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We describe the phenomenon of optical activity of noncentrosymmetric metals in their normal and super-
conducting states. The found conductivity tensor contains the linear in wave-vector off-diagonal part respon-
sible for the natural optical activity. Its value is expressed through the ratio of light frequency to the band
splitting due to the spin-orbit interaction. The Kerr rotation of polarization of light reflected from the metal
surface is calculated.
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I. INTRODUCTION

The metals without inversion symmetry have recently be-
come a subject of considerable interest mostly due to the
discovery of superconductivity in CePt3Si.1 Now the list of
noncentrosymmetric superconductors has grown to include
UIr,2 CeRhSi3,3 CeIrSi3,4 Y2C3,5 Li2�Pd1−x ,Ptx�3B,6

KOs2O6,7 and other compounds. The spin-orbit coupling of
electrons in noncentrosymmetric crystal lifts the spin degen-
eracy of the electron energy band causing a noticeable band
splitting. The Fermi surface splitting can be observed by the
de Haas-van Alphen effect discussed theoretically in the pa-
per Ref. 8. The band splitting reveals itself in the large re-
sidual value of the spin susceptibility of noncentrosymmetric
superconductors at zero temperature.9 It also makes possible
the existence of nonuniform superconducting states that can
be traced to the Lifshitz invariants in the free energy.10 An-
other significant manifestation of the band splitting is the
natural optical activity.

The natural optical activity or natural gyrotropy is well-
known phenomenon typical for the bodies having no center
of symmetry.11 The optical properties of a naturally active
body resemble those of the magnetoactive media having no
time reversal symmetry. It exhibits double circular refraction,
the Faraday, and the Kerr effects. In this case, the tensor of
dielectric permeability has linear terms in the expansion in
powers of wave vector

�ij��,q� = �ij��,0� + i�ijl���ql, �1�

where �ikl��� is an antisymmetric third rank tensor called the
tensor of gyrotropy.

The spacial dispersion term in permeability has been de-
rived by Arfi and Gor’kov12 in frame of model where “a
conductor lacking a center of inversion is simulated by an
ordered arrangement of impurities whose scattering potential
is asymmetric” �see also Ref. 13�. We shall be interested in
gyrotropy properties of a clean noncentrosymmetric metal.
In metals, it is more natural to describe optical properties in
terms of spacial dispersion of conductivity tensor having the
following form:

�ij��,q� = �ij��,0� − i�ijl���ql. �2�

Here, the gyrotropy tensor �ijl��� is an odd function of fre-
quency.

The gyrotropic tensor has the simplest form in the metals
with cubic symmetry. In this case, the Drude part of the
conductivity tensor is isotropic �ij�� ,0�=�����ij and the gy-
rotropic conductivity tensor �ikl���=����eikl is determined
by the single complex function ����=�����+ i����� such
that a normal state density of current is

j =
�

4	

�E

�t
+ �E + � rot E . �3�

In time representation � is an operator being an odd function
of operation of time derivative � /�t.

In the superconducting state besides � rot E the gyrotro-
pic part of current density contains also an additional term
proportional to the magnetic induction B

jg = � rot E + 
B . �4�

Here 
=
�T� is a constant coefficient being equal to zero in
the normal state.14,15

In this paper, we present the derivation of current re-
sponse to the electromagnetic field with finite frequency and
wave vector valid for the normal and the superconducting
state of noncentrosymmetric metals with cubic symmetry.
We find that the gyrotropy conductivity � is directly propor-
tional to the ratio of the light frequency to the energy of the
band splitting. Then making use the Maxwell equations and
corresponding boundary conditions at the surface of noncen-
trosymmetric metal derived in the Sec. V we calculate the
Kerr rotation of polarization of light reflected from the sur-
face of metal.

