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We calculate the finite-size scaling of the sample-to-sample fluctuations of the free energy �F of the m
component vector spin glass in the large-m limit. This is accomplished using a variant of the interpolating
Hamiltonian technique which is used to establish a connection between the free energy fluctuations and bond
chaos. The calculation of bond chaos then shows that the scaling of the free-energy fluctuations with system
size N is �F�N� with 1

5 ���
3

10 , and very likely �= 1
5 exactly.
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I. INTRODUCTION

Spin-glass physics1 continue to be a very exciting and
difficult topic. One of the important ongoing issues are the
finite-size corrections to thermodynamic quantities.2–11 Such
finite-size corrections are usually impossible to calculate
within replica theory �which is otherwise extremely success-
ful for the spin glass and other problems�, due to the mass-
less modes which are often encountered and which prevent
going beyond zero-loop order in a perturbation expansion.
Nevertheless, many results are by now established for the
Sherrington-Kirkpatrick spin glass,12 either numerically or
analytically �see references cited above�.

An observable which is particularly interesting is the
finite-size scaling of the sample-to-sample fluctuations of the
free energy. This quantity provides a link between two ap-
parently distant fields, namely, spin-glass physics and ex-
treme value statistics.13 In extreme value statistics, the ques-
tion is the probability distribution of extremal events such as
the maximum �or minimum� of a set of random numbers.
The classic results of extreme value theory state that such
extremal events follow one of three possible limiting distri-
butions �the Weibull, Gumbel, or Fréchet distribution�. Re-
cently, a fourth universality class was found, the Tracy-
Widom distribution for the smallest �or largest� eigenvalue of
a Gaussian random matrix.14 Similarly, one could ask what
the distribution of the ground-state energy of a �Sherrington-
Kirkpatrick or other� spin glass is, which is a question of
extreme value statistics. In a statistical mechanics setting,
however, it can be generalized to the question of what the
distribution of the free energy is at finite temperature. This is
a very difficult question indeed �both for finite and zero tem-
perature�. To keep it simpler, we merely ask what the width
of the distribution is �i.e. the sample-to-sample fluctuations�,
and this width �F will scale in some way with the system
size N, i.e., �F�N� with an exponent �. These free-energy
fluctuations have been considered for the Sherrington-
Kirkpatrick model by numerical investigations, see, e.g.,
Refs. 6, 7, and 10. There also exist heuristic arguments for
�= 1

4 �Ref. 6� and �= 1
6 ,9,11,15–17 and the limit ��

1
4 has been

shown.18,19 All these results show that the Sherrington-
Kirkpatrick model does not fall in any of the four established
universality classes of extreme value statistics. For a differ-
ent famous replica symmetric spin-glass model, the spherical
spin glass,20 the situation is different. Since its ground-state
energy is the smallest eigenvalue of a Gaussian random ma-
trix, this model falls into the Tracy-Widom universality
class.21 This implies that the fluctuations of the free-energy
scale as �F�N1/3, which has been confirmed recently by a
replica calculation.11

In this work we consider the fully connected m compo-
nent vector spin glass in the limit of large m. This model is
known to be replica symmetric,22 which suggests that its
free-energy fluctuations might fall into the same universality
class as the spherical model. Furthermore it might be ex-
pected that due to replica symmetry the fluctuations in this
model are simpler to calculate than in the Ising spin glass.
Unfortunately, this hope is not entirely justified, as we will
see. As mentioned above, it is usually impossible to calculate
subextensive quantities within replica theory. We circumvent
this problem by using a connection between the sample-to-
sample fluctuations of the free energy and bond chaos, which
was derived for the Ising spin glass,19 and which we gener-
alize here to vector spin glasses. This connection allows us to
calculate the sample-to-sample fluctuations by calculating
bond chaos instead, and this is possible within a large devia-
tion approximation, combining techniques from Refs. 23 and
24. As it will turn out, the large deviation approximation is
not good enough to obtain the final answer, and we must
resort to additional resources, such as our previous knowl-
edge of the scaling properties of the large-m model25–28 and
some additional scaling assumptions. To forestall our main
result, we obtain ��

1
5 �

3
10 and most likely �= 1

5 exactly.
This shows that the large-m spin glass does not belong to any
of the four universality classes and probably to a different
class than the Ising spin glass �unless it so happens that, e.g.,
�= 1

4 for both the Ising and the large-m spin glass, which is
not entirely ruled out by our results but which we deem
unlikely�. The result �= 1

5 was first suggested in Ref. 25.
However, the derivation required the existence of a gap in
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the eigenvalue spectrum of the inverse susceptibility matrix
which was later shown not to exist.26 Here, we provide a
different explanation for this value of �.

This paper is organized as follows. In Sec. II we will
show how to derive the exact connection between the
sample-to-sample fluctuations of the free energy, �FN, and
bond chaos for the m-component spin glass using interpolat-
ing Hamiltonians. We will see that the fluctuations only de-
pend on the finite-size scaling of averages of powers of the
link overlap qL between two copies of a spin glass with dif-
ferent �but correlated� disorder. The averages of the link
overlaps will be calculated in Sec. III by calculating the
probability distribution of the link overlap, P��qL�, where the
parameter � measures the degree of correlation. We will use
these results in Sec. IV to derive the exponent � of the free-
energy fluctuations.

