as the quasi-
classical equation in the absence of Zeeman term and there-
fore we can utilize the existing techniques to solve for each
of the two spin components independently, enforcing the
self-consistency for the order parameter at the final step.

B. Model and method of solution

We follow the approach we developed earlier9–11,52 and
solve the equations using a modified Brandt-Pesch-Tewordt
�BPT� approximation.53,54 We assume the existence of the
Abrikosov vortex lattice and model the spatial dependence of
the order parameter by ��R ,p�=��p̂��R �0=�Y�p̂��R �0,
where Y�p̂� is the normalized ��Y�p̂�2p̂=1� basis function
for the irreducible representation corresponding to the cho-
sen gap symmetry, and normalized by a proper choice of Cky
coefficients the spatial vortex lattice profile,

�R�0 = �
ky

Cky

eiky�Sfy

�4 Sf�
2

�̃0�x,ky� . �9�

The magnetic length �2=hc /2eB and

�̃0�x,ky� = �0� x − �2�Sfky

��Sf
� �10�

is the ground-state oscillator function, and x and y are in the
direction normal to the field.10 Here we approximated the
vortex lattice by only the superposition of the lowest
oscillator wave functions, �0. The admixture of the higher

oscillator states is small55,56 and does not substantially affect
the conclusions regarding the properties in the vortex
state.9–11,56 Hence we consider only the lowest Landau level,
as reflected in Eq. �9�, but with properly rescaled Fermi ve-
locity component perpendicular to the field. For a Fermi sur-
face rotationally invariant around the c axis that we consider
below10

Sf = �cos2 �H +
v0�

2

v0�
2 sin2 �H	1/2

, �11�

�H is the angle between the field direction and the c axis. We
defined v0�

2 =2�Y2�p̂�v�
2�pz�p̂, and v0�

2 =2�Y2�p̂�v�i
2 �pz�p̂,

where v� is the c-axis component of the Fermi velocity while
v�i with i=a ,b is the Fermi velocity component in the a-b
plane. For the field in the basal plane �H=� /2 and therefore
Sf =v0� /v0�.

The BPT approximation consists of replacing the diagonal
part of the Green’s function with its spatial average. It is
essentially exact at H /Hc2�0.5 for strongly type-II
superconductors53,57 and gives the BCS Green’s function in
the limit H→0, thereby providing a very good interpolation
between the low- and moderate-to-high field regimes. In sys-
tems with nodes in the gap, where the states outside the
vortex core give the major contribution to the thermal and
transport properties, one may expect the method to continue
to work even in the regime where, in a fully gapped system,
the vortex core states ignored here would dominate the DOS.
Indeed, in nodal superconductors the low-field range the den-
sity of states obtained via this approximation is very close to
that found using the Doppler shift approach.58 The inversion
of the anisotropy in the zero-energy density of states occurs
at exactly the same ratio of H /Hc2 in the BPT approach and
in the solution of the microscopic Bogoliubov-de Gennes
equations.10,59 Consequently, the BPT method is well justi-
fied over a wide range of fields for unconventional supercon-
ductors.

The equations for the off-diagonal components of the
Green’s function are solved by introducing the ladder
operators60 as in Refs. 10 and 11, and, in conjunction with
the normalization condition, for the lowest Landau level give

fs = �
1

�1 + P

2���

�ṽ f
��

W�2��̃ − s�B��
�ṽ f

�� 	�̃s,

gs = �
− i

�1 + P
,

P = − i��� 2�

�ṽ f
��
�2

W��2��̃ − s�B��
�ṽ f

�� 	�̃s��̃ s �12�

with �̃s�p̂ ,��=��p̂�+�imp,s���, W�z�=exp�−z2�erfc�−iz�, and

�ṽ f
�� = �v f ,x�p̂�2

Sf
+ v f ,y

2 �p̂�Sf	1/2

. �13�
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This closed-form solution is used to enforce the self-
consistency on the impurity self-energy and the gap value.
The approach gives the order parameter and the Green’s
function that can be used to determine the physical properties
below.

III. FERMI SURFACE, UPPER CRITICAL FIELD,
AND MAKI PARAMETER

We consider a model Fermi surface that approximates the
main sheet of CeCoIn5 as seen by the magnetic
oscillations.39–41,61 It has the shape of an open cylinder rota-
tionally symmetric in the a-b plane �component of the mo-
mentum labeled pr� and modulated along the c axis9 and is
given by pf

2= pr
2−r2pf

2 cos�2apc /r2pf� with r=a=0.5. This
choice of parameters gives a moderate anisotropy between
transport coefficients in the c direction and a-b plane, close
to that of CeCoIn5 in the normal state.62 With this definition,
the typical quasiparticle velocity in the basal plane is v f
= pf /m and that along the c axis, v f ,c�av f =0.5v f.