II. CURRENT RESPONSE TO ELECTROMAGNETIC
FIELD

The current response of a clean metal to the electromag-
netic field at finite q and � can be written following the
textbook procedure.16 In application to our situation one has
to remember that due to spin-orbital coupling determined by
the dot product of the Pauli matrix vector � and pseudovec-
tor ��k�, which is odd in respect to momentum
��−k�=−��k� and specific for each noncentrosymmetric
crystal structure,9,17 all the values such as single electron
energy
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���k� = ���k� − ���� + ��k���, �5�

velocity v��k�=����k� /�k, the inverse effective
mass �mij

−1��=�2���k� /�ki�kj, the Green functions

G���1 ,k ;�2 ,k��=−�T�ak���1�ak�
† ��2�� and

F���1 ,k ;�2 ,k��= �T�ak���1�a−k���2�� are matrices in the
spin space. Taking this in mind, we obtain

ji��n,q� = −
e2

c
Tr�m̂ij

−1n̂e +� d3k

�2	��3T 	
m=−�

�


v̂i�k�Ĝ�0��K+�v̂ j�k�Ĝ�0��K−� + v̂i�k�F̂�0��K+�v̂ j
t�− k�F̂+�0��K−���Aj��n,q� . �6�

The transposed matrix of velocity is determined as

v̂t�−k�=��̂t�−k� /�k. The arguments of the zero-field Green
functions are denoted as K�= ��m��n /2,k�q /2�. The
Matsubara frequencies take the values �m=	�2m+1−n�T
and �n=2	nT.

One can pass from the spin to the band representation,
where the one-particle Hamiltonian

H0 = 	
k

���k�ak�
† ak = 	

k,�=�

���k�ck�
† ck�, �7�

has diagonal form. Here, the band energies are

���k� = ��k� − � + ���k� , �8�

such that two Fermi surfaces are determined by equations
���k�=0. The difference of the band energies 2��kF� char-
acterizes the intensity of the spin-orbital coupling. The Fermi
momentum with �=0 is determined by the equation
��kF�=�F.

The diagonalization is made by the following transforma-
tion

ak� = 	
�=�

u���k�ck�, �9�

with the coefficients

u↑��k� =�� + ��z

2�
,

u↓��k� = �
�x + i�y

�2��� + ��z�
,

forming a unitary matrix û�k�.
The zero field Green functions in the band representation

are diagonal and have the following form:9

G���
�0� ��n,k� = ����G���n,k� ,

F���
�0� ��n,k� = ����F���n,k� , �10�

where

G���n,k� = −
i��n + ��

�2�n
2 + ��

2 + �̃��k�2
,

F���n,k� =
t��k��̃��k�

�2�n
2 + ��

2 + �̃��k�2
, �11�

and

t��k� = − �
�x�k� − i�y�k�
��x

2�k� + �y
2�k�

.

The functions �̃��k� are the gaps in the �-band quasiparticle
spectrum in superconducting state. In the simplest model
with BCS pairing interaction vg�k ,k��=−Vg, the gap func-
tions are the same in both bands: �̃+�k�= �̃−�k�=� and we
deal with pure singlet pairing.18

Transforming the Green functions using Eq. �9� into the
band representation,19 we obtain

Tr
v̂i�k�Ĝ�0��K+�v̂ j�k�Ĝ�0��K−� + v̂i�k�F̂�0��K+�v̂ j
t�− k�F̂+�0��K−��

= v++,i�k�G+v++,j�k�G+ + v++,i�k�F+v++,j�− k�F+
† + v−−,i�k�G−v−−,j�k�G− + v−−,i�k�F−v−−,j�− k�F−

†

+ v+−,i�k�G−v−+,j�k�G+ + v+−,i�k�F−v+−,j�− k�F+
† + v−+,i�k�G+v+−,j�k�G− + v−+,i�k�F+v−+,j�− k�F−

† �12�

as the trace of the matrices in Eq. �6�. For the brevity, we omit here the arguments of the Green functions. They are the same
as in the upper line. The matrix velocity in the band representation is

v�����k� = u��
† ��k�v���k�u����k� =

��0��k�
�k

���� +
��l��k�

�k
�l,�����k� , �13�

where �̂�k�= û†�k��̂û�k� are hermitian matrices. We have neglected20 the difference between û�k� and û�k�q /2�.
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The explicit expressions for the �̂�k� matrices are

�̂x =� �̂x −
�x�̂z + i�y

��

−
�x�̂z − i�y

��

− �̂x
�, �̂y =� �̂y −

�y�̂z − i�x

��

−
�y�̂z + i�x

��

− �̂y
�, �̂z =� �̂z

��

�

��

�
− �̂z

� , �14�

where �̂=� / � and ��=��x
2+�y

2. All the diagonal elements
of these matrices are odd functions of the momentum com-
ponents. Correspondingly, the products of the diagonal com-
ponents of velocity matrices �13� are even functions of mo-
mentum. Hence, these terms in Eq. �12� can produce only the
terms proportional to even powers of the product kq being
not responsible for the gyrotropy properties.

