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The nonlinear relaxation of quantum spins interacting with a thermal bath is treated via the respective
evolution equations for the reduced density matrix and phase space distribution function in the high tempera-
ture and weak spin-bath coupling limits using the methods already available for classical spins. The solution of
each evolution equation is written as a finite series of the polarization operators and spherical harmonics,
respectively, where the coefficients of the series �statistical averages of the polarization operators and spherical
harmonics� are found from entirely equivalent differential-recurrence relations. Each system matrix has an
identical set of eigenvalues and eigenfunctions. For illustration, the time behavior of the longitudinal compo-
nent of the magnetization and its characteristic relaxation times are evaluated for a uniaxial paramagnet of
arbitrary spin S in an external constant magnetic field applied along the axis of symmetry. In the large spin
limit, the quantum solutions reduce to those of the Fokker-Planck equation for a classical uniaxial superpara-
magnet. For linear response, the results entirely agree with existing solutions.
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I. INTRODUCTION

Phase-space representations of quantum mechanical evo-
lution equations �via the coherent state representation of the
density matrix �̂�t� introduced by Glauber and Sudarshan
long familiar in quantum optics1–3� when applied to spin sys-

tems characterized by a Hamiltonian ĤS allow one to analyze
spin relaxation using a master equation for a quasiprobability
distribution function WS

�s��� ,� , t� of spin orientations in a
phase �here configuration� space �� ,��. Here � and � are the
polar and azimuthal angles constituting the canonical
variables4–9 and the master equation is

�WS
�s�

�t
= LSWS

�s�, �1�

where S is the spin size and LS is a differential operator
depending on the particular spin system. Equation �1� is de-
rived by mapping onto phase space the evolution equation
for the reduced density matrix �̂, namely,

� �̂

�t
+

i

�
�ĤS, �̂� = Q̂��̂� , �2�

where Q̂��̂� is the collision kernel operator. The transforma-
tion may be accomplished because WS

�s��� ,� , t� and �̂ are
related via the bijective map2

WS
�s���,�,t� = Tr��̂�t�ŵs��,��� ,

�̂�t� =
2S + 1

4�
�

�,�
ŵs��,��WS

�−s���,�,t�sin �d�d� .

The Wigner-Stratonovich operator �or kernel of the transfor-
mation� ŵs�� ,�� is defined as

ŵs��,�� =� 4�

2S + 1 	
L=0

2S

	
M=−L

L

�CS,S,L,0
S,S �−sYL,M

� ��,��T̂L,M
�S� .

Here Tr�ŵs�=1 and ��2S+1� /4��
�,�ŵs sin �d�d�= Î�S� �Î�S�

is the identity matrix�, the asterisk denotes the complex con-

jugate, YL,M�� ,�� are the spherical harmonics,10 T̂L,M
�S� are the

polarization operators,10 and CS,S,L,0
S,S are the Clebsch-Gordan

coefficients.10 Either WS
�s��� ,� , t� or �̂ allow one to calculate

the average value of an arbitrary spin operator Â as

�Â� = Tr��̂Â�

or

�Â� =
2S + 1

4�
�

�,�
A�s���,��WS

�−s���,�,t�sin �d�d� ,

respectively, where A�s��� ,��=Tr�Âŵs�� ,��� is the Weyl

symbol of Â. The symbol s characterizes quasiprobability
functions of spins belonging to the SU�2� dynamical symme-
try group. The parameter values s=0 and s= �1 correspond
to the Stratonovich11 and Berezin12 contravariant and cova-
riant functions, respectively �the latter are directly related to
the P and Q symbols appearing naturally in the coherent
state representation2�. We consider below only WS

�−1��� ,��
�omitting everywhere the superscript −1 in WS

�−1��� ,��� be-
cause it alone satisfies the non-negativity condition required
of a true probability density function, viz., W�−1��� ,���0.13

The phase space distribution �Wigner� function for spins
having been originally introduced by Stratonovich11 for
closed systems was further developed for both closed and
open spin systems.7–9,14–18 In the present context phase space
methods are highly relevant because they allow one to map
quantum mechanical evolution equations for the �reduced�
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density matrix for spins onto a classically meaningful
c-number space, which has an obvious advantage over the
operator equations in the consideration of the classical
limit.17 In particular, the mapping of the quantum spin dy-
namics onto c-number quasiprobability density evolution
equations transparently shows how evolution equation �1�
reduces in that limit to the Fokker-Planck equation describ-
ing the stochastic dynamics of a classical spin.5,6,9,17,18 More-
over, the formalism is relatively easy to implement in prac-
tice because the existence of phase space master equations
for spins enables existing powerful computational techniques
for Fokker-Planck equations �e.g., statistical moments, con-
tinued fractions, mean first passage times, etc.19,20� to be
seamlessly carried over into the quantum domain.7–9

Now, although the phase space and spin density matrix
representations have outwardly very different forms, they
must yield exactly the same results. However, use of one or
the other representation may provide a more transparent
method of obtaining the desired result depending on the
problem at hand. In particular the phase space representation,
because it is closely allied to the classical representation, is
very convenient for the study of the passage to the classical
limit. This feature has been amply demonstrated in Ref. 9 for
the simple model of a spin in a dc magnetic field. Here, as
another explicit example, which now involves the magneto-
crystalline anisotropy, we consider a uniaxial paramagnet of
arbitrary spin value S in an external constant magnetic field
H0 applied along the Z axis, i.e., the axis of symmetry. Thus,
the Hamiltonian has the form

Ĥ = ĤS + ĤSB + ĤB,

where

	ĤS = −



S2 ŜZ
2 −

�

S
ŜZ, �3�

ŜZ is the Z component of the spin operator S, 
 is the aniso-
tropy constant, �=	S��H0 is the field parameter, � is the
gyromagnetic ratio, and 	=1 / �kT� is the inverse thermal en-

ergy, the term ĤSB describes interaction of the spin with the

thermostat, and ĤB characterizes the thermostat. This Hamil-
tonian includes a uniaxial anisotropy term plus the Zeeman
coupling to the external field, comprising a generic model for
the study of quantum relaxation phenomena in uniaxial spin
systems such as molecular magnets, nanoclusters, etc. �see,
e.g., Refs. 26 and 27 and references cited therein�. Recently
Garanin26 and García-Palacios et al.27 using the spin density
matrix in the second order of perturbation theory in the spin-
bath coupling considered the longitudinal relaxation of quan-
tum superparamagnets with Hamiltonian �3� for arbitrary S.
They gave a concise treatment of the spin dynamics by pro-
ceeding from the quantum Hubbard operator representation
of the evolution equation for the spin density matrix. How-
ever, they limited themselves to the linear response so that
their solution pertains to a small perturbation in the dc field
and is not valid for arbitrary changes. Here we shall present
solutions for the nonlinear relaxation of the averaged longi-

tudinal component of the spin �ŜZ��t� as a function of the

spin value S using both the density matrix and phase space
formulation. As far as the phase space approach is con-
cerned, the master equation corresponding to Hamiltonian
�3� has been derived already in Ref. 18 but has not yet been
solved. Here we shall demonstrate how the solution of the
corresponding classical problem21–25 carries over into the
quantum domain illustrating how the magnetization, its re-
versal, and integral relaxation times for an arbitrarily strong
change in the uniform field may be evaluated. Furthermore,

we shall show that the long time behavior of �ŜZ��t� compris-
ing 2S exponentials may be accurately approximated by a
single exponential with a definite relaxation time T1 for ar-

bitrary S. In other words, even for a giant spin �S1�, �ŜZ��t�
still obeys the Bloch equation

d

dt
�ŜZ��t� + ��ŜZ��t� − �ŜZ�eq�/T1 = 0, �4�

where �ŜZ�eq is the equilibrium average of the operator ŜZ. In
the linear-response approximation, the solution reduces to
that previously given by Garanin26 and García-Palacios and
Zueco.27