II. CONNECTION BETWEEN THE SAMPLE-TO-SAMPLE
FLUCTUATIONS AND BOND CHAOS

We use the technique of interpolating Hamiltonians29 in
order to derive an exact connection between the sample-to-
sample fluctuations of the free energy, �FN, and bond chaos
in the m-component spin glass. To do so, we adapt the
method from Ref. 19, which was developed for the Ising spin
glass, to the m-component vector spin glass. The Hamil-
tonian of the m-component spin glass is

H =� 1

N
�
i�j

Jijs�is� j , �1�

where s�i are m-component spins and Jij are independent
Gaussian random variables with unit variance. The spins are
assumed to be normalized in such a way that s�i

2=m.
The main idea for calculating the sample-to-sample fluc-

tuations of the free energy is to use the following two Hamil-
tonians,

Ht = −�1 − t

N
�
i�j

Jijs�is� j −� t

N
�
i�j

Jij�s�is� j and

H�� = −�1 − �

N
�
i�j

Jijs�is� j −� �

N
�
i�j

Jij�s�is� j , �2�

with 0� t ,��1 and Jij� and Jij� additional independent Gauss-
ian random variables with unit variance, and express the
free-energy fluctuations in terms of them. These Hamilto-
nians interpolate between a spin glass with a given set of
coupling constants �Jij� for t=0 �or �=0� and an identical
spin glass with a different, independent set of coupling con-
stants �Jij� � or �Jij� � for t=1 �respectively, �=1�. For all 0
� t ,��1 we have the same type of spin glass but with cou-
pling constants �1− tJij +�tJij� �or �1−�Jij +��Jij� �, which are
still Gaussian random variables with unit variance. We de-
note the disorder average with respect to all coupling con-
stants �Jij�, �Jij� � and �Jij� � as E¯. Thermal averages will be
denoted as �¯ 	.

The free-energy fluctuations can be written as �2�FN
2

=E�log Z1−log Z0��log Z1�−log Z0�� with Zt and Z�� being the

partition functions with respect to the Hamiltonians Ht and
H��. This can be seen by writing log Z=−�F and using the
independence of the different sets of bonds for EF1F0�

=EF0F1�=EF1F1�= F̄2 and EF0F0�=F2 
the overbar denotes a
disorder averaged quantity of the original system of interest,
i.e., Eq. �1��. We use the idea in Ref. 29 to represent this
expression by integrals in the form

�2�FN
2 = �

0

1

dt�
0

1

d�E
�

�t
log Zt

�

��
log Z��. �3�

To calculate the right-hand side, we follow Ref. 19 and ob-
tain

E
�

�t
log Zt

�

��
log Z�� =

�2

16N2E�
ijkl

���s�is� j��s�ks�l�	t

− �s�is� j	t�s�ks�l	t����s�is� j��s�ks�l�	�

− �s�is� j	��s�ks�l	�� +
�2

8N�1 − t�1 − �E�
ij

��s�is� j	t�s�is� j	��

− m2N� . �4�

The subscript t or � on the thermal averages indicates
whether the average is to be taken in a system with Hamil-
tonian Ht or H��.

We introduce the link overlap between two replicas with
potentially different coupling constants as qL

13

= 2
N�N−1��i�j�s�is� j	t�s�is� j	�= 1

N�N−1� �������isi�
�1�si�

�3��2	−m2N�. As
we will shortly need not only two but up to four replicas, we
label the replicas with upper indices �1� to �4�, where replicas
one and two have Hamiltonian Ht and replicas three and four
have Hamiltonian H��. Analogously to qL

13, we define the
other possible link overlaps qL

14, qL
23, and qL

24. Then Eq. �4�
can be expressed in the following way:

E
�

�t
log Zt

�

��
log Z�� =

�N − 1�2�4

16
E��qL

13 − qL
23��qL

13 − qL
14�	

+
�N − 1��2

8�1 − t�1 − �
E�qL

13	

=
�N − 1�2�4

16
�
�qL

13�2� − 
qL
13�2� +

�N − 1��2

8�1 − t�1 − �

qL

13� .

�5�

The notation 
¯ � in the last line stands for the average taken
with the bond averaged probability distribution P��qL� of
finding a given link overlap qL. The parameter � indicates the
statistical “distance” between the sets of bonds in the two
replicas involved and will be defined in detail below. In prin-
ciple, one would have to consider simultaneous multireplica
overlaps �such as, for instance, the term E�qL

13qL
23	�. Fortu-

nately, it follows from replica symmetry, which holds for the
m-component spin glass in the large-m limit, that the corre-
sponding joint probability distribution P�

123�qL
13,qL

23� factor-
izes into P�

123�qL
13,qL

23�= P��qL
13�P��qL

23�. A similar statement
holds for the four-replica probability distribution
P�

1234�qL
13,qL

24�.
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Up to now the overlaps qL
ab depend on the two parameters

t and �. However, the only important quantity is how much
the sets of bonds in the two replicas a and b differ. For
example, when t=�=0, the bonds in replicas one and three
�say� are identical. On the other hand, when t=0 and �=1 �or
vice versa�, the bonds in replicas one and three are com-
pletely uncorrelated. The degree of correlation between the
two sets of bonds can be measured by the one parameter �
defined by 1

�1+�2 =�1− t�1−�, as shown in Ref. 19. When �

=0, the bonds are identical; when �=	, the bonds are com-
pletely uncorrelated.