The off diagonal elements of �̂�k� have the mixed parity.
So, the dispersive terms proportional to the odd powers of
the product kq can arise only from the part of Eq. �12� con-
taining the off diagonal elements of �̂�k� matrices. Hence,
for the calculation of gyrotropy of conductivity, only the last
line in Eq. �12� consisting of interband terms are important.
They are equal to

��l

�ki

��m

�kj

�l,+−�m,+−

� �G−G+ − F−F+
†�

+ �l,−+�m,−+
� �G+G− − F+F−

†�� . �15�

Using the identity

�l,+−�m,+−
� = �l,−+

� �m,−+ = �lm − �̂l�̂m + ielmn�̂n,

where �̂l=�l / �, one can rewrite the above expression as

��l

�ki

��m

�kj

��lm − �̂l�̂m��G−G+ + G+G− − F−F+

† − F+F−
†�

+ ielmn�̂n�G−G+ − G+G− − F−F+
† + F+F−

†�� . �16�

Starting this point we need the explicit form of spin-orbit
coupling vector ��k�. Its momentum dependence is deter-
mined by the crystal symmetry.9,17 For the cubic group
G=O, which describes the point symmetry of
Li2�Pd1−x ,Ptx�3B, the simplest form compatible with the
symmetry requirements is

��k� = �0k , �17�

where �0 is a constant. For the tetragonal group G=C4v,
which is relevant for CePt3Si, CeRhSi3 and CeIrSi3, the spin-
orbit coupling is given by

��k� = ���kyx̂ − kxŷ� + ��kxkykz�kx
2 − ky

2�ẑ . �18�

The gyrotropy current jg, which is linear with respect to the
wave-vector q, originates from the last term in the Eq. �16�.
One can show that for the tetragonal crystal with the sym-
metry group G=C4v, for the electric field lying in the basal
plane the linear in the component of wave-vector q part of
conductivity is absent. In that follows, we continue calcula-

tion for the metal with cubic symmetry where �̂= k̂ sign �0.

We put �̂= k̂ taking �0 as a positive constant. Thus, we obtain
for gyrotropy current21

jgi��n,q� = ieijl

e2�0
2

c
IlAj��n,q� , �19�

Il =� d3k

�2	��3 k̂lT 	
m=−�

�

�G+�K+�G−�K−� − F+�K+�F−
†�K−�

− G−�K+�G+�K−� + F−�K+�F+
†�K−�� . �20�

Let us find first the gyrotropy conductivity in the normal
state.

III. GYROTROPY CONDUCTIVITY IN THE
NORMAL STATE

Substituting the Green function in the Eq. �20� and per-
forming summation over the Matsubara frequencies, we ob-
tain

Il =� d3k

�2	��3 k̂l� f��−�k−�� − f��+�k+��
i��n + �−�k−� − �+�k+�

−
f��+�k−�� − f��−�k+��

i��n + �+�k−� − �−�k+�� . �21�

Here f����k��� is the Fermi distribution function and k�

=k�q /2. By changing the sign of momentum k→−k in the
first term under integral and making use that ���k� is even
function of k, we come to

Il = 2� d3k

�2	��3 k̂l
��+�k+� − �−�k−��
f��+�k+�� − f��−�k−���

��+�k+� − �−�k−��2 − �i��n�2 .

�22�

Analytical continuation of this expression from the discrete
set of Matsubara frequencies into entire half-plane ��0 is
performed by the usual substitution i�n→�+ i /�.