The paper is arranged as follows. In Sec. II, the method of
statistical moments in the context of the density matrix and
phase space formalism is presented. In Sec. III, the
differential-recurrence equations for relaxation functions
�statistical moments� of a uniaxial quantum paramagnet are
derived. In Sec. IV, by solving these equations, the nonlinear
transient response of a uniaxial quantum paramagnet is
treated. The characteristic relaxation times of nonlinear tran-
sients are calculated in Sec. V. The results are presented in
Sec. VI. Section VII contains their discussion and conclu-
sions. Various useful formulas for a classical superparamag-
net are summarized in Appendix A. The detailed calculation
of the integral relaxation time is given in Appendix B.

II. METHOD OF STATISTICAL MOMENTS

A very efficient method of solution of the Fokker-Planck
equation governing the stochastic dynamics of classical spin
systems comprises the determination of the statistical
moments19,20,28 which in general satisfy differential-
recurrence relations. This method can also be applied to the
quantum problem. The reason is that the phase-space distri-
bution WS�� ,� , t� may be presented for arbitrary S in terms
of a finite linear combination of the spherical harmonics,
namely,2

2S + 1

4�
WS��,�,t� = 	

L=0

2S

	
M=−L

L

�YL,M
� ��t�YL,M��,�� , �5�

where

�YL,M
� ��t� =

2S + 1

4�
�

�,�
YL,M

� ��,��WS��,�,t�sin �d�d�

and YL,M
� = �−1�MYL,−M. Equation �5� obviously emphasizes

the relationship with the conventional infinite series repre-
sentation of the relevant classical Boltzmann distribution.
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The formal solution of the reduced density evolution equa-
tion �2� can also be written in analogous fashion using the

polarization operators T̂L,M
�S� as the linear combination2,10,28

�̂�t� = 	
L=0

2S

	
M=−L

L

�− 1�MaL,−M�t�T̂L,M
�S� , �6�

where the coefficients aL,M �representing the expectation val-

ues of the T̂L,M
�S� in a state described by �̂� are10

aL,M�t� = �T̂L,M
�S� ��t� = Tr��̂�t�T̂L,M

�S� � . �7�

In general, the scalar coefficients �T̂L,M
�S� � are related to the

expectation values of the spherical harmonics �YL,M� �statis-
tical moments� by the equation18

�YL,M� =�2S + 1

4�
CS,S,L,0

S,S �T̂L,M
�S� �

=
�2S�!�2S + 1�

�4��2S − L�!�2S + L + 1�!
�T̂L,M

�S� � . �8�

Thus, knowing �YL,M��t� from phase space equations �1� and
�5�, we can also determine �̂ from Eqs. �6� and �8� without
formally solving its evolution equation �2�. Vice versa, hav-

ing calculated �T̂L,M
�S� ��t� from the density matrix Eqs. �2� and

�6�, we can also find WS�� ,� , t� from Eqs. �5� and �8� with-
out formally solving the phase space evolution equation �1�.

The finite series Eq. �5� is valid for an arbitrary spin
system with states described by �̂ given by Eq. �6�. In gen-
eral, either expansion of the phase-space distribution as a
linear combination of the spherical harmonics or expansion
of the density matrix in polarization operators permits direct

calculation of the observables �ŜX�, �ŜZ�, etc. For example,

noting the correspondence rules of the operator ŜZ and its
Weyl symbol �c number� SZ�� ,�� in the phase space, we
have in the phase space representation18

�ŜZ��t� = �4�/3�S + 1��Y1,0��t� .

While in terms of the polarization operators, we have

�ŜZ��t� = �S�S + 1��2S + 1�/3�T̂1,0
�S���t� .

The differential-recurrence relations for �YL,M��t� can be
obtained by substituting the distribution function WS�� ,� , t�
from Eq. �5� into master equation �1� so that the latter be-
comes

d

dt
�YL,M��t� = 	

L�,M�

bL,M
L�,M��YL�,M���t� , �9�

where bL,M
L�,M� are the Fourier coefficients which depend on

the precise form of the Hamiltonian. The corresponding

equation for �T̂L,M
�S� ��t�, viz.,

d

dt
�T̂L,M

�S� ��t� = 	
L�,M�

� �2S − L�!�2S + L + 1�!
�2S − L��!�2S + L� + 1�!

�bL,M
L�,M��T̂L�,M�

�S� ��t� , �10�

can be obtained either by substituting the polarization opera-
tor series representation of the reduced density matrix �̂ from
Eq. �6� into Eq. �2� or directly from the Fourier series Eq. �9�
by noting Eq. �8�. Equations �9� and �10� are entirely equiva-
lent and can be solved either by direct matrix diagonaliza-
tion, involving the calculation of the eigenvalues and eigen-
vectors of the system matrix, or by the computationally
efficient �matrix� continued fraction method19,20 so yielding
the magnetization as a function of S, etc.

III. DIFFERENTIAL-RECURRENCE RELATION FOR
STATISTICAL MOMENTS FOR A UNIAXIAL

PARAMAGNET

The density matrix evolution equation for the reduced
density matrix �̂ describing the longitudinal relaxation of a
uniaxial spin system with Hamiltonian �3� is in the weak
coupling and high temperature limit18

� �̂

�t
= St��̂� , �11�

where

St��̂� = 2D���Ŝ−�̂, Ŝ+� + �Ŝ+e�
/S2��2ŜZ+Î�S��+��/S�Î�S�
��t�, Ŝ−�� ,

�12�

Ŝ�= ŜX� iŜY; ŜX and ŜY are the X and Y components of the

spin operator Ŝ, respectively. The collision kernel operator
St��̂� in Eq. �12� is explicitly determined via the ansatz that

the equilibrium spin density matrix �̂eq=e−	ĤS /Tr�e−	ĤS� ren-
ders it zero, i.e., St��̂eq�=0. Conditions for the validity of Eq.
�11� are discussed in detail elsewhere.18 Essentially, that
equation follows from the equation of motion of the reduced
density matrix in the rotating-wave approximation �familiar
in quantum optics, where counter-rotating, rapidly oscillating
terms are averaged out27�. Moreover the spin-bath interac-
tions are taken in the weak coupling limit and for Ohmic
damping. Thus, the correlation time characterizing the bath is
short enough to allow one to approximate the stochastic pro-
cess originating in it by a Markov process. These approxi-
mations may be used in the high temperature limit, 	��m
−�m�1��1, where �m ,�m�1 are the energy eigenvalues. In
the parameter range, where the approximation fails �e.g.,
throughout the very low temperature region�, more general
forms of the phase space and density matrix equations must
be used �such as treated, e.g., in Refs. 26 and 27�. Neverthe-
less, we still use the model based on the above approxima-
tion because despite many drawbacks26,27 it can qualitatively
describe the relaxation in spin systems. Moreover, the model
can be regarded as the direct quantum generalization of the
Langevin formalism used by Brown in his theory of relax-
ation of classical superparamagnetic particles.21