The parameter � can be used to eliminate the integration
variable � from Eq. �3� by a variable transformation. The
integral over t can then be evaluated exactly, and as a result,
the connection between the sample-to-sample fluctuations of
the free energy and bond chaos in the m-component spin
glass is found to be �see Ref. 19 for details�

�2�FN
2 =

�N − 1�2�4

16
�

0

	

d�f2����
�qL
13�2� − 
qL

13�2�

+
�N − 1��2

4
�

0

	

d�g2���
qL
13� ,

¬

�N − 1�2�4

16
I21 +

�N − 1��2

4
I22 �6�

with the non-negative functions f2���= 2� log�1+�2�
�1+�2�2 and g2���

= � log�1+�2�
�1+�2�3/2 . Note that bond chaos enters Eq. �6� through the

measure of distance � of the bonds of the two replicas be-
tween which the link overlap qL

13 is calculated. The integrals
I21 and I22 will be calculated below.

The analog of Eq. �6� was called “second route to chaos”
in Ref. 19, hence the first index is 2 on I21 and I22. In addi-
tion to this result, however, there is another exact relation
between the fluctuations and bond chaos �the “first route to
chaos”�. It stems from using only the first interpolating
Hamiltonian of Eq. �2�, Ht, and the relation 2�2�FN

2

=E�log Z1−log Z0�2, which is easy to derive. Proceeding
similarly to above, one can prove the following equality:

�2�FN
2 = −

�N − 1�2�4

16
�

0

	

d�f1����
�qL
13�2� − 
qL

13�2�

+
�N − 1��2

4
�

0

	

d�g1���
qL
13�

¬ −
�N − 1�2�4

16
I11 +

�N − 1��2

4
I12. �7�

The only difference between this equation and Eq. �6� is the
minus sign in front of the first term and the weight functions
f1���= 4�2

�1+�2�2 arcsin 1
�1+�2 and g1���= 2

�1+�2�3/2 arcsin 1
�1+�2 in the

integrals I11 and I12 instead of f2��� and g2��� as in I21 and
I22. The minus sign of the first term implies that the second
term is an upper bound of �2�FN

2 .

III. CALCULATING P�(qL)

Equation �6� involves moments of the link overlap taken
with the probability density P��qL�. This function can, in
principle, be calculated by taking two replicas with bond
realizations drawn with parameter � and constraining the rep-
licas to have link overlap qL. This constrained system has
free energy F�,J�qL�, and the �nondisorder averaged� prob-
ability density P�,J�qL� then follows to be

P�,J�qL� =
exp
− �F�,J�qL��

�0
	dqL� exp
− �F�,J�qL���

. �8�

Finally, P�,J�qL� must be averaged over the disorder.
Unfortunately, this task is too difficult in general. Instead,

we will calculate only the disorder averaged extensive part of
the free energy, denoted by Nmf��qL�, and the probability
density defined by

P�
0�qL� =

exp
− �Nmf��qL��
�0

	dqL� exp
− �Nmf��qL���
. �9�

This is the large deviation approximation to P��qL�. Averages
taken with respect to P�

0�qL� will be denoted by 
¯ �0. The
tail of this distribution will be the same as that of P��qL� but
in general there will be deviations. In fact, this is the point
where this paper differs most from Ref. 19 since in that
publication, the difference between the true and the approxi-
mative distribution was only quantitative, whereas here it is
substantial. We know that for �=0 the link overlap distribu-
tion consists of a 
 peak at the Edwards-Anderson value and
0 elsewhere since the large-m spin glass is replica symmet-
ric. We will see below, however, that we do not observe this
peak in P�

0�qL� at all. It must therefore be generated from the
finite-size corrections to the extensive part of the free energy.

Hence the finite-size corrections are very important in this
calculation but we have no direct way of calculating them. In
order to overcome this problem, we will show that P�

0�qL�
will be valid for � larger than some crossover value, and we
will use additional arguments and simulation results to fill
the gap for smaller �.