We choose the dx2−y2 symmetry of the order parameter and
take a model separable pairing interaction V�k ,p�
=V0Y�k̂�Y�p̂��V0Y���Y����, where � labels the azimuthal
angle around the Fermi surface, and Y���=�2 cos 2�. With
this choice ��R , p̂�=�2��R�cos 2�. The dimensionless cou-
pling constant N0V0 determines the transition temperature of
the pure sample, Tc0, which is suppressed by impurities to
Tc; we use this latter Tc as a unit of energy. Similarly, the
natural unit for the magnetic field is the characteristic orbital
scale, B0=�0 /2��0

2, where �0=hc /2e is the flux quantum
and �0=�v f /2�Tc is the coherence length.

We measure the strength of the Zeeman term via a dimen-
sionless parameter Z=�B0 /2�Tc �Ref. 63� so that the Zee-
man splitting of the energy levels in dimensionless units is
�B / �2�Tc�=ZB /B0. Since we expect the orbital critical field
Hc2

orb to be of order B0, and the Pauli limit corresponds to
�HP��0�Tc, we find Hc2

orb /HP�Z.
We first compute the upper critical field by solving the

linearized, with respect to the order parameter, quasiclassical
equations. Under the combined effect of the orbital and Zee-
man field the transition for strong enough Pauli term be-
comes first order at low temperatures, T	T �. We determine
T � in the clean limit by evaluating where the �4-term coef-
ficient in the free energy expansion becomes negative. The
general free energy expansion can be obtained from Eq. �12�,
but it is complicated in a dirty d-wave superconductor,64 and
since the precise location of T � is not important for this work
we will not look for it here. At lower temperatures, the tran-
sition line can only be determined from the full free energy
functional, which needs to also account for the possible ex-
istence of the additional modulations in the Fulde-Ferrell-
Larkin-Ovchinnikov �FFLO� phase.42–44 While there are
many indications that in CeCoIn5 a new phase exists in the
high-field, low-temperature range35,65–69 the experiments on
the vortex state anisotropy are generally carried out away
from that range. Consequently, we do not consider the
FFLO-type modulation here.

Figure 1 shows the upper critical field, Hc2�T� for a pure
system for two different field orientations �c axis and the in

plane along the gap maximum� and for different strength of
the Zeeman splitting. Our results for Z=0 resemble the clas-
sical results by Helfand and Werthamer70,71 �HW� with dif-
ferences in profiles attributed to anisotropic gap and non-
spherical FS. The important observation is that the shape of
the temperature dependence of the upper critical field
changes with increasing Z, and that the linear region of
Hc2�T��1−T /Tc near Tc rapidly shrinks, eventually leading
to Hc2��1−T /Tc dependence characteristic of the Pauli-
limited field. Hence, as is shown in Fig. 1 a frequently used
experimental estimate of the Hc2

orb�T=0� based on the slope
of the measured upper critical field near Tc is not reliable for
paramagnetically limited superconductors: that estimate
changes on approaching the Pauli limit. First, the slopes
dHc2 /dT of the purely orbital and paramagnetically limited
cases, while equal asymptotically as T→Tc, are different
when determined within a reasonable experimental window
as shown by dotted lines based on the values of Hc2 at
T /Tc= �0.9,1�. We find that even for moderate paramagnetic
coupling a reasonable estimate of the slope may be obtained
only within a window of 1–3 % near Tc. Second, the Hc2�T�
profile for our chosen Fermi surface and the d-wave order
parameter even for the purely orbital case is different from
that found using the HW �Ref. 70� result for s-wave super-
conductor with a spherical FS with the same dHc2 /dT�Tc�.
Consequently, for Z�1 the estimate of Hc2

orb using the HW
profile and an approximate slope dHc2 /dT�Tc� based on
points more than a few percent away from Tc may signifi-
cantly underestimate the magnitude of Hc2

orb, as indicated by
the arrows in Fig. 1.