The phase space evolution equation for WS�� , t� corre-
sponding to Eq. �11� is �because in longitudinal relaxation
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the azimuthal angle dependence of WS may be ignored�18

�WS

�t
=

D�

2

�

�z
�1 − z2�� �

�z
�P̄�S� + 1 + z�P̄�S� − 1��WS

− �2S + 1��P̄�S� − 1�WS��� , �13�

where D� is the “diffusion” coefficient, z=cos �, and the

operator P̄�S� has a complicated differential form, given ex-
plicitly in Ref. 18. For 
=0, i.e., for a spin in a dc magnetic

field, we have simply P̄�S�=e�/S and Eq. �13� reduces to the
Fokker-Planck equation treated in Ref. 9. In the classical
limit, Eq. �13� further reduces to the Fokker-Planck equation
for a classical uniaxial paramagnet in a dc magnetic field,
viz.,20–25

�

�t
W = D�

�

�z
��1 − z2�� �

�z
W + W

�

�z
V�� , �14�

where V�z�=−
z2−�z is the normalized classical free energy.
The formal solutions of the axially symmetric Eqs. �13�

and �11� can now be written as

�̂�t� = 	
L=0

2S

aL�t�T̂L,0
�S� , �15�

2S + 1

4�
WS��,�,t� = 	

L=0

2S

bL�t�YL,0��,�� . �16�

The coefficients aL�t� and bL�t� are of course �cf. Eqs. �5� and

�7�� the averages of the polarization operators T̂L,0
�S� and

spherical harmonics YL,0, viz.,

aL�t� = �T̂L,0
�S� ��t�, bL�t� = �YL,0��t� . �17�

By substituting Eqs. �15� and �16� into Eqs. �11� and �13�,
respectively, we have the finite hierarchy of differential-
recurrence equations for the statistical moments �in contrast
to the classical case, where the corresponding hierarchy is
infinite�.

Since either approach presented above yields similar hier-
archies, we give the derivation using the density matrix. This
is accomplished as follows. First, the matrix exponent

e�
/S2��2ŜZ+Î�S��+��/S�Î�S�
in Eq. �12� can be expanded in terms of

the polarization operators T̂L,0
�S� as

e�
/S2��2ŜZ+Î�S��+��/S�Î�S�
= e�
/S2�+��/S�	

l=0

2S

dlT̂l,0
�S�, �18�

where

dl�
� = Tr�e�2
/S2�Ŝ0T̂l,0
�S�� =� 2l + 1

2S + 1 	
m=−S

S

CS,m,l,0
S,m e�2
/S2�m.

�19�

Here the expansion coefficients dl have been found by using
the orthogonality property

Tr�T̂L1,M1

�S� T̂L2,M2

�S� � = �− 1�M1�L1,L2
�M1,−M2

�20�

and the explicit form of the matrix elements, viz.,

�T̂L,M
�S� �m�,m= ��2L+1� / �2S+1��1/2CS,m,L,M

S,m� . By substituting Eq.
�15� into the explicit evolution Eq. �11�, noting Eq. �18�, and
the product formula10

T̂l,0
�S�T̂L,0

�S� = 	
L�=�L−l�

L+l

�− 1�2S+L���2l + 1��2L + 1�

�l,L,L�

S,S,S
�Cl,0,L,0

L�,0 T̂L�,0
�S� , �21�

�� l,L,L�
S,S,S � is Wigner’s 6j-symbol10� we have the hierarchy of

multiterm differential-recurrence equations for the averages
aL�t�, namely,

�N
�aL�t�

�t
= 	

L�=0

2S

gL,L�
S aL��t� , �22�

where �N= �2D��−1 is the characteristic �free diffusion� time
and

gL,L�
S =

L�L + 1�

4
��2S − L��2S + L + 2�

�2L + 1��2L + 3�
�L,L�+1

−
L�L + 1�

4
�L,L� −

L�L + 1�

4

���2S − L + 1��2S + L + 1�

�2L + 1��2L − 1�
�L,L�−1 − e�
/S2�+��/S�

��− 1�2S+L
L�L + 1�

4
�2L� + 1

�� 	
l=�L�−L�

L�+L

dl�
��2l + 1l,L�,L

S,S,S
�Cl,0,L�,0

L,0

+
��2S − L + 1��2S + L + 1�

��2L − 1��2L + 1�
	

l=�L�−L+1�

L�+L−1

dl�
��2l + 1

�l,L�,L − 1

S,S,S
�Cl,0,L�,0

L−1,0

−
��2S − L��2S + L + 2�

��2L + 3��2L + 1�
	

l=�L�−L−1�

L�+L+1

dl�
��2l + 1

�l,L�,L + 1

S,S,S
�Cl,0,L�,0

L+1,0 � �23�

with a0= �T0,0
�S��= �2S+1�−1/2. We remark that the built-in

functions ClebschGordan��a ,�� , �b ,	� , �c ,��� and
SixJSymbol��j1 , j2 , j3� , �j4 , j5 , j6�� of the MATHEMATICA pro-
gram facilitate calculation of the Clebsch-Gordan coeffi-
cients and the Wigner 6j symbols in Eq. �23�. On the other
hand, in the phase space representation, we have formally the
relevant system of differential-recurrence equations for the
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averaged spherical harmonics �Yl,0��t� from Eqs. �9�, �10�,
and �22�. Alternatively the differential-recurrence equations
can be directly derived by substituting Eq. �16� into Eq. �13�
and using the recurrence relations10

� cos �Yl,m

sin ���Yl,m
� = �1

l
�� �l + 1�2 − m2

�2l + 1��2l + 3�
Yl+1,m

− � − 1

l + 1
�� l2 − m2

4l2 − 1
Yl−1,m,

��
2 Yl,m = �m2 csc2 � − l�l + 1��Yl,m − cot ���Yl,m.