A. Replica calculation

The first task is to calculate the extensive part of the dis-
order averaged free energy Nmf��qL� of two replicas con-
strained to have link overlap qL. To this end we calculate the
partition function Z�,J�qL� of this two replica system. This
system has vector spins s�i

x with �s�i
x�2=m for every spin i

=1, . . . ,N and the two real replicas x= �10� , �2�� �this nota-
tion denotes the replica number in its first entry and the value
of � in its second entry�. These two replicas differ in their
coupling constants Kij���= 1

�1+�2 Kij
0 + �

�1+�2 Kij� , where Kij
0 and

Kij� are independent Gaussian random numbers with unit
variance, by choosing �=0 for the first replica and �=� for
the second replica. Furthermore, the two replicas have link
overlap qL, which is enforced by a 
 function in the partition
function as follows:
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Z�,J�qL� = Trs��
�qL −
1

N�N − 1����
�

i

si�
�10�si�

�2���2

−
m2

N − 1�� � exp� �

�N
�
i�j

Kij�0�s�i
�10�s� j

�10�

+
�

�N
�
i�j

Kij���s�i
�2��s� j

�2��� . �10�

We follow the replica calculation of Viana23 for the n times
replicated partition function, write the 
 function in an inte-
gral representation with parameters z, and introduce the
traceless tensor T

�� �Ref. 23� to separate the diagonal part of
Q�

�� 
with �
�,�
,�Q�

�� =2�
�,�
��Q�

�� +2�,���T
��+�,��Q

+T
����. After evaluating the trace and regarding only terms

up to third order in the tensors Q, T, and R we get

EZ�,J
n �qL� �� �



dz�e−N�


qLz−m2�


z� d��
�� expN�� �

��

�,�

�Q�
���2 + � +

r

m + 2� �
,���

�T
���2 + � +

r�

m + 2��,�
�T

���2

+ �� �
��

�,�

�R�
���2 + �

,�,�
2z

�2 +
1

�1 + �2��−1�

�R
���2 +

�

3! �
����

�,�,�

Q�
��Q��

�� Q�
�� +

m2

�m + 2��m + 4� �


�����

T
��T

��T
��

+
15m2

�m + 2��m + 4��,�
�T

���3 +
3m

m + 2 �
��

�,���

Q�
��Q�

�� T
�� + 3 �

������

�,�,�

Q�
��R��

�� R�
�� + 3 �

��

�,�,�

Q�
��R�

��R
��

+
3m

m + 2 �
��

�����,�

T
��R�

�� R�
�� + 3 �



���,�

T
��R

��R
����� , �11�

with �= 1
2 �1− 1

�2 �, ��= 1
2 �1−

�1+�2

�2 �, r=−1, r�=2m−1, �=1,
and the matrix ��

�� is given by

� = Q�10� R

R Q�2�� � , �12�

with the above separation for Q�
�� and only T

�� on the diag-
onal of the matrices Q. We split the tensor R into its diagonal
matrices pd

��=R
�� and the rest. This equation is solved by a

saddle-point integration for the tensors Q�
��, T

��, and R�
��

and the parameters z.

B. Solving the saddle-point equations

Solving the saddle-point equations is the remaining task
to derive the characteristic form of the overlap distribution

P��qL�. As the m-component spin glass was shown to be
replica symmetric in the limit m→	,22 we calculate the
saddle points in the replica symmetric case. The ansatz for a
replica symmetric scenario is as follows:23,24

Q�
�� = Q
��, T

�� = 0,

R�
�� = P
��, pd

�� = pd
��, and z = z . �13�

To briefly justify these equations, one has the usual interpre-
tation Q�

���10�= �s�
�10�s��

�10�	 from the replica calculation. Due to
the isotropy of the model, averaged quantities like this re-
duce to x
�� with some mean value x, depending on the
quantity at hand. Thus EZ�,J

n �q� is given by

EZ�,J
n �qL� �� N − 1

2�
�n

dze−2NnqLz−m2nz� d��
�� expN��mn�n − 1�Q2 + ��nm�n − 1�P2 +

nm

2
pd

2 − mn
1

2�2 2z

�2 +
1

�1 + �2��−1�

pd
2

+ 2
�n�n − 1��n − 2�

3!
mQ3 + �n�n − 1��n − 2�mQP2 + 2�n�n − 1�mQPpd�� . �14�
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This leads to four different saddle-point equations �we use
Nm as the large parameter�

0 = �Q − Q2 − P2 + Ppd, �15�

0 = ��P − 2QP + Qpd, �16�

0 = pd −
1

�2 pd 2z

�2 +
1

�1 + �2��−1�

− 2QP , �17�

qL

m
= � pd

�2 2z

�2 +
1

�1 + �2��
2

, �18�

where line 3 and line 4 can be combined to

pd − 2QP =�qL

m
. �19�

In the following, we substitute �qL

m →q.
From Eq. �14� the free energy is �after taking the usual

replica limit n→0�

�f��q� = const + pdq −
pd

2

2
−

q2

2�1 − 2���
+ �Q2 + ��P2 −

2

3
Q3

− 2QP2 + 2QPpd. �20�

1. Above and at the critical temperature

Above ���0� and at the critical temperature ��=0�, the
Ising spin glass is replica symmetric, just as the
m-component spin glass. Therefore the solutions of the
saddle-point equations are the same as in Ref. 24. Inserting
them into the free energy 
Eq. �20�� gives

above Tc:�f��q� =
q2

2 1 −
�2

�1 + �2� + O�q4� , �21�

at Tc:�f��q� = �
1

6
q3 +

3�2

16
q2 + O��4,q4� �2 � q � 1

q2

2 1 −
1

�1 + �2� + O�q4� q � �2 � 1.�
�22�

At Tc the probability distribution P��q��e−Nm�f��q� consists
of two parts with different dominating exponents depending
on � being smaller or larger than N−1/6,