We shall work at frequencies smaller when the band split-
ting ����0kF far from the resonance region ����0kF but
still in the collisionless limit ���1 where one can decom-
pose the integrand in powers of �2

Il = 2� d3k

�2	��3 k̂l
f��+�k+�� − f��−�k−���

�� 1

�+�k+� − �−�k−�
+

����2

��+�k+� − �−�k−��3� , �23�

The frequency independent term in Eq. �23� corresponds to
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the current density 
B introduced in Eq. �4�. We are inter-
ested in linear in q part of density of current. Expanding the
integrand up to the first order in

���

�k q one can prove by direct
calculation that this term vanishes. Thus, in the normal state

=0 as it should be in gauge invariant theory �see Sec. V and
Ref. 14�. The frequency dependent term determines the cur-
rent

ji
g��,q� = ieijl

e2�0
2

c
�qm����2IlmAj��,q� , �24�

where

Ilm =� d3k

�2	��3 k̂l�− 3
f��+� − f��−�

��+ − �−�4 � ��+

�km
+

��−

�km
�

+
1

��+ − �−�3� � f��+�
��+

��+

�km
+

� f��−�
��−

��−

�km
�� . �25�

After substitution of the Fourier component of the vector
potential by the Fourier component of an electric field
A=cE / i�, we obtain

ji
g��,q� = eijle

2�3�0
2�qmIlmEj��,q� . �26�

Performing integration over momentum space for the spheri-
cal Fermi surfaces in the limit �0kF��F, we obtain

ji
g��,q� = eijl

e2�

12	2�0kF
qlEj��,q� . �27�

The corresponding gyrotropy conductivity is

� = i
e2�

12	2�0kF
. �28�

IV. GYROTROPY CONDUCTIVITY IN THE
SUPERCONDUCTING STATE

To find the gyrotropy conductivity in the superconducting
phase with the cubic symmetry, one needs to perform sum-
mation and integration in the Eq. �20� using G and F in the
superconducting phase. The integral in Eq. �20� consists of
two terms

Il =� d3k

�2	��3 k̂l�J+−�k,�� − J−+�k,��� , �29�

where

J+−�k,�� = T 	
m=−�

�

�G+�K+�G−�K−� − F+�K+�F−
†�K−�� ,

�30�

and

J−+�k,�� = T 	
m=−�

�

�G−�K+�G+�K−� − F−�K+�F+
†�K−�� .

�31�

Transforming the summation into an equivalent contour
integration,16 Eq. �30� can be written as

J+−�k,�� =
�

4	i
� d�� tanh

���

2T

�G+

R���,k+� − G+
A���,k+��G−

A��� − �,k−� + �G−
R���,k−� − G−

A���,k−��G+
R��� + �,k+�

− �F+
R���,k+� − F+

A���,k+��F−
A��� − �,k−� − �F−

R���,k−� − F−
A���,k−��F+

R��� + �,k+�� . �32�

Here, the Green functions are

G�
R,A��,k� =

u�
2�k�

�� − ���k� � i�
+

v�
2�k�

�� + ���k� � i�
, �33�

and

F�
R,A��,k� =

t��k��
2���k�� 1

�� + ���k� � i�
−

1

�� − ���k� � i�
� , �34�

where

�u�
2�k�

v�
2�k� � =

1

2
�1 �

���k�
���k�� , �35�

��
2�k� = ��

2�k� + �2, �36�

and k�=k�q /2. Taking into account

G�
R − G�

A = − 2	i�u�
2���� − ��� + v�

2���� + ���� , �37�
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F�
R − F�

A =
	it��

��

����� − ��� − ���� + ���� , �38�

after integration with respect to ��, we can rewrite Eq. �32� as

J+−�k,�� = −
1

2
��tanh

�+�k+�
2T

− tanh
�−�k−�

2T
�� u+

2�k+�u−
2�k−�

�+�k+� − �−�k−� − ��
+

v+
2�k+�v−

2�k−�
�+�k+� − �−�k−� + ��

�
+ �tanh

�+�k+�
2T

+ tanh
�−�k−�

2T
�� u+

2�k+�v−
2�k−�

�+�k+� + �−�k−� − ��
+

v+
2�k+�u−

2�k−�
�+�k+� + �−�k−� + ��

��
−

1

2

�2

4�+�k+��−�k−��− �tanh
�+�k+�

2T
− tanh

�−�k−�
2T

�� 1

�+�k+� − �−�k−� − ��
+

1

�+�k+� − �−�k−� + ��
�

+ �tanh
�+�k+�

2T
+ tanh

�−�k−�
2T

�� 1

�+�k+� + �−�k−� − ��
+

1

�+�k+� + �−�k−� + ��
�� . �39�

Here we have ignored the shifts in the arguments of the phase factors, t��k�q /2�� t��k� leading to the small corrections of
the order of �0kF /�F to the main terms.