The details have been given in Ref. 9 for 
=0.
In the classical limit, S→�, Eq. �22� reduces to the

differential-recurrence equation for a classical uniaxial para-
magnet treated in Refs. 20, 29, and 30 �see Appendix A�. In
the limiting case 
=0, Eqs. �19� and �23� simplify yielding
dl�0�=�2S+1�l,0 and gL,L�

S =0 with the exceptions gL,L
S

=e�/SqL and gL,L�1
S =−e�/SqL

�, where

qL = −
L�L + 1�

4
, qL

� = �
1

4
L�L + 1�

2S � L + 3/2 � 1/2
2L + 1

,

so that with the replacement

cL�t� →
��2S − L�!�2S + L + 1�!�2L + 1�

4��2S�!
aL�t� ,

we have from Eq. �22�

�N
�cL�t�

�t
= �1 + e�/S�qLcL�t�

+ �1 − e�/S�qL
−cL−1�t� + �1 − e�/S�qL

+cL+1�t� .

�24�

This result exactly corresponds to the spin relaxation in a
uniform field treated comprehensively in Ref. 9.

IV. CALCULATION OF THE OBSERVABLES

We suppose that the magnitude of an external uniform dc
magnetic field is suddenly altered at time t=0 from HI to HII
�the magnetic fields HI and HII are applied parallel to the Z
axis of the laboratory coordinate system in order to preserve
axial symmetry�. Thus, we study as in the classical case,20

the nonlinear transient longitudinal relaxation of a system of
spins starting from an equilibrium state I with density matrix
�̂eq

I �t�0� to a new equilibrium state II with density matrix
�̂eq

II �t→��. Here the longitudinal component of the spin

�ŜZ��t� relaxes from the equilibrium value �ŜZ�I to the value

�ŜZ�II, the transient being described by an appropriate relax-
ation function. The transient response so formulated is truly
nonlinear because the change in amplitude HI−HII of the
external dc magnetic field is arbitrary �the linear response is
the particular case �HI−HII�→0�. We remark in passing that
the equilibrium phase space distributions Weq

I and Weq
II corre-

sponding to the equilibrium spin density matrices �̂eq
I and �̂eq

II

comprise the appropriate stationary �time independent� solu-

tions of Eq. �13�. These distributions have been extensively
studied in Ref. 31 and are given by

WS
i ��� = 	

L=0

2S
2L + 1

2S + 1
�PL�iPL�cos �� , �25�

where �PL�i= �S+1 /2�
−1
1 PL�z�WS

i �z�dz are the equilibrium
values of the Legendre polynomials PL given explicitly by31

�PL�i = ZS
−1CS,S,L,0

S,S 	
m=−S

S

CS,m,L,0
S,m e
�m/S�2+�i�m/S�

and ZS=Tr�e−	ĤS�=	m=−S
S e
�m / S�2+�i�m/S� is the partition func-

tion.
According to Eq. �22�, the behavior of any selected aver-

age is coupled to that of all the others so forming a finite
hierarchy �because the index L ranges only between 0 and
2S� of averages. The solution of such a multiterm recurrence
relation may always be obtained by rewriting it as a first-
order linear matrix differential equation with constant coef-
ficients. In order to accomplish this, we first construct a col-
umn vector C�t� such that

C�t� =�
c1�t�
c2�t�
]

c2S�t�
� , �26�

with elements cL�t�= �T̂L,0
�S� ��t�− �T̂L,0

�S� �II. Now the after-effect
functions cL�t� satisfy the same recurrence relations Eq. �22�
as the aL�t� with the initial conditions

cL�0� = �T̂L,0
�S� �I − �T̂L,0

�S� �II. �27�

However, vector �26� now contains just 2S elements �the
index L ranges between 1 and 2S� as the evolution equation
for the function c0�t� is simply �tc0�t�=0 with the trivial
solution c0�t�=const. Hence, the matrix representation of the
recurrence equations for the cL�t� has the form of the linear
matrix differential equation

Ċ�t� + X · C�t� = 0, �28�

where X is the 2S�2S system matrix with matrix elements
given by

�X�n,m = − �N
−1gn,m

S . �29�

For example, for S=1, the matrix X is given by

X =
1

2�N
� 1 + e�−
 3−1/2�2e�+
 − 1 − e�−
�

31/2�1 − e�−
� 2e�+
 + 3 + e�−
 � . �30�

The solution of the homogeneous matrix Eq. �28� is32

C�t� = e−XtC�0� . �31�

The one-sided Fourier transform of Eq. �31� yields the spec-

trum C̃���=
0
�C�t�e−i�tdt, viz.,

C̃��� = �X + i�I�−1C�0� . �32�
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Matrix solutions �31� and �32� may now be used to cal-
culate the longitudinal component of the magnetization spin
operator

�ŜZ��t� − �ŜZ�II = �S�S + 1��2S + 1�/3c1�t� �33�

and its spectrum as well as the integral relaxation time de-
fined as the area under the relaxation curve of the relevant
observable so that

�int =
1

�ŜZ�I − �ŜZ�II

�
0

t

��ŜZ��t� − �ŜZ�II�dt . �34�

Equation �34� can now be written20 using the final value
theorem of Fourier-Laplace transforms as

�int = c̃1�0�/c1�0� , �35�

where c̃1���=
0
�c1�t�e−i�tdt. The function c̃1�0� is the first

element of the vector C̃�0� which in accordance with Eq.
�32� is

C̃�0� = �X�−1C�0� . �36�

The general solution �31� can be written as32

C�t� = Ue−�tU−1C�0� , �37�

where � is a diagonal matrix containing the eigenvalues
�1 ,�2 , . . . ,�2S of the system matrix X and U is a right eigen-
vector matrix composed of all the eigenvectors of the system
matrix X, namely, U−1XU=�. All the �k are real and posi-
tive. In accordance with Eqs. �35� and �36�, the relaxation
function c1�t� and the integral relaxation time are given by

c1�t� = 	
k=1

2S

u1,kgke
−�kt, �38�

�int = 	
k=1

2S

u1,kgk�k
−1/	

k=1

2S

u1,kgk, �39�

where ul,k are the matrix elements of U and gk are the ele-
ments of the vector U−1C�0�. Thus, the integral relaxation
time contains contributions from all the eigenvalues �k and
so characterizes the overall relaxation behavior. The other
important characteristic of the relaxation process is the
smallest nonvanishing eigenvalue �1. This is the reciprocal
time constant associated with the long time behavior of the
relaxation function c1�t� comprising the slowest �lowest fre-
quency� relaxation mode. A knowledge of �1 is essential be-
cause it characterizes the reversal time of the magnetization.
Furthermore, because the influence of the high-frequency re-
laxation modes on the low-frequency relaxation may often
be ignored, �1 provides sufficient information concerning the
low-frequency dynamics of the system �see Sec. VI�.

Our matrix method also allows us to evaluate the linear
response of a spin system due to infinitesimally small
changes in the magnitude of the dc field, which we stress has
already been evaluated26,27 using the spin density matrix.
Thus, we again suppose that the uniform dc field HII is di-
rected along the Z axis of the laboratory coordinate system
and that a small probing field H1 �H1 �HII� having been ap-

plied to the assembly of spins in the distant past �t=−�� so
that equilibrium conditions obtain at time t=0 is switched off
at t=0. The only difference here is in the initial conditions.
Instead of the general Eq. �27�, in linear response, �I−�II
=��1, they become

cL�0� = �T̂L,0
�S� ��0� − �T̂L,0

�S� �II �
�

S
Tr��̂eq

II ŜZ�T̂L,0
�S� − �T̂L,0

�S� �IIÎ
�S��� .