P��q� � � e−Nm�q3/6� � � N−1/6

e−Nm�q2�2/4� N−1/6 � � .
� �23�

2. Below the critical temperature

The Eqs. �15�, �16�, and �19� can not be solved for general
q and �. Due to this, we calculate corrections to the two
following solvable cases, q=0 and �=0, perturbatively in
various limits. The exact result for q=0 is

P = 0,

Q = � ,

pd = 0. �24�

To find the solution for �=0, we rewrite Eqs. �15� and �16� in
terms of the new variables a=Q+ P and b=Q− P,

�� + pd�a −
� − ��

2
�a − b� − a2 = 0, �25�

�� − pd�b −
� − ��

2
�a − b� − b2 = 0 �26�

with the solution ��=0, so �=���

Q = � , �27�

P = pd =
q

1 – 2�
, �28�

for a�0 and b�0. With Eq. �20� we get �f0�q�=�f0= 1
3�3.

We will use this free energy as the reference free energy as it
is the energy of the unconstrained system. For q��−2�2

=qEA the solution with b=0 maximizes the free energy �the
solution with a=0 is an unphysical one�. In terms of �q=q
− ��−2�2� it is �to lowest order in �q�

Q = P =
� + pd

2
,

pd = � +
�q

1 – 2�
, �29�

and the difference to �f0 is

�f0�q� = c0�q3, �30�

with c0= 1
6�1–2��3 . Now we will calculate corrections to the

first solution, f0, in various different limits of � and q.

3. �\�

In the limit �→	, i.e., ��→−	 Eq. �16� yields the solu-
tion �to leading order�

P = −
Qpd

��
+ O� 1

����2� . �31�

For Eq. �15� this leads to �again in leading order�

0 = � +
pd

2

��
�Q − Q2. �32�

For ��=−	, pd is equal to q and the free-energy difference to
f0 is

�f	�q� − �f0 = qpd −
pd

2

2
+ O�pd

4� =
q2

2
+ O�q4� . �33�
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4. Perturbative solution for �2™q™1

We use the saddle-point equations for a Eq. �25� and b
Eq. �26�, insert a=a0+a1, b=b0+b1, and pd= pd0+ pd1, where
the index 0 denotes the undisturbed solution ��=0� and the
index 1 the first-order corrections to it. The results are ���
=�−���0�,

a1 = −
��pd0 − pd1a0

� + pd0

b1 =
��pd0 − pd1b0

� − pd0

⇒
Q1 =

�2q2

4�2�1 – 2��

P1 = −
�2q

4�

�34�

and the correction to pd is pd1=− �2q
2 . For the free energy

these results yield,

�f��q� − �f0 =
2� + 1

16�
�4q2 + O��4q4� . �35�

5. Perturbative solution for q™�2™1

In this case the suitable reference solution is the one with
q=0, Eq. �24�. We again introduce corrections �Q→Q
+�Q� to this solution and combine Eqs. �16� and �19� in
lowest order to

���P − 2Q�P + Q��q + 2Q�P� = 0, �36�

where �q is understood to be the correction to q=0. The
solution is

�P = −
��q

�� − 2� + 2�2 →
�2�1 �q

1 – 2�
−

�2�q

4��1 – 2��
, �37�

�Q=0 and

�pd = �q
�� − 2�

�� − 2� + 2�2 →
�2�1 �q

1 – 2�
−

�2�q

2�1 – 2��
. �38�

The result for the free energy then is

�f��q� − �f0 =
1

16��1 – 2��
�4q2 + O�q3� . �39�

The restriction �2�1 is basically unnecessary and we could
calculate the free energy in the limit q�min�1,�2�. How-
ever, since the regime of large � will not contribute to the
sample-to-sample fluctuations we neglect it already at this
point and write �f��q�−�f0�q�= f���q2 with f���=�4 1

16��1–2��
for small �.

C. P�
0(q)

Although we are interested in the probability density of
the link overlap qL, the more practical quantity for the cal-
culation turned out to be q=�qL /m. We therefore formulate
our results in terms of q instead of qL for the time being. This
is not a serious restriction since we have the simple relation


�qL
13�n�0 = mn� dqq2nP�

0�q� ¬ mn
q2n�0. �40�

The probability distribution P�
0�q��e−Nm�
f��q�−f0�q�� divides

into four parts, depending on the range of �. For ��N−1/4 the

contribution to the probability distribution of q of both Eqs.
�35� and �39� 
both with f��q���4q2� is negligible, therefore
it is approximately a constant in that range for all q
� 
0,qEA�. Equation �30� implies that P�

0�q� has an exponen-
tially decaying tail for q�qEA with e−Nmc0�q − qEA�3

. We define
a function ��q−qEA� which combines both properties. In-
stead of this plateau in P�

0�q� there should be a 
 peak at q
=qEA which we do not see in our calculation. This is due to
the fact that we have neglected finite-size corrections to the
free energy which are dominating in this regime and which
we will implement in Sec. III D.