For the second term under integral in the Eq. �29� we have

J−+�k,�� = J+−�− k,− �� . �40�

Hence, the integral �29� can be rewritten as

Il =� d3k

�2	��3 k̂l�J+−�k,�� + J+−�k,− ��� . �41�

It means that we should work with the doubled even part of Eq. �39�. Expanding the integrand in powers of � after long but
straightforward calculations we come to the following formula

Il = 2� d3k

�2	��3 k̂l
n��+�k+�� − n��−�k−���� 1

�+�k+� − �−�k−�
+

����2

��+�k+� − �−�k−��3�
− 2�2� d3k

�2	��3 k̂l
����2

��+�k+� + �−�k−����+�k+� − �−�k−��3� tanh
�+�k+�

2T

�+�k+�
−

tanh
�−�k−�

2T

�−�k−�
� , �42�

where

n��� =
1

2
�1 −

�

�
tanh

�

2T
� �43�

is the distribution function of electrons over energies. At
� /�0kF�1 the second integral is obviously much smaller
than the first one. So, we come to the expression

Il � 2� d3k

�2	��3 k̂l
n��+�k+�� − n��−�k−���

� � 1

�+�k+� − �−�k−�
+

����2

��+�k+� − �−�k−��3� �44�

which has the same form as the corresponding formula for
the normal state �23�.

Expanding the integrand up to the first order in
���

�k q we
obtain for the current given by Eq. �19�

ji
g��,q� = ieijl

e2�0
2

c
�qm�Ilm

1 + ����2Ilm
3 �Aj��,q� , �45�

Ilm
1 =� d3k

�2	��3 k̂l�−
n��+� − n��−�

��+ − �−�2 � ��+

�km
+

��−

�km
�

+
1

�+ − �−
� �n��+�

��+

��+

�km
+

�n��−�
��−

��−

�km
�� , �46�

Ilm
3 =� d3k

�2	��3 k̂l�− 3
n��+� − n��−�

��+ − �−�4 � ��+

�km
+

��−

�km
�

+
1

��+ − �−�3� �n��+�
��+

��+

�km
+

�n��−�
��−

��−

�km
�� . �47�

Both integrals are determined by the integration over mo-
mentum space between the Fermi surfaces of two bands split
by the spin-orbital coupling. The phase transition to the su-
perconducting state changes the Fermi distribution of the
electrons over energies only in the narrow vicinities of the
corresponding Fermi surfaces of the order of �. Hence, the
integration in Eqs. �46� and �47� leads to the result only
slightly different from that is in the normal state. Even at
zero temperature the relative magnitude of corrections do not
exceed ��2 /� f

2. So, the gyrotropy coefficient � determined
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by the integral Ilm
3 is practically keeps its normal state value

given by Eq. �28�

� = i
e2�

12	2�0kF
�1 + O��2/� f

2�� . �48�

The coefficient 
 acquires nonzero value. However, it is
much smaller than that was found in the paper Ref. 15. The
estimation made at T=0 yields


 =
e2�0kF

�2c
O��2/� f

2� . �49�

To find a relationship of the gyrotropy conductivity with ob-
servable optical properties one has to develop electrody-
namic theory of noncentrosymmetric metals.

V. OPTICAL PROPERTIES OF NONCENTROSYMMETRIC
METAL

A. Dispersion law

To derive the light dispersion law we start from the Max-
well equations

rot B =
4	

c
j , �50�

rot E = −
1

c

�B

�t
�51�

supplied by the density of current expression

j =
�

4	

�E

�t
+ �E + � rot E . �52�

The first term here corresponds to the dispersionless part of
the displacement current. The second one is the conductivity
current written at infrared frequency region ��vF /�,
���1, where the current is locally related with an electric
field, � is the skin penetration depth. The last one is the
gyrotropy current

jg = � rot E . �53�

As before we discuss the metal with the cubic point symme-
try.

Eliminating the magnetic induction, we obtain

�2E =
�

c2

�2E

�t2 +
4	�

c2

�E

�t
+

4	�

c2

� rot E

�t
. �54�

Taking solution for the circularly polarized wave

E = �x̂ � iŷ�E0ei�kr−�t�, �55�

we come to the dispersion relation

k2 =
��2

c2 +
4	i��

c2 �
4	i��k

c2 . �56�

It is worth to be noted that for a media with time reversal
breaking one has to substitute here �→��=�xx� i�xy,
where �xy is the Hall conductivity.