�40�

Furthermore, c1�t� /c1�0� reduces to the normalized longitu-
dinal dipole equilibrium correlation function C��t�,33 that is,

C��t� = lim
�→0

c1�t�
c1�0�

=
1

��
�	−1��

0

	

ŜZ�0�ŜZ�t + i���d��
II

− �ŜZ�II
2� �

1

��
�1

2
�ŜZ�0�ŜZ�t� + ŜZ�t�ŜZ�0��II − �ŜZ�II

2� ,

�41�

where

�� = 	−1��
0

	

ŜZ�0�ŜZ�i���d��
II

− �ŜZ�II
2 � �ŜZ

2�II − �ŜZ�II
2

�42�

is the normalized static susceptibility. According to linear-
response theory,33 having determined the one-sided Fourier

transform C̃����=
0
�C��t�e−i�tdt, we have the dynamic sus-

ceptibility �����=������− i������ via33

�����/�� = 1 − i�C̃���� . �43�

We have also the integral relaxation time, which is now the
correlation time of C��t�, viz.,20

�cor = C̃��0� . �44�

Yet another time constant characterizing the time behavior of
C��t� is the effective relaxation time �ef defined by20,34

�ef = − 1/Ċ��0� �45�

�yielding precise information on the initial decay of C��t� in
the time domain�. Just as the correlation time �cor, �ef may
equivalently be defined in terms of the eigenvalues �k as

�ef = 	
k=1

2S

u1,kgk/	
k=1

2S

u1,kgk�k. �46�

According to Eqs. �38� and �43�, the dynamic susceptibility
is a finite sum of Lorentzians, viz.,

����
��

= 	
p=1

2S
cp

1 + i�/�p
, �47�

where cp=u1,pgp. In the low- ��→0� and high- ��→�� fre-
quency limits, its behavior can be easily evaluated. Noting
Eqs. �39� and �46�, we have from Eq. �47�, respectively, for
�→0 and for �→�,

���� � ���1 − i��cor + ¯�, � → 0, �48�
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���� � ���i��ef�−1 + ¯ , � → � . �49�

We remark that the equilibrium averages �ŜZ�I, �ŜZ�II, and

�ŜZ
2�II appearing in the above expressions can be expressed in

terms of both the density matrix and phase space distribution
as

�ŜZ�i = 	
m=−S

S

m�m
i , �ŜZ

2�i = 	
m=−S

S

m2�m
i , �50�

�ŜZ�i = �S +
1

2
��S + 1��

−1

1

zWS
i �z�dz , �51�

�ŜZ
2�II = �S +

1

2
��S + 1��

−1

1 ��S +
3

2
�z2 −

1

2
�WS

II�z�dz .

�52�

Here we have noted that the corresponding Weyl symbols of

the operators ŜZ and ŜZ
2 are SZ= �S+1�cos � and SZ

2

= �S+1���S+ 3
2 �cos2 �− 1

2 �, respectively.

V. ANALYTIC SOLUTIONS FOR THE
RELAXATION TIMES

The matrix solution outlined above can be radically sim-
plified for axially symmetric Hamiltonian �3� because the
diagonal terms of the density matrix decouple from the non-
diagonal ones. Hence, only the former partake in the time
evolution. In order to see this we first transform the density
matrix evolution equation into an evolution equation for its
individual matrix elements. We have from Eq. �11� the fol-
lowing three-term differential-recurrence equation for the di-
agonal elements �m=�m,m �m=−S ,−S+1, . . . ,S�

�N
��m�t�

�t
= pm

− �m−1�t� + pm�m�t� + pm
+ �m+1�t� , �53�

where

pm = Sm,m−1
+ Sm−1,m

− + Sm,m+1
− Sm+1,m

+ e�2m+1��
/S2�+��II/S�,

pm
+ = − Sm,m+1

− Sm+1,m
+ ,

pm
− = − Sm,m−1

+ Sm−1,m
− e�2m−1��
/S2�+��II/S�,

and

Sm�1,m
� = � ��S � m��S � m + 1�/2.

Substitution of the equilibrium matrix element �m
II

=e�
/S2�m2+��II/S�m /ZS
II with ZS

II=	m=−S
S e�
/S2�m2+��II/S�m into the

right-hand side of Eq. �53� renders it zero, namely,

pm
− �m−1

II + pm�m
II + pm

+ �m+1
II = 0,

because of our ansatz that the equilibrium spin density ma-
trix �̂eq must render the collision kernel zero. Consequently,
�m

II is the stationary solution of Eq. �53�.
In order to calculate the integral relaxation time defined

by Eq. �34�, we now introduce the functions fm�t� defined as

fm�t� = �m�t� − �m
II . �54�

The fm�t� also satisfy Eq. �53�. The initial conditions for
fm�t�, i.e., at t=0, are

fm�0� = �m
I − �m

II . �55�

Noting that

�ŜZ��t� − �ŜZ�II = 	
m=−S

S

mfm�t�

and

�ŜZ��0� − �ŜZ�II = �ŜZ�I − �ŜZ�II,

the normalized spectra of the relaxation function c̃1��� /c1�0�
and the integral relaxation time are now given by �cf. Eq.
�34��

c̃1���
c1�0�

=
1

�ŜZ�I − �ŜZ�II

	
m=−S

S

mf̃m��� , �56�

�int =
1

�ŜZ�I − �ŜZ�II

	
m=−S

S

mf̃m�0� , �57�

where �ŜZ�i=	m=−S
S m�m

i . As shown in Appendix B,
c̃1��� /c1�0� and �int can be calculated analytically using con-
tinued fractions. In particular, we have

�int =
2�N

�ŜZ�I − �ŜZ�II

	
k=1−S

S 	
m=k

S

��m
I − �m

II� 	
m�=k

S

�m� − �ŜZ�II��m�
II

�S�S + 1� − k�k − 1���k
II .

�58�

Both the eigensolution Eq. �39� and the explicit Eq. �58�
yield exactly the same numerical result. Thus, �int for various
nonlinear transient responses �such as the rise, decay, and
rapidly reversing field transients� may be easily evaluated
from Eq. �58�. In linear response, i.e., transient relaxation
between the states I and II with
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N

1: ξ
II

= κ (κ → 0)

2: ξ
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= 2

3: ξ
II

= 4
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1

FIG. 1. �Color online� Nonlinear integral relaxation time �int /�N

for the rise transient response as a function of the barrier parameter

 for the spin value S=8, �I=0, and various values of �II=�
→0,2 ,4 ,6. Solid lines: calculations from Eq. �58�; circles: Eq.
�60�.
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ĤS
I =




S2 ŜZ
2 +

�II + �

S
ŜZ and ĤS

II =



S2 ŜZ
2 +

�II

S
ŜZ

�� is a small external field parameter�, the initial condition
for fm�t� becomes

fm�0� = e�
/S2�m2+���II+��/S�m/ZS
I − e�
/S2�m2+��II/S�m/ZS

II

�
�

S
�m − �ŜZ�II��m

II . �59�

Thus, Eq. �58� yields the correlation time �cor as

�cor =
2�N

��
	

k=1−S

S �	
m=k

S

�m − �ŜZ�II��m
II�2

�S�S + 1� − k�k − 1���k
II . �60�

Equations �58� and �60� are valid for an arbitrary axially

symmetrical potential ĤS�ŜZ�. The particular form of the po-
tential is contained only in the equilibrium matrix elements

of the density operator �m
II and in the constants �� and �ŜZ�II.