The two solutions we found perturbatively in Eqs. �35�
and �39� both produce a probability distribution of the form
e−Nm�cx�4q2

with different constants cx, but hold in different
ranges of �, depending on the relation of �2 and q. The order
of � determining the crossover from one regime to the other
is where �2 is of the same order as q and N�4q2 �in the range
N−1/4����0� is of order 1 such as to be the dominating part
of the free energy. This leads to ��N−1/8 as the crossover
value. Thus we get the final result

P��q� � �
��q − qEA� � � N−1/4

e−Nmc1�4q2
N−1/4 � � � N−1/8

e−Nmc2�4q2
N−1/8 � � � �0

e−Nmf���q2
�0 � �

� �41�

with c1= 2�+1
16� and c2= 1

16��1–2�� .

D. Overlap distribution at �=0

In order to account for the missing 
 peak in P�
0�q� for

small �, we have to consider the finite-size corrections to the
free energy, which are impossible to calculate. However, not
all is lost since at least we know that at �=0 they grow as
N1−y with y=2 /5,28 and we expect that this scaling is inde-
pendent of the value of �. We can therefore trust our result
derived above when Nm�
f��qEA�− f0��N3/5. Since qEA
=O�1�, it follows that this is the case when N3/5�N�4 or
N−1/10��. We then have

P��q� � �
FS�q − qEA� � � N−1/10

e−Nc2�4q2
N−1/10 � � � �0

e−Nf���q2
�0 � � .

� �42�

The function 
FS�q−qEA� stands for a function which goes to
a 
 peak in the thermodynamic limit. Note that the new re-
gime completely replaces the first two regimes we calculated
in Eq. �41�.

What we need in the actual calculation of the sample-to-
sample fluctuations of the free energy are the expressions

�qL

13�2�− 
qL
13�2 and 
qL

13�. In the regimes where we have an
explicit expression for P�

0�q�, we can calculate this directly
�see below�. In the regime just found, however, we do not
have this information available. We must therefore resort to
other methods and use a finite-size scaling ansatz of the form
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1

m2 �
�qL
13�2� − 
qL

13�2� = N−Fm�N��� �43�

for ��N−1/10 and with a scaling function Fm�x� whose prop-
erties will be discussed below. Similarly, we assume that in
this regime 
qL

13� can be written as

1

m

qL

13� = Gm�N��� �44�

with an exponent � and a scaling function Gm�x�. These scal-
ing functions and exponents will enter the calculation of the
fluctuations below.

We assume m→	 such that the system is replica symmet-
ric. Therefore, the left-hand side of Eq. �43�, which is the
variance of qL

13 /m, goes to 0 for N→	 since it is just the
squared width of the peak in P�

0�qL�. The exponents  and �
are unknown but we can obtain  from a simulation at �
=0 by measuring the width of the peak in the distribution of
qL. This is shown in Fig. 1. There is, however, a complica-
tion involved. In a simulation, m must be finite, and for finite
m, the thermodynamic limit is a replica symmetry broken
phase and the variance of qL

13 will not tend to 0, thus appar-
ently making =0. In order to overcome this problem, we
recall that in Refs. 25 and 26 it was shown that at T=0 there
is a critical number of spin components n0�N�� �with an
exponent ��=2 /5� above which the system does not depend
on the number of components any more and is thus identical
to the replica symmetric m=	 limit. We conjecture that
something similar happens at finite temperature, i.e., when
m�N��, the system is in a replica symmetric phase, whereas
for m�N�� it is in a different phase. For this reason we have
plotted the variance ��qL

13�2 of qL
13 against x=Nm−1/��, such

that we can expect replica symmetric behavior for small x
and a crossover to a constant variance for large x, and this is
precisely what can be observed �although the crossover is so
slow that we do not see the expected plateau yet�. For the
determination of  only the data for small x are relevant.

For the simulation, we have implemented a parallel tem-
pering Monte Carlo algorithm using system sizes from N
=64 to N=216 with up to 29 different temperatures in the
range of 
0.6:1.6�. In that way we produced for two different
replicas �with the same set of coupling constants since we are

considering �=0� at least 64 statistically independent sets of
spin configuration for every temperature. From these, we cal-
culated the variance of the link overlap ��qL

13�2= 
�qL
13�2�

− 
qL
13�2. According to the scaling ansatz above, m−2��qL

13�2

��Nm−1/���−m−/�� at �=0, such that m/��−2��qL
13�2

��Nm−1/���−. The data in Fig. 1 shows on the one hand that
 /��−2�1 and on the other hand that �1.4. The obser-
vation  /��−2�1 implies � 6

5 . Together with the second,
more direct, observation of , the data shows that �

6
5 , and

as we will see below, this is all we need to know.