In neglect the gyrotropy term the complex index of refrac-
tion

N =
ck

�
= n + i� ,

is expressed through the diagonal part of complex conduc-
tivity �=��+ i�� by means of the usual relations

n2 − �2 = � −
4	��

�
, 2n� =

4	��

�
.

The gyrotropy term leads to the difference in the refraction
indices of clock wise and counter clock wise polarized light.
In the first order in respect to �=��+ i�� the refraction index
is

N� = n + i� �
2	i�

c
. �57�

Hence, the differences in the real and imaginary parts of the
refraction indices of circularly polarized lights with the op-
posite polarization are

�n = n+ − n− = −
4	��

c
, �58�

�� = �+ − �− =
4	��

c
. �59�

In the superconducting state the gyrotropy current �53� has
more general form given by Eq. �4�. Hence, we should use
the more general formula for the current

j =
�

4	

�E

�t
+ �E + � rot E + 
B . �60�

Then repeating all the calculations we come to the same
results �56�–�59� modified by the substitution

� → � = � −
ic


�
. �61�

We remind that the superconducting state current density
given by Eq. �60� is worth to use at the high frequencies
��vF /� where the inequality ���� is certainly valid.
Here, � is superconducting energy gap. In the low frequency
limit ���� one should also take into account the London
density of current jL=−�c /4	�L

2��A−�c�� /2e�. The inter-
play between the London current jL and the Drude current
jD=����E is discussed in the textbook.16

B. Magnetic moment

The magnetization in gyrotropic media is

M =
1

2c
�E , �62�

such that rotation of the magnetization is equal to one half of
gyrotropy part of the current density
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1

2
jg = c rot M . �63�

The relationship between the density of gyrotropy current
and the magnetization is a general property of noncen-
trosymmetric materials �see also Ref. 13�. Both of them can
be obtained from the gyrotropy term in action

−
1

2c
� dtd3r��E�B .

By variation in action in respect of −B and −A /c, taking into
account that � is an odd function of derivative � /�t, and
making use the definitions E=−�1 /c��A /�t and B=rot A,
we come to M given by Eq. �62� and jg given by Eq. �53�
correspondingly.

All these considerations are valid both for the normal and
as well for the superconducting state. However, in the latter
case the gyrotropy action

Sg = −
1

2c
� dtd3r���E�B + 
�A −

�c

2e
� ��B� . �64�

contains one extra term which is absent in the normal state
due to the gauge invariance. The corresponding expressions
for the magnetic moment and gyrotropy current are

M =
1

2c
�E +

1

2c

�A −

�c

2e
� �� , �65�

jg = � rot E + 
B . �66�

C. Boundary conditions

To consider the problem of light reflection normally inci-
dent to the flat surface of noncentrosymmetric metal we need
to find the relations between the wave amplitude propagating
inside �z�0� the material

Ein = E0ei��Nz/c−t�, �67�

and the amplitudes of incident and reflected waves outside it

Eout = E1ei��z/c−t� + E2e−i��z/c+t�. �68�

We have

Ez=o
in = Ez=0

out ,

that is

E0 = E1 + E2. �69�

At the same time from the difference of the Maxwell Eq.
�51� inside and outside of material we obtain

�rot Ein − rot Eout�z=0 = −
1

c

�

�t
�Bin − Bout�z=0. �70�

The difference of the magnetic inductions at the boundary is
given by the jump of magnetization

�Bin − Bout�z=0 = 4	Mz=0. �71�

In the stationary magnetic field parallel to the surface of the
metal Hout=Hxx̂ this equation yields

Bx
int�z = 0� = Hx, By

int�z = 0� =
2	


c
Ay

int�z = 0� . �72�

In the normal state where 
=0 the boundary conditions add
nothing special to the centrosymmetric case. In the supercon-
ducting state the solution of the London equations supplied
by these boundary conditions results in quite unusual helical
field distribution found in the paper.14

For the light incident to the metallic surface using Eqs.
�65�, �70�, and �71� we obtain

�rot Ein − rot Eout�z=0 = −
4	

2c2��
�

�t
− c
�Ez=0

in . �73�

Substituting here Eqs. �67� and �68� we come to

ẑ � �NE0 − E1 + E2� =
2	

c
�E0, �74�

For the combinations E�=Ex� iEy of the electric-field com-
ponent this relation can be rewritten as

�N� �
2	i�

c
�E0

� − E1
� + E2

� = 0. �75�

D. Reflection coefficient and the Kerr effect

The Eqs. �69� and �75� allow express the amplitudes of
reflected wave through the amplitude of the incident wave.
We have for reflection coefficient

R� =
E2

�

E1
� =

1 − N� �
2	i�

c

1 + N� �
2	i�

c

, �76�

where the refraction index is

N� = n + i� �
2	i�

c
. �77�

Now one can rewrite Eq. �76� in more habitual form

R� =
1 − Ñ�

1 + Ñ�
, �78�

where an effective refraction index is

Ñ� = n + i� �
4	i�

c
, �79�

and the effective differences in the real and imaginary parts
of the refraction indices of circularly polarized lights with
the opposite polarization are

�ñ = ñ+ − ñ− = −
8	��

c
, �80�

��̃ = �̃+ − �̃− =
8	��

c
. �81�

Making use these definitions we can apply the standard
procedure22 to calculate the Kerr rotation for linearly polar-
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ized light normally incident from vacuum to the flat bound-
ary of a medium. The light is reflected as elliptically polar-
ized with the major axis rotated relative to the incident
polarization by an amount

� =
�1 − n2 + �2���̃ + 2n��ñ

�1 − n2 + �2�2 + �2n��2 . �82�

VI. KERR ROTATION

To find the Kerr rotation in the normal state let us substi-
tute the Eq. �28� in Eqs. �80� and �81�. We find ��̃=0 and �ñ
expresses through ratio of the light frequency to the band
splitting 2�0kF as

�ñ = −
2�

3	

��

�0kF
. �83�

Here, �=e2 /�c is the fine structure constant.
We limit ourselves by the frequencies not exceeding the

band splitting �0kF. Although the latter is not known for
many noncentrosymmetric materials, one can expect it is
about hundred Kelvin or in the frequency units
�1013 rad /sec.23 As an example we consider the situation
when the frequency of light is of the order of this value and
larger than the quasiparticles scattering rate �clean limit�:
1�����p�, where �p=�4	ne2 /m� is the plasma fre-
quency. In this frequency region the real and imaginary part
of conductivity are ����p

2 /4	�2� and ����p
2 /4	�. Then,

one can find 2n���p
2 /�3� and �2−n2��p

2 /�2. Thus, for
the Kerr angle we obtain

� � −
2�

3	

��2

�0kF�p
2�

. �84�

So, the Kerr angle in noncentrosymmetric metals can have
measurable magnitude, in particular if we compare it with
the Kerr angle of the order of 6�10−8 rad measured in the
superconducting Sr2RuO4 by the Stanford group.24

For �ñ in the superconducting state we obtain

�ñs = −
2�

3	
� ��

�0kF
�1 + O��2/� f

2�� −
�0kF

��
O��2/� f

2�� .

�85�

Finally, for the Kerr angle in the same frequency interval as
for the normal state we have

�s = −
2��

3	�p
2�
� ��

�0kF
�1 + O��2/� f

2�� −
�0kF

��
O��2/� f

2�� .

�86�

VII. CONCLUSION

We have presented here the derivation of the current re-
sponse to the electromagnetic field with finite frequency and
wave vector in noncentrosymmetric metal. The obtained gen-
eral formula valid both in the normal and in the supercon-
ducting state was applied to the calculation of observable
physical properties in the frequency interval smaller than the
band splitting ����0kF. The latter in its turn was supposed
to be smaller than the Fermi energy �0kF��F. The calcula-
tions were performed in the clean case ���1, that is, in
particular, important to neglect the vortex corrections. We
did not discuss the anomalous skin effect assuming that the
wavelength does not exceed the skin penetration depth
��vF /�. In the normal state the current contains the gyro-
tropic part which is odd function of the wave vector and the
frequency. It presents a sort of displacement current originat-
ing of band splitting in noncentrosymmetric metal. In the
superconducting state there is an additional part of the gyrot-
ropy current proportional to magnetic field. The change of
gyrotropy conductivity in the superconducting state was
found. As an example the Kerr rotation for the polarized light
reflected from the surface of noncentrosymmetric metal with
cubic symmetry is calculated.
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