We remarked above that the linear response has been pre-
viously studied by Garanin26 and García-Palacios and
Zueco27 using the spin density matrix in the second order of

perturbation theory. In that context they also gave analytic
expressions for the linear-response integral relaxation time
�cor, effective relaxation time �ef, and the longest relaxation
time ����1

−1 for more general models of a quantum super-
paramagnet interacting with phonons, e.g., superimposed lin-
ear and bilinear spin-bath interactions with super-Ohmic
damping. However, for the collision kernel given by Eq. �12�
pertaining to the high temperature and weak coupling limit
their results for �cor reduce to ours. Hence, we can also apply
the general results for �ef and �1

−1 given in Ref. 27. Thus, the
effective relaxation time �ef defined as

�ef = − �S���ŜZ�I��=0/ 	
m=−S

S

mḟm�0� �61�

is

�ef =
2���N

	
k=1−S

S

�S�S + 1� − k�k − 1���k
II

. �62�

Furthermore, the approximate equation for the longest relax-
ation time ����1

−1 is

�� =
2�N

��
	

k=1−S

S �	
m=k

S

�m − �ŜZ�II��m
II� 	

m=−S

k−1

�� − sgn�m − mb���m
II�

�S�S + 1� − k�k − 1���k
II , �63�

where mb is the quantum number corresponding to the top of
the barrier, �=	m=−S

S sgn�m−mb��m
II, and

�� = 	
m=−S

S

m sgn�m − mb��m
II − � 	

m=−S

S

m�m
II�

�� 	
m=−S

S

sgn�m − mb��m
II� .

For values of the field ��
, the relative deviation of �� from
�1

−1 does not exceed 1%.27

The foregoing equations have been derived using the den-
sity matrix method. They can also be obtained using the
phase space formalism.9 For example, the effective relax-
ation time �ef from Eq. �62� can be written as

�ef = 2�N

�ŜZ
2�II − �ŜZ�II

2

�Ŝ2 − ŜZ
2 + ŜZ�II

, �64�

where �ŜZ�II and �ŜZ
2�II are given by Eqs. �51� and �52� and

�Ŝ2 − ŜZ
2 + ŜZ�II = �S + 1��S +

1

2
��

−1

1

��S�1 − z2� +
1

2
+ z −

3

2
z2�WS

II�z�dz .

�65�

Equation �64� is simply a quantum analog of the known
equation for the effective relaxation time �ef of a classical
superparamagnet20

�ef = 2�N

�cos2 ��II − �cos ��II
2

1 − �cos2 ��II
. �66�

VI. RESULTS

The nonlinear relaxation time �int for the rise transient
response as a function of the anisotropy parameter 
 and the
spin value S is plotted in Figs. 1 and 2. They indicate a
strong dependence of this time on the field ��II�, anisotropy
�
�, and spin �S� parameters; in particular it decreases with
increasing field strength �II. For linear response, the correla-
tion time �cor from Eq. �60� and the inverse smallest nonva-
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nishing eigenvalue, 1 /�1, are plotted in Figs. 3 and 4 as a
function of �II and 
, respectively, for various values of S.
Furthermore, �cor and 1 /�1 are also plotted in Figs. 5 and 6
as a function of S for various values of �II and 
. It is appar-
ent from Figs. 1–6 that for large S, the quantum solutions
reduce to the corresponding classical ones but the quantum
and classical solutions can disagree substantially for small S.
Typical values of S for the quantum-classical crossover are
�10–40. The smaller the anisotropy 
 the smaller the S
required for convergence of the quantum equations to the classical ones. The behavior of �cor and 1 /�1 is similar only

for small external fields. In a strong external field, 1 /�1 can
diverge exponentially from �cor as for a classical uniaxial
paramagnet.20 This effect was discovered numerically by
Coffey et al.23 and later explained quantitatively by
Garanin24 �see also Ref. 20, Chap. 1 for details�. He showed
analytically that the contribution of relaxation modes other
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FIG. 2. �Color online� Nonlinear relaxation time �int /�N for the
rise transient response as a function of the barrier parameter 
 for
�I=0 and �II=6 and various values of spin S. Solid lines: Eq. �58�;
circles: classical equation �A5�.
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FIG. 3. �Color online� Correlation time �cor /�N �a� and inverse
smallest nonvanishing eigenvalue, 1 /�1, of the system matrix X �b�
vs the field parameter � for the barrier parameter 
=10 and various
values of S. Filled circles: the classical limit.
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FIG. 4. �Color online� Correlation time �cor /�N �a� and inverse
smallest nonvanishing eigenvalue, 1 /�1, �b� vs the barrier param-
eter 
 for the field parameter �=5 and various values of S. Filled
circles: the classical limit.
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FIG. 5. �Color online� Correlation time �cor /�N �a� and inverse
smallest nonvanishing eigenvalue, 1 /�1, vs the spin value S for
barrier parameter 
=10 and different field parameter �. Dashed
lines: the classical limit.
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than the overbarrier one becomes significant for high exter-
nal fields due to population depletion of the shallower of the
two potential wells of a bistable potential under the action of
an external applied field.

In Figs. 7 and 8, we have plotted the real part of
c̃1��� /s1�0� vs the normalized frequency ��N for the rise
transient response, �I=0→�II�0. Here the Lorentzian

c̃1���
c1�0�

�
�int

1 + i�/�1
�67�

is shown for comparison. These figures indicate that �int and
�1 allow one to comprehensively describe the low-frequency
behavior of the spectrum c̃1��� /c1�0�. In the time domain,
the single-mode approximation Eq. �67� amounts to assum-
ing that the relaxation function c1�t� as determined by Eq.

�38� �comprising 2S exponentials� may be approximated for
t�0 by a single exponential. Consequently, the long time

relaxation behavior of �ŜZ��t� may be accurately approxi-
mated by a single exponential with relaxation time T1
=1 /�1 and thus is governed by Bloch equation �4�.