IV. CALCULATING [qn]0 AND THE SAMPLE-TO-SAMPLE
FLUCTUATIONS OF THE FREE ENERGY

The remaining task is to calculate 
qn�0 and insert it into
Eq. �6�. To do so, we use steepest descent methods to write
for the regime � with N−1/10����0 �with P�

0�q�
= 1

Nq
e−�Nmf��q� and the normalization constant Nq�


qn�0 =
1

Nq
�

0

	

dqqne−Nmcx�4q2+O�q4�, �45�

neglect the term of order q4 in the exponent �note that we set
the upper bound from 1 to 	, which introduces only expo-

nentially small errors�, and get 
with Nq=
��1

2
�

2�Nmcx�
4 �


qn�0 =
1

�1

2
��0

	

dxxn−1/2�Nmcx�
4�−n/2e−x

=
�Nmcx�

4�−n/2

�1

2
� �n + 1

2
� . �46�

We then have


q2�0 =
1

2Nmcx�
4 , �47�


q4�0 =
3

�2Nmcx�
4�2 . �48�

With this, we calculate the sample-to-sample fluctuations
through Eqs. �6� and �7� by taking the leading order in N of
every integral into account. The first integrals, I21, 
with
f2���=2�3+O��5�� separates into three integration intervals
corresponding to our three regimes. We neglect the range of
���0 because it gives a contribution of order 1 which we are
not interested in. For the part ��N−1/10 we have the scaling
ansatz for 
�qL

13�2�− 
qL
13�2=m2N−Fm�N���. This ansatz must

match m2�
q4�0− 
q2�0
2� from the neighboring regime at the

crossover point �=N−1/10, which there goes as N−2�−8

�N−6/5 
see Eqs. �47� and �48��. This implies that the scaling
function Fm�x� decays as x−� /m2 for x→	 with an exponent
� obeying ���− 1

10�= 6
5 −.

This leads to

0.01

0.1

1

10

100

0.01 0.1 1 10 100

m
(∆

q L
13

)2

Nm-1/µ‘

m=12
m=10

m=8
m=7
m=6
m=5
m=4
m=3

α=1.4

FIG. 1. Finite-size scaling plot of the variance of the link over-
lap at temperature T=0.6. See text for explanation.
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I21 = �
0

N−1/10

d�2�3N−Fm�N��� + �
N−1/10

�0

d�2�3 1

2�Nc2�4�2

� 2N−−4��
0

N�−1/10

dxFm�x�x3 + N−2�
N−1/10

�0

d�
�−5

c2
2 + ¯

� const1N−−4/��6/5−�−2/5 + const2N−8/5, �49�

as long as ��4. If ��4, the first part of the integral is of
order O�N−8/5�.

The second integral of Eq. �6�, I22, can be estimated in a
similar way with the scaling ansatz 1

m 
qL
13�=Gm�N���. The

scaling function Gm�x� should have the properties Gm�x�

→
x→	

x−� and Gm�x� →
x→0

const and should scale as N−1�−4 for �
=N−1/10 in order to match the neighboring regime, which
yields the scaling relation �= 3

5� + 1
10. This gives rise to a

contribution

I22 = �
0

N−1/10

d��3Gm�N��� + �
N−1/10

�0

d�
�3

2Nc2�4 + ¯

= const3N−12/5�−2/5 + const4
log N

N
, �50�

provided that ��4. If ��4 the first part of the integral is
O�N−1� instead. We therefore find the scaling exponent of the
sample-to-sample fluctuations with the system size, �FN
�N�, to be

� = max�1

5
,
4

5
−



2
−

2

max��,4�6

5
− �,

3

10
−

6

5 max��,4�� .

�51�

As described in Sec. III, we have another, slightly different
route to chaos and will use it now to check for consistency
with the above result. From Eq. �7� we take the first integral
I11=m2�0

�0d�f1����
q4�− 
q2�2� and use the same scaling an-
satz as above for Eq. �49� and obtain contributions of the
form

I11 = m2�
0

�0

d�f1����
q4� − 
q2�2� � const5N−−3/��6/5−�−3/10

+ const6N−3/2 + ¯ �52�

This integral is positive and has a negative prefactor in Eq.
�7�. The fluctuations can not be negative, however, therefore
the leading order of this term must be compensated by the
second integral I12. We use the scaling function Gm�N���
again, which yields

I12 = m�
0

�0

d�g1���
q2� � const7N−3/5�−1/10 + const8N−7/10.

�53�

This second integral, together with its leading prefactor N
from Eq. �7�, must at least cancel the term of order O�N1/2�
which is contained in N2I11. This is only possible if ��

3
2 .

Hence we obtain a limit on � and no contradiction to the
result derived above.

V. CONCLUSION

The purpose of this work was to calculate the finite-size
scaling of the sample-to-sample fluctuations of the free en-
ergy in the m-component vector spin glass in the limit of
large m. The result is Eq. �51�. Although this equation looks
unpromising at first sight, it is in fact very informative. First,
we have the solid result ��

1
5 . Second, from our numerical

work we know that �
6
5 . But under this condition, the sec-

ond term in the max function in Eq. �51� is �
1
5 and can thus

simply be omitted. Third, the last term in the max function is
�

3
10 , such that we obtain 1

5 ���
3

10 . Even better, the third
term is greater than 1

5 only for ��12, which seems an un-
likely large value. We therefore conjecture that �= 1

5 is in
fact the exact answer. But be that as it may, the exponent �
could easily be measured in simulations, and work along
these lines is in progress.

Since our result is not an exact mathematical proof, we
will summarize here the main assumptions on which it rests
because they may have been obscured by the technicalities.
The first ingredient is the connection between the fluctua-
tions and bond chaos of the link overlap, Eqs. �6� and �7�.
They are mathematically exact equalities and pose no prob-
lem. The second ingredient is the calculation of bond chaos.
This is done using large deviation statistics and replica
theory. We believe that replica theory, in principle, gives the
correct results. It became apparent, however, that for the m
component spin glass the “small” deviations play a crucial
role. The small deviations statistics are caused by finite-size
corrections of the free energy, which can not be calculated
within replica theory. However, by reference to earlier
results28 we know at least the finite-size scaling of the free-
energy corrections and can thus estimate the point where our
large deviation calculation becomes valid. The region of the
small deviations is then covered by a scaling ansatz, which is
assumed to cross over smoothly to the region of the large
deviations. The introduction of the scaling ansatz also intro-
duced a number of unknown exponents. However, only three
of these exponents are actually relevant for our results, and
one of them, , has been measured experimentally. More-
over, the precise values of the exponents are largely irrel-
evant: if �

6
5 �as we have checked numerically� and �

�12, then �= 1
5 is exact.

The result �= 1
5 �or even the range 1

5 ���
3

10� is very
interesting because it demonstrates that the large-m model is
fundamentally different from the spherical model,20 even
though their free energies are identical.22 While the width of
the distribution of ground-state energies of the spherical spin
glass scales as N1/3, this behavior is definitely ruled out by
our results.

It would be interesting to see whether a result similar to
ours could be obtained using the methods of Ref. 11. We
believe a corresponding replica calculation for the large-m
model ought to be feasible.

ACKNOWLEDGMENT

This work was supported by the German Science Foun-
dation �DFG� through Grant No. AS 136/2-1.

T. ASPELMEIER AND A. BRAUN PHYSICAL REVIEW B 81, 094439 �2010�

094439-8



1 M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and
Beyond �World Scientific, Singapore, 1987�.

2 G. Parisi, F. Ritort, and F. Slanina, J. Phys. A 26, 247 �1993�.
3 G. Parisi, F. Ritort, and F. Slanina, J. Phys. A 26, 3775 �1993�.
4 M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128

�1999�.
5 B. Drossel, H. Bokil, M. A. Moore, and A. J. Bray, Eur. Phys. J.

B 13, 369 �2000�.
6 J.-P. Bouchaud, F. Krzakala, and O. C. Martin, Phys. Rev. B 68,

224404 �2003�.
7 S. Boettcher, Eur. Phys. J. B 38, 83 �2004�.
8 A. Billoire, Phys. Rev. B 73, 132201 �2006�.
9 T. Aspelmeier, A. Billoire, E. Marinari, and M. A. Moore, J.

Phys. A 41, 324008 �2008�.
10 G. Parisi and T. Rizzo, Phys. Rev. B 79, 134205 �2009�.
11 G. Parisi and T. Rizzo, Phys. Rev. B 81, 094201 �2010�.
12 D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

�1975�.
13 G. Biroli, J.-P. Bouchaud, and M. Potters, J. Stat. Mech.: Theory

Exp. �2007� P07019.
14 C. A. Tracy and H. Widom, in Calogero-Moser-Sutherland Mod-

els, CRM Series in Mathematical Physics Vol. 4, edited by J. F.
van Diejen and L. Vinet �Springer-Verlag, New York, 2000�, pp.

461–472.
15 I. Kondor, J. Phys. A 16, L127 �1983�.
16 A. Crisanti, G. Paladin, H.-J. Sommers, and A. Vulpiani, J. Phys.

I France 2, 1325 �1992�.
17 G. Parisi and T. Rizzo, J. Phys. A 43, 045001 �2010�.
18 T. Aspelmeier, Phys. Rev. Lett. 100, 117205 �2008�.
19 T. Aspelmeier, J. Stat. Mech.: Theory Exp. �2007� P04018.
20 J. M. Kosterlitz, D. J. Thouless, and R. C. Jones, Phys. Rev. Lett.

36, 1217 �1976�.
21 A. Andreanov, F. Barbieri, and O. C. Martin, Eur. Phys. J. B 41,

365 �2004�.
22 J. R. L. de Almeida, R. C. Jones, J. M. Kosterlitz, and D. J.

Thouless, J. Phys. C 11, L871 �1978�.
23 L. Viana, J. Phys. A 21, 803 �1988�.
24 T. Aspelmeier, J. Phys. A 41, 205005 �2008�.
25 M. B. Hastings, J. Stat. Phys. 99, 171 �2000�.
26 T. Aspelmeier and M. A. Moore, Phys. Rev. Lett. 92, 077201

�2004�.
27 L. W. Lee, A. Dhar, and A. P. Young, Phys. Rev. E 71, 036146

�2005�.
28 A. Braun and T. Aspelmeier, Phys. Rev. B 74, 144205 �2006�.
29 F. Guerra and F. L. Toninelli, Commun. Math. Phys. 230, 71

�2002�.

SAMPLE-TO-SAMPLE FLUCTUATIONS AND BOND CHAOS… PHYSICAL REVIEW B 81, 094439 �2010�

094439-9