The change in the shape of the Hc2�T� curve with increas-
ing paramagnetic contribution is made even more explicit in
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FIG. 1. �Color online� Difference between estimated and com-
puted orbital upper critical field, Hc2

orb, in strongly paramagnetic
superconductors for �a� in-plane field and �b� field normal to the
planes. Lower solid lines denote Hc2 for the paramagnetically lim-
iting case Z=0.8 and are continued as broken lines in regions of the
first order transition. The orbital field is computed by ignoring Zee-
man splitting �Z=0�, the upper solid lines. It is in reasonable agree-
ment with the values based on the HW result �Ref. 70�, thick dot-
dashed lines. If, however, the HW plot is based on the slope
dHc2 /dT at Tc determined from the points T /Tc= �0.9,1� for Z
=0.8, thin dot-dashed lines, the extracted orbital limit, Hc2

ex, is sig-
nificantly different from Hc2

orb as indicated by vertical arrows.
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Fig. 2, where we also include the upper critical field for the
in-plane field along the nodal direction. As can be expected
in a magnetically isotropic system, increased Pauli limiting
reduces the anisotropy of the upper critical field caused by
both the in-plane anisotropy of the order parameter �node vs
antinode� and the anisotropy of the Fermi surface �c axis vs
a-b plane�.

Finally, in the inset of Fig. 2 we show the onset tempera-
ture for the first order transition, T � as a function of the Pauli
limiting parameter Z. It is instructive to recast this analysis
in terms of the so-called Maki parameter, �=�2Hc2

orb /HP.
It is conventionally assumed that the critical value of the
Maki parameter that defines a strong paramagnetic limit is
����=1, as obtained for the onset of the first order transi-
tion in s-wave superconductors with a spherical Fermi
surface;37 this value is commonly used in the analysis of
anisotropic strongly correlated materials as well. In reality
the critical value �� depends on details of the Fermi surface
and the superconducting state. For our model Hc2

orb�1.4
in the a-b plane and �HP�1.11�d0 /�2. Here �d0
=0.241�2�Tc� is the amplitude of the order parameter at
T=H=0 �Ref. 72� and the increase in HP by factor 1.11
compared with the similar s-wave expression is caused by
the gain in magnetic energy of the d-wave superconducting
state by magnetization of the nodal quasiparticles.73 The
critical value of the Maki parameter where first order transi-
tion appears is therefore ��=�2Hc2

orb /HP�7.0�Hc2
orb /B0�Z�

and since in-plane Z��0.3 we have �d-wave
� �3.0, signifi-

cantly exceeding the value of unity expected for dirty isotro-
pic systems.

We apply our results to CeCoIn5 to analyze the behavior
of the upper critical field along a and c axes. The fit for the

100� direction is shown in Fig. 3. The best fit of the second
order transition and the location of T � in the experimental
range is given by Za�0.5. For H �c the best fit is given by
Zc�1.15. From these two fits we obtain the value for B0

which is approximately 30 T for both field orientations,
which is an indication that our choice of the FS parameters
was reasonably good to describe this system. From this value
we find the Fermi velocity v f �0.6�106 cm /s, which is
sensible for a heavy fermion system and agrees with inter-
pretation of the experimental data74 and disagrees with the
value �108 cm /s obtained by authors of Ref. 44. We then
extract the values of the effective electron moment, � /�B
=Z�2�kBTc� / ��BB0� and obtain �ab /�B�0.35 and �c /�B
�0.7, in agreement with Ref. 44 where the varying param-
eters were Fermi velocity and the g factor.

We do note that in the current model the orbital pairbreak-
ing is stronger for the nodal direction, Fig. 4�a�, hence the
Pauli effect is relatively less important and the range of first
order transition is smaller for that orientation 
Fig. 4�c��.
However, this particular aspect depends sensitively on the
in-plane shape of the Fermi surface. We took the Fermi sur-
face to be rotationally symmetric and the question of how
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this conclusion is affected by a more realistic Fermi surface
shape is left for future studies.

IV. TRANSPORT AND SPECIFIC HEAT ANISOTROPY

We are now in the position to analyze how the Pauli lim-
iting affects the measured anisotropies of the specific heat,
C��0�, and longitudinal thermal conductivity, �xx��0�, when
magnetic field is rotated in the basal plane with respect to the
crystalline axes. The direction of the field, �0, is measured
from the gap’s maximum along the a axis. As is well known,
both quantities show oscillations, with either minima or
maxima when the field is aligned with the nodal
directions.2,9–11,22,23 The location of the inversion line in the
T-H plane that separates the regions with minima and
maxima indicating the gap nodes is of exceptional experi-
mental relevance as it affects the conclusions about the shape
of the gap in a given compound.