In Figs. 9–11 we have plotted the real and imaginary parts
of the dynamic susceptibility ����. Clearly two bands appear
in the spectrum of the imaginary part �����. The low-
frequency band is due to the slowest �“overbarrier”� relax-
ation mode. The characteristic frequency and the half-width
of this band are determined by �1. The high-frequency band
of ����� is due to high-frequency modes corresponding to
the eigenvalues �k �k�2�. These individual “intrawell”
modes are indistinguishable in the spectrum of ����� appear-
ing merely as a single high-frequency Lorentzian band. Just
as the classical case,20 �1 is sufficient to accurately predict
the low-frequency part of ���� as well as the long time be-
havior of the equilibrium correlation function C�t�. Thus, if
one is interested solely in the low-frequency region �w�
�1�, where the effect of the high-frequency modes may be
ignored, the dynamic susceptibility ���� may be approxi-
mated as
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FIG. 6. �Color online� Correlation time �cor /�N �a� and inverse
smallest nonvanishing eigenvalue, 1 /�1, vs the spin value S for
field parameter �=5 and various values of the barrier parameter 
.
Dashed lines: the classical limit.
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FIG. 7. �Color online� c̃1��� /c1�0� vs the normalized frequency
��N for the rise transient response for S=8, 
=10, �I=0, and vari-
ous values of �II=�→0,2 ,4 ,6. Solid lines: calculations from Eq.
�32�; stars: Eq. �67�.

10−4 10−2 100 102 104
10−7

10−5

10−3

10−1

101

103

R
e[

c 1(ω
)/

c 1(0
)]

S = 8
ξ

I
= 0 → ξ

II
= 6

ωτ
N

1: σ = 0
2: σ = 5
3: σ = 10
4: σ = 15

~

FIG. 8. �Color online� c̃1��� /c1�0� vs ��N for the rise transient
response for �I=0, �II=6, S=8, and various values of the anisotropy
parameter 
. Solid lines: calculations from Eq. �32�; stars: Eq. �67�.

10−4 10−2 100 102 104
10−3

10−2

10−1

100

3

2

4

ξ = 2
σ = 10

χ'
||(ω

)/
χ ||

1: S = 4
2: S = 6
3: S = 8
4: S = 10

1

10−4 10−2 100 102 104
10−4

10−3

10−2

10−1

100

3

2 1

4

ωτ
N

χ'
' ||(ω

)/
χ ||

FIG. 9. �Color online� Real and imaginary parts of ���� vs ��N

for field parameter �=2, the anisotropy parameter 
=10, and vari-
ous values of spin S. Crosses are the single Lorentzian approxima-
tion, Eq. �68�, while straight dashed lines are the high-frequency
asymptote, Eq. �49�.
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����
�

�
1 − �

1 + i�/�1
+ � , �68�

where � is a parameter characterizing the contribution of the
high-frequency modes which can be evaluated as20,25

� =
�1�cor − 1 − �cor/�ef + 1/��1�ef�

�1�cor − 2 + 1/��1�ef�
. �69�

In order to verify the single Lorentzian approximation, we
plot in Figs. 7–9 the real and imaginary parts of ���� calcu-
lated from the matrix solution and the approximate Eq. �68�.
It is apparent from Figs. 7–9 that at low frequencies no prac-
tical difference exists between the numerical solution and the
single-mode approximation �the maximum relative deviation

between the corresponding curves does not exceed a few
percent�. We remark in passing that García-Palacios and
Zueco27 have shown that a two mode approximation origi-
nally developed for classical systems20,25 accurately de-
scribes the linear response of quantum superparamagnets at
all frequencies of interest.

VII. CONCLUDING REMARKS

We have studied the transient nonlinear longitudinal re-
laxation of a quantum uniaxial superparamagnet of arbitrary
spin S in the high temperature and weak spin-bath coupling
limit. The principal result is that one may determine the tran-
sition from quantum elementary spin relaxation to the clas-
sical superparamagnetic relaxation pertaining to a giant spin
as a function of the spin size S. Hence, one may accurately
estimate the value of S �typically in the range 20–40� at
which the crossover to classical superparamagnetic behavior
takes place. Thus, one may assign a range of validity as a
function of the spin size to the classical Néel-Brown treat-
ment of a superparamagnetic particle with the simplest
uniaxial anisotropy and Zeeman energy given in Appendix
A. The relatively elementary calculation outlined above is of
particular interest as a basis for future understanding of re-
laxation of spin systems characterized by nonaxially sym-
metrical Hamiltonians. For example, by extending it to non-
axially symmetric potentials one could study the transition of
the relaxation from that of an elementary spin to molecular
magnets �S�10� to nanoclusters �S�100�, and to classical
superparamagnetic particles �S�1000�. The extension to
particular nonaxially symmetric spin systems such as biaxial,
cubic, etc. would also allow one to include spin size effects
in important technological applications of magnetic relax-
ation such as the reversal time of the magnetization, the
switching and hysteresis curves, etc. In particular one could
evaluate the temperature dependence of the switching fields
and corresponding hysteresis loops via obvious spin size cor-
rected generalizations of the known classical methods used
in the analysis of the classical spin dynamics.

We have treated the longitudinal relaxation in two super-
ficially distinct ways, viz., the phase space formalism em-
bodied in the Wigner-Stratonovich bijective transformation
and the density matrix in the second order of perturbation
theory, with the high temperature and weak spin coupling
limit being understood in each case. Thus, we have provided
an essential check on the validity of both methods by explic-
itly demonstrating their equivalence. We emphasize that a
very useful feature of the phase space representation is that
existing powerful computational techniques for the Fokker-
Planck equation may be extended to the quantum domain
which also suggest new closed form quantum results via cor-
responding classical ones. For example, the integral and ef-
fective relaxation times, Eqs. �58� and �64�, are clearly quan-
tum analogs of the corresponding classical expressions �66�
and �A5�.

The relaxation function, its spectrum, and characteristic
relaxation times as evaluated explicit pronounced nonlinear
and quantum effects. The exact continued fraction solution
yields in closed form the dependence of the longitudinal spin
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FIG. 10. �Color online� Real and imaginary parts of ���� vs
��N for the barrier parameter 
=10, S=6, and various values of
field parameter �. Crosses are the single Lorentzian approximation,
Eq. �68�, while the straight dashed lines are the high-frequency
asymptote, Eq. �49�.
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FIG. 11. �Color online� Real and imaginary parts of ���� vs ��N

for S=6, for field parameter �=2, and various values of the barrier
parameter 
. Crosses are the single Lorentzian approximation, Eq.
�68�, while straight dashed lines are the high-frequency asymptote,
Eq. �49�.
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relaxation function on the spin size S, which is dominated by
a single exponential having as time constant the longest re-
laxation time 1 /�1. Thus, a simple description of the long
time behavior of the longitudinal relaxation function as
Bloch equation �4� holds for the nonlinear response of a
quantum superparamagnet for arbitrary spin S. In linear re-
sponse, the approach so developed reproduces the results
previously obtained by Garanin26 and García-Palacios and
Zueco.27 We remark in passing that our approach can also be
applied to the calculation of nonlinear ac stationary re-
sponses of quantum superparamagnets by generalizing the
matrix continued fraction method of solution of the Fokker-
Planck equation for classical spins driven by a strong ac
field.35 This will allow to treat quantum effects in the ac
nonlinear response of quantum superparamagnets.36 It has
been shown experimentally36 for the molecular magnet Mn12
characterized by S=10 that the behavior of the nonlinear
susceptibility of quantum superparamagnets is qualitatively
different from that of classical spin systems with S1.
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APPENDIX A: CLASSICAL LIMIT

In the classical limit, S→�, Hamiltonian �3� corresponds
to a free energy V of the form

	V��� = − 
 cos2 � − � cos � . �A1�

The distribution functions in the equilibrium states I and II
are given by

Wi�z� = e
z2+�iz/Zi �i = I,II� ,

where z=cos �,

Zi =
1

2
��



e−
hi

2
�erf i��1 + hi��
� + erf i��1 − hi��
��

is the partition function, hi=�i / �2
�, and erf i�x�= 2
��


0
xet2dt

is the error function of imaginary argument. For arbitrary 
,
Eq. �22� becomes in the classical limit, S→�,

�N
�cL�t�

�t
= qLcL�t� + qL

−cL−1�t� + qL
+cL+1�t� + qL

−−cL−2�t�

+ qL
++cL+2�t� , �A2�

where cL�t�= �PL�cos ����t�− �PL�cos ���II, PL are the Leg-
endre polynomials,

qL = −
L�L + 1�

2
�1 −

2


�2L − 1��2L + 3�� ,

qL
� = � �

L�L + 1�
2�2L + 1�

,

qL
−− = − qL−1

++ =

L�L + 1��L − 1�
�2L − 1��2L + 1�

.

The detailed solution of Eq. �A2� is given in Ref. 20, Ch. 8.
For 
=0, we have from Eq. �A2�

2�N

L�L + 1�
�

�t
cL�t� + cL�t� =

�

2L + 1
�cL−1�t� − cL+1�t�� ,

�A3�

which is the known result for relaxation of a classical spin in
a uniform field.20,37 Recurrence equations �A2� can also be
presented in the homogeneous matrix form

Ċ�t� + Xc · C�t� = 0, �A4�

where the system matrix Xc is now infinite and five diagonal.
In the classical limit, the nonlinear integral relaxation

time �int of the dipole relaxation function c1�t�= �cos ���t�
− �cos ��II is given by20,29,30

�int =
2�N

�cos ��I − �cos ��II
�

−1

1 ��z���z�e−
z2−�IIz

1 − z2 dz ,

�A5�

where

��z� = �
−1

z

�WI�z�� − WII�z���dz�

=
�1/2e−
hII

2

2
1/2ZII
�erf i��z + hII��
� + erf i��1 − hII��
��

−
�1/2e−
hI

2

2
1/2ZI
�erf i��z + hI��
� + erf i��1 − hI��
�� ,

��z� = �
−1

z

�z� − �z�II�e
�z�2+2hIIz��dz�

=
1

2

�e
�z2+2hIIz� − e
�1−2hII��

− e
�1−hII
2 ��

1/2 sinh�2
hII�
2
3/2ZII

�erf i��z + hII��
�

+ erf i��1 − hII��
�� ,

�cos ��i =
e
 sinh�2
hi�


Zi
− hi.

In linear response, the correlation time �cor can be expressed
in the closed form as20,25
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�cor =
2�N

ZII��cos2 ��II − �cos ��II
2 ��−1

1

���
−1

z

�z� − �cos ��II�e
z�2+�IIz�dz��2

�
e−
z2−�IIz

1 − z2 dz , �A6�

which is in complete agreement with Eq. �60� in the limit
S→�.

APPENDIX B: CALCULATION OF THE INTEGRAL
RELAXATION TIME

In algebraic transformations, it is more convenient to
work with indexes ranging from 0 to 2S. Hence, we intro-
duce a new index n defined as n=m+S. Equation �53� can
now be rearranged as

�N
� fn

�t
= pn

−fn−1 + pnfn + pn
+fn+1, �B1�

where

pn = −
1

2
�2S − n + 1�n −

1

2
�2S − n��n + 1�e�2n−2S+1��
/S2�+��II/S�,

pn
+ =

1

2
�2S − n��n + 1� ,

pn
− =

1

2
�2S − n + 1�ne�2n−2S−1��
/S2�+��II/S�.

Now recurrence equations �B1� can also be presented in the
homogeneous matrix form

�NḞ�t� = � · F�t� , �B2�

where the vector F�t� and the system matrix � are

F�t� =�
f0�t�
f1�t�
f2�t�
f3�t�
]

f2S�t�
� ,

� =�
p0 p0

+ 0 0 ¯ 0

p1
− p1 p1

+ 0 ¯ 0

0 p2
− p2 p2

+
¯ 0

0 0 p3
− p3 ¯ 0

] ] ] ] � ]

0 0 0 0 ¯ p2S

� . �B3�

We remark that the system matrix � has exactly the same
eigenvalues as the system matrix X given by Eq. �29� plus an

additional zero eigenvalue �0=0 corresponding to the ther-
mal equilibrium state.

Clearly Eq. �B2� can be solved by the matrix methods
described in Sec. III. However, we shall present an exact
analytic solution in terms of continued fractions. Applying
the general method of solution of inhomogeneous three term
recurrence relations to the Fourier-Laplace transform of Eq.
�B1�,20 we have

f̃ n��� = �n���pn
− f̃ n−1��� + �N�pn−1

+ �−1	
l=n

2S

�
k=n

l

�pk−1
+ �k����f l�0� .

�B4�

Here �n��� are the continued fractions defined by the recur-
rence equation

�n��� = �i��N − pn − pn
+pn+1

− �n+1����−1

for 0�n�2S and �2S+1���=0. For �=0, Eq. �B4� can be
considerably simplified

f̃ n�0� = e�2�n−S�−1��
/S2�+��/S� f̃ n−1�0� −
2�N

n�2S − n + 1� 	
m=n−S

S

fm�0� ,

�B5�

where we have noticed that �n�0�= �pn−1
+ �−1. Because recur-

rence equations �B1� are not linearly independent, the deter-
minant of the matrix � from Eq. �B1� is zero �det �=0�.
Thus, the functions f̃ n�0� can be determined only in terms of

f̃0�0�. In order to find f̃0�0�, we can utilize the normalization
properties of the density matrix, namely,

	
m=−S

S

fm�t� = 	
m=−S

S

��m�t� − �m
II� = 0,

so that

	
m=−S

S

f̃m�0� = 0. �B6�

Consequently, Eqs. �B4� and �B6� yield the closed-form ex-
pression

f̃0�0� =
2�Ne
−�II

Z
	

k=1−S

S 	
m=k

S

��m
I − �m

II� 	
m�=k

S

�m�
II

�S − k + 1��k + S��k
eq . �B7�

By substituting Eqs. �B5� and �B7� into Eq. �56�, we have the
integral relaxation time as

�int =
1

�ŜZ�I − �ŜZ�II

	
n=1

2S

nf̃n�0� . �B8�

Equation �B8� can be written in the analytic form of Eq. �58�.
The spectrum c̃1��� is

c̃1���
c1�0�

=
1

�ŜZ�I − �ŜZ�II

	
n=1

2S

nf̃n��� . �B9�
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