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We study the ground-state phase diagram of a one-dimensional spin-1
2 easy-plane XXZ model with a

ferromagnetic nearest-neighbor �NN� coupling J1 and a competing next-nearest-neighbor �NNN� antiferromag-
netic coupling J2 in the parameter range 0�J2 / �J1��0.4. When J2 / �J1��1 /4, the model is in a Tomonaga-
Luttinger liquid phase which is adiabatically connected to the critical phase of the XXZ model of J2=0. On the
basis of the effective �sine-Gordon� theory and numerical analyses of low-lying energy levels of finite-size
systems, we show that the NNN coupling induces phase transitions from the Tomonaga-Luttinger liquid to
gapped phases with either Néel or dimer order. Interestingly, these two types of ordered phases appear alter-
nately as the easy-plane anisotropy is changed toward the isotropic limit. The appearance of the antiferromag-
netic �Néel� order in this model is remarkable, as it is strongly unfavored by both the easy-plane ferromagnetic
NN coupling and the antiferromagnetic NNN coupling in the classical-spin picture. We argue that emergent
trimer degrees of freedom play a crucial role in the formation of the Néel order.
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I. INTRODUCTION

The search for novel orders arising from geometric frus-
tration and quantum fluctuations in low-dimensional quan-
tum spin systems has been a subject of intensive theoretical
and experimental research. One-dimensional �1D� systems
offer particularly ideal grounds for theoretical studies, as
powerful nonperturbative methods are available �for a re-
view, see, for example, Ref. 1�. A prototypical example host-
ing a variety of fascinating phenomena is the spin-1

2 frus-
trated chain with the nearest-neighbor �NN� and next-
nearest-neighbor �NNN� exchange interactions

H = �
m=1

2

�
j=1

L

Jm�Sj
xSj+m

x + Sj
ySj+m

y + �Sj
zSj+m

z � . �1�

Here, S j = �Sj
x ,Sj

y ,Sj
z� is a spin-1

2 operator at the site j and � is
an XXZ anisotropy. The model has frustration as long as the
NNN coupling J2 is antiferromagnetic, irrespective of the
sign of J1.

Much of recent interest in the model �1� has been focused
on the case when ferromagnetic �FM� J1�0 and antiferro-
magnetic �AFM� J2�0 compete. The growing interest was
triggered by experimental studies of various quasi-1D edge-
sharing cuprates2–5 which can be modeled by Hamiltonian
�1�. Theoretical studies have uncovered a rich phase diagram
of the model in a magnetic field, which includes the vector
chiral phase, spin nematic, and various other multipolar
liquids.6–14 Even without a magnetic field, the model �1�
shows a variety of phases depending on the values of the
exchange anisotropy � and the frustration parameter J2 / �J1�.
Earlier studies have discussed the dimer order15,16 and the
stability of the vector chiral order17,18 in the easy-plane case
0���1, and the partial ferromagnetism15 in the easy-axis
case ��1. In this paper we show that the phase diagram of
the J1-J2 chain with easy-plane XXZ anisotropy, Eq. �1�,
exhibits unexpectedly complicated and interesting phase

structure, where Néel and dimer ordered phases alternate
more than twice, near a FM critical point �J2 / �J1� ,��
= �0.25,1�. Our analysis is based on the combination of
bosonization and numerical analysis of finite-size energy
spectrum, which has been proven successful in the study of
many 1D quantum spin models including the model �1� with
the antiferromagnetic NN coupling.

The ground-state phase diagram of the anisotropic J1-J2
spin chain �1� is well understood in the antiferromagnetic
case, J1�0 and J2�0 �see, e.g., Refs. 19–26�. For small
J2 /J1 and with easy-plane anisotropy ��1, the model is in a
gapless phase which is described as a Tomonaga-Luttinger
liquid �TLL�. The gapless TLL phase has instabilities toward
antiferromagnetic �Néel� order and dimerization �as exempli-
fied by the exact singlet dimer ground state19 for J2 /J1
=1 /2 and ��−1 /2�. Both Néel and dimer ordered phases
are gapped. The Néel order is induced by easy-axis aniso-
tropy ��1, while the dimer order appears when J2 /J1 is
larger than some critical value ��0.24 at �=1�. Haldane20,21

showed that the quantum phase transitions to these ordered
phases can be understood in a unified way within the sine-
Gordon �SG� model which is obtained by bosonizing the
Hamiltonian �1�. The two types of orders arise as a bosonic
field is locked at two distinct values by the cosine potential
coming from the Umklapp scattering of Jordan-Wigner fer-
mions. It is also worth noting that, for large J2 /J1, a vector
chiral ordered phase with gapless excitations appears for a
certain range of easy-plane anisotropy,25,26 while the dimer
ordered phase persists in the isotropic case �=1.24