The results are most clearly presented in the form of a
phase diagram in the T-H variables that indicates each of the
regions. In Fig. 4 we show the evolution of such phase dia-
gram for the specific heat anisotropy with increasing Zeeman
coupling. We compute the density of states, N�� ,T�
=−�N0 /2���Img�p̂ ,��p̂, where inclusion of T signifies that
the self-consistently determined gap is temperature depen-
dent, obtain the entropy,

S�T,H� = − �
−�

�

d�N��,T��f���ln f��� + 
1−f����ln
1−f�����

�14�

and numerically differentiate it to find C /T. The result for
purely orbital coupling to magnetic field, Z=0.0 in Fig. 4�a�
is in agreement with Ref. 10: In the two shaded regions �near
Hc2 and in low-T low-H corner� the heat capacity attains its
minimum when the field is along the nodal directions of the
gap. Clearly, since the anisotropy in the heat capacity is field
induced, the amplitude of the anisotropy is very small at low
fields for all temperatures and extremely small near Tc.
Hence the challenge is to go to sufficiently high fields to see
the signal while knowing whether the maximum or a mini-
mum of the anisotropic signal corresponds to the nodal di-
rections.

As the relative strength of the spin coupling increases,
Figs. 4�b� and 4�c�, we note that the “nodal minimum” re-
gion near Hc2 grows at the expense of the intermediate field
unshaded region. This is concomitant with the disappearance
of the anisotropy of the upper critical fields for nodal and
antinodal directions. An obvious conjecture is that for Z=0 at
intermediate temperatures and moderately high fields it is the
anisotropy of the upper critical field that controls the aniso-
tropy of the specific heat: since Hc2

node	Hc2
antinode, at a fixed

external field H /Hc2
node�H /Hc2

antinode, and the density of
states, along with the heat capacity, is higher for the field
along the nodal direction. As the Zeeman coupling is
increased and the critical fields along the nodal and the
antinodal directions become nearly equal, this unshaded re-
gion shrinks. In Fig. 4�c� we tuned Z�Z� and see that the
critical fields for the two in-plane directions are almost in-

distinguishable, and that there is a region of first order tran-
sition at low temperatures T	T �, indicated by the arrows.

Importantly for our purposes, the low-T, low-H shaded
region �minima for the field along the nodes� remains mostly
unchanged with increasing Z, terminating at T /Tc�0.1
and H /Hc2

Z �0.4. This region is still dominated by the
nodal quasiparticles and “semiclassical” physics, N�0,H�
��H /Hc2

orb,75,76 compared to a linear contributions due to
Zeeman shifts �for these Z’s� and vortex cores.

Figures 4�c1� and 4�c2� provide the profiles of the heat
capacity anisotropy for Z=0.4 and two different fields at lo-
cations indicated by circles and squares correspondingly. The
heat capacity expression that we use to plot the angular de-
pendence,

C�T,H� = �
−�

� �2d�

4T2

N↑��,T,H� + N↓��,T,H�
cosh2��/2T�

, �15�

is, strictly speaking, valid only at low temperature when the
order parameter is essentially temperature independent. The
difference between this expression and the exact result ob-
tained from the entropy differentiation is small far from the
superconducting transition, see Refs. 9 and 10.

We also compute the anisotropy of the thermal conductiv-
ity along the crystalline x direction for unitarity scattering
�phase shift � /2� and the normal state scattering rate
� /2�Tc=0.007. The thermal conductivity is calculated on
equal footing with the density of states11,52 and is given by
�ij =�ij,↑+�ij,↓, where the spin direction s= ↑ ,↓ and

�xx,s�T,H�
T

= �
−�

+� d�

2T

�2

T2cosh−2 �

2T

� �v f ,x
2 Ns�T,H;p̂,���H,s�T,H;p̂,��p̂ �16�

with the effective scattering rate

1

2�H,s
= − Im�s

R + ��
2�

�ṽ f
��

Im
gs
RW�2�̃�/�ṽ f

����
Imgs

R ��0Y�2.

�17�

Here the label R denotes a retarded function and we use the
angle-resolved density of states.

Figure 5 shows characteristic profiles of the heat capacity
and heat conductivity when the field is rotated in the basal
plane. Note that in the left panel we labeled the fields accord-
ing to the ratio H /Hc2: the upper critical field changes be-
tween Z=0 and 0.4 so that the effective field range is differ-
ent. As discussed above, the major difference between two
values of the Zeeman splitting is that for higher Z there exists
a region of shallow minimum at the node �45° in our case�
for high fields.

The second panel of Fig. 5 shows the behavior of the
thermal conductivity for the same fields, now labeled in units
of B0. Qualitatively, the peak in the angle dependent � for
Z=0 at 45° disappears at Z=0.4, making the dependence of
the thermal conductivity more twofold.

To quantify these trends we follow the approaches taken
in experiment and expand both quantities in harmonics of the
angle between the field and the heat current,
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C��0,T,H�/T
�C/T�N

= C0� + C4� cos 4�0,

�18�
�xx��0,T,H�/T

��xx/T�N
= �0� + �2� cos 2�0 + �4� cos 4�0

and present the evolution of different coefficients with field
and temperature.

First, focus on the behavior of the specific heat as shown
in Fig. 6. At low fields for Z=0 the isotropic part, C0�,

shown in panels �a� and �c�, exhibits the approximate �H
behavior expected of a nodal superconductor.75,77 With in-
creased Zeeman contribution this component of the specific

heat becomes more linear in field.3,78 This is, of course, sim-
ply because the spin-split quasiparticle spectra produce a
density of states at zero energy, N�0,H����H� /�0, with the
prefactor that, for high �, can be large enough to dominate
the sublinear Volovik term already at low fields. At low tem-
peratures C0� acquires a positive curvature at high fields, in
agreement with Ref. 63.

The qualitative behavior of the anisotropic term, C4�, is
similar for the two values of Z at low temperature, panel �b�,
but is distinctly smaller at higher temperature, shown in
panel �d�, and even changes sign near Hc2. The comparison
becomes even more clear if the amplitude C4� is plotted
against the upper critical field for given values of Zeeman
splitting, as in Fig. 7. At low temperature there is essentially
no difference between the purely orbital case and that of a
moderately strong Zeeman coupling and hence in this regime
the anisotropy depends only on the shape of the gap and the
underlying Fermi surface. In contrast, at T /Tc=0.3 for the
case of weak Zeeman splitting the coefficient does not
change sign, as seen already from Fig. 4�a�. In contrast, for
Z=0.4 as shown in Fig. 4�c�, there is a change of sign in the
anisotropy of the specific heat due to the “isotropization” of
the upper critical field, as discussed above.

The same trend is seen in the thermal transport anisotropy.
The behavior of the average thermal conductivity, �0 and the
twofold term responsible for the difference between heat
transport parallel and perpendicular to the vortices, is shown
in Fig. 8. At low fields the scattering of the quasiparticles on
the vortices is determined by the vortex concentration, n
�H /�0, and therefore, at low temperature, only weakly de-
pends on the Zeeman field. As the temperature increases,
however, the differences between the two cases become
much more pronounced. In particular, it is worth noting that
the twofold symmetry �2��0 
�xx�jh �H���xx�jh�H�� is
much more pronounced in the Pauli-limited case.

The fourfold “nodal” term, Fig. 9, shows the behavior
broadly similar to that of the anisotropic component of the
specific heat. The low-temperature behavior as a function of
the reduced field, H /Hc2 is similar for the cases of weak and
strong Pauli limiting while the behavior at moderate tem-
peratures is very different starting at moderate fields. Once
again, the coefficients for Z=0 and 0.4 have the opposite
signs starting at H�0.5Hc2.
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V. CONCLUSIONS

In conclusion, we calculated in a d-wave superconductor
with quasicylindrical FS the Hc2 and its evolution for transi-
tion between orbital and Pauli limits. We find that in this
system the critical value of the Maki parameter for paramag-
netic limit criterion is ��=3. That values depends on both the

symmetry of the order parameter and the shape of the Fermi
surface, and hence there is no universal threshold value for
that parameter that ensures the first order transition in a
given system. We also find that the linear extrapolation of the
upper critical field in Pauli-limited superconductors from the
vicinity of Tc to low temperatures does not accurately predict
the value of the orbital critical field.

We showed that moderately large Zeeman contribution
does not alter the typical behavior of C and � anisotropy at
low temperatures and fields. This is summarized in the phase
diagram in Fig. 10. The region at low T and H where the
minima in the fourfold terms in the heat capacity and thermal
conductivity occur for the field along the nodes is essentially
insensitive to the strength of the Zeeman coupling. The dif-
ferences, of course, occur at higher temperatures and fields.

This finding proves that, even in systems with strong
paramagnetic contribution where Hc2 anisotropy in the a-b
plane is largely absent and therefore cannot be used to infer
the nodal structure,79 the anisotropy of heat conductivity and
heat capacity at moderate to low H and T still can help de-
termine the location of the nodes of the order parameter on
the Fermi surface. The previous analysis9 of the inversion of
the anisotropy in CeCoIn5 remains valid when the Zeeman
term is accounted for and unequivocally indicates the dx2−y2

shape of the order parameter. This also provides further sup-
port for the interpretation of Ref. 25 that confirmed the in-
version of the specific heat oscillations. Of course, further
studies incorporating the shape of the Fermi surface specific
to the 115-family are needed for detailed comparison of the
location of the experimentally determined inversion line with
theoretical predictions.
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