In this paper, we apply the SG formalism of Haldane20,21

to the frustrated ferromagnetic spin chain �1�. Our starting
point is the FM J1-only chain with easy-plane anisotropy 0
���1. In this case the system is a TLL whose properties
are understood in great detail from the Bethe ansatz and the
bosonization. In particular, the parameters in the effective SG
theory are known exactly.27,28 According to these exact re-
sults, rather interestingly, there occurs a series of sign
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changes in the coupling of the cosine potential, as a function
of the anisotropy �. In the J1 XXZ chain, the cosine potential
is irrelevant in the renormalization-group �RG� sense and
does not make any significant impact on the long-distance
properties. However, it is made relevant by large enough J2
coupling, and as a result we observe alternating appearance
of Néel and dimer ordered phases, as the exchange aniso-
tropy is changed toward the FM critical point �J2 / �J1� ,��
= �0.25,1�. We determine the phase boundaries accurately
using finite-size scaling analysis of discrete energy levels,
the so-called level spectroscopy method,22,23,29 which com-
bines the SG theory with the numerical exact diagonaliza-
tion. The appearance of the antiferromagnetic spin ordering
in the z direction is particularly counterintuitive; on the
classical level, such spin configuration is strongly unfavored
by the easy-plane FM J1 coupling as well as by the AF
J2 coupling. We analyze the correlations and the reduced
density matrices of the ground state in the Néel phase
using the infinite time-evolving block decimation �iTEBD�
algorithm,30 a numerical method which can directly address
physical quantities in the thermodynamic limit. We will then
argue that emergent trimer degrees of freedom play a crucial
role in the formation of the Néel ordered state.

The present study focuses on the region with J2 / �J1�
�0.4. The analysis of the region with larger J2 / �J1� is also
done by iTEBD and will be reported elsewhere.31 It is found
that for J2 / �J1��1 /4, the vector chiral ordered phase with
gapless excitations is robust up to a very weak anisotropy
��1 and appears in a wide range of the parameter space.
This is in contrast to the antiferromagnetic J1-J2 model,
where the vector chiral ordered phase has been identified26

only for large J2 /J1��1.2�.

II. FORMALISM

A. Effective field theory

We first consider the case J2=0, i.e., the easy-plane XXZ
chain with J1�0. We parametrize the exchange anisotropy
as

� = cos����, 0 � ��
1

2
. �2�

In this parameter range, the model is in the gapless TLL
phase. In the bosonization formalism �for a review, see, e.g.,
Refs. 32 and 33�, its low-energy effective theory is the quan-
tum SG theory defined by the Hamiltonian density

H =
v
2
�K�d	

dx
�2

+
1

K
�d


dx
�2	 −

v�
2�

cos�
16�
� , �3�

where the bosonic field 
 and its dual counterpart 	 obey the
commutation relation �
�x� ,	�y��=−�i /2��1+sgn�x−y�� and
the lattice constant is set to unity. The TLL parameter K and
the spin velocity v are given by

K =
1

2�
, v = �J1�

sin����
2�1 − ��

. �4�

The cosine potential in Eq. �3� has scaling dimension 4K and
is irrelevant in the XXZ chain with the exchange anisotropy

�2�. We keep the cosine term because it will drive the phase
transitions from the TLL to the Néel and dimer ordered
phases in the presence of the frustrated NNN coupling J2
�0. When J2=0, the exact value of the coupling constant �
is known to be27,28,34

�0 = −
4

�
sin��

�
���� 1

�
�	2 ��1 +

�

2 − 2�
�


4���1 +
1

2 − 2�
��

2/�−2

,

�5�

where the normalization condition on the zero-temperature
correlator of vertex operators

�ei
�x�e−i
�x��� = �x − x��−K2/2�, �x − x�� � 1 �6�

is assumed. Notice that �0 vanishes at �=1 /n, i.e.,

� = cos��/n�, n = 3,4, . . . �7�

At these points, the XXZ model is invariant under the action
of the loop algebra sl2, leading to some nontrivial degenera-
cies in the energy spectrum.35,36 We will observe one ex-
ample of such degeneracies in our numerical result later.

The spin operators of the original lattice model Eq. �1� are
expressed as37

Sj
z =

1

�

d


dx
+ �− 1� ja cos�
4�
� + ¯ , �8�

Sj
+ = ei
�	�b0 + �− 1� jb1 cos�
4�
� + ¯� , �9�

where a, b0, and b1 are nonuniversal constants.38–40 Simi-
larly, the staggered part of the NN exchange energy is given
by

S j · S j−1 − S j · S j+1 = c�− 1� jsin�
4�
� + ¯ , �10�

where c is another nonuniversal constant.
Including the NNN coupling J2�0 changes the param-

eters �v, �, and K� in the effective theory �3�. A perturbative
calculation using Eqs. �8� and �9� yields the renormalized
TLL parameter for J2 / �J1��1,

K = K0�1 −
J2

v0
�2�b1

2

K0
+

K0�

�
�	 , �11�

where K0 and v0 are the values of K and v at J2=0 given in
Eq. �4�. This indicates that K decreases as J2 / �J1� increases.
As long as K is larger than 1/2, the cosine term is irrelevant
and the system is in the TLL phase. As J2 / �J1� is further
increased, the cosine term in Eq. �3� will eventually become
relevant �4K�2�. The positive and negative values of � will
then trigger the Néel and dimer orders, respectively, as one
can see from Eqs. �8� and �10�. We analyze such ordering
transitions through a combination of the RG analysis of the
SG model �3� and the finite-size spectra obtained from nu-
merical exact diagonalization.
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B. Renormalization-group flow

We discuss the RG flows of the SG theory �3� by varying
a short-distance cutoff �. To this end, it is convenient to
parametrize

� = �0el, K =
1

2
+

y�l�
4

, � =
y
�l�
�2 , �12�

where �0 is the initial cutoff. Under an infinitesimal change
l→ l+dl, the dimensionless parameters y�l� and y
�l� change
according to the RG equations

dy�l�
dl

= − y

2 �l�,

dy
�l�
dl

= − y
�l�y�l� . �13�

The RG flow diagram is drawn in Fig. 1. When 0�y� �y
�,
the cosine potential finally vanishes and the system is de-
scribed as the TLL. The transitions from the TLL to the Néel
and dimer phases occur along the half lines y
=+y and −y
with y�0 �thick solid lines�, respectively. The transition be-
tween the two ordered phases occurs along the Gaussian
fixed line y
=0 with y�0 �dotted line�.

C. Level spectroscopy

On the basis of the RG flow diagram of the SG model in
Fig. 1, Okamoto and Nomura22,23,29 developed a simple nu-
merical method which allows to determine the phase-
transition lines precisely. The key idea of this method is to
look at the lowest excited states in the three different phases.
Under the periodic boundary condition, the eigenstates of a
finite-size system of length L are labeled by the magnetiza-
tion Sz=� jSj

z, the wave number q=2�k /L�k�Z�, the �bond-
centered� parity P= �1, and the spin reversal T= �1. In the
parameter region of our interest, the ground state �with en-
ergy E0� of the model �1� is in the sector �Sz=0, q=0, P
=+1, T=+1� when L is even. In the TLL phase, the first
excited state �with energy ES� is in the sector �Sz= �1, q
=0, P=+1�. In the Néel and dimer phases, pseudoground

states �with energies EN and ED� appear in the sectors �Sz

=0, q=� , P=−1, T=−1� and �Sz=0, q=� , P=+1, T
=+1�, respectively, reflecting the twofold ground-state de-
generacy in the thermodynamic limit. One can expect that
the transitions between the three phases can be detected by
observing crossing of these energy levels.

This expectation can be justified by a detailed analysis of
the finite-size spectra of the sine-Gordon theory.29 See ap-
pendix for details. Here we briefly mention the basic idea.
The excitation energy �ESªES−E0 is associated with the
operator Sj

��e�i
�	�x�. The excitation energies �ENªEN
−E0 and �EDªED−E0 are associated with the order
operators �−1� jSj

z�cos�
4�
� and �−1� j�Sj
+Sj+1

− +H.c.�
�sin�
4�
�, respectively. From the correspondence be-
tween the spectra and the operators, one obtains

�ES =
2�v

L
�1

2
−

y�l�
4
� , �14a�

�EN =
2�v

L
�1

2
+

y�l�
4

−
y
�l�

2
� , �14b�

�ED =
2�v

L
�1

2
+

y�l�
4

+
y
�l�

2
� , �14c�

where l is related to the system size L by el=L /2�. One can
see that the crossing of ES and EN occurs when y�l�=y
�l�,
corresponding to the TL-Néel transition in Fig. 1. Similarly,
ES=ED corresponds to the TL-dimer transition. Using the
formula L�ED−EN�=2�vy
�l�, one can observe the running
coupling constant, in particular, its sign change. In Fig. 2,
�L /v��ED−EN� is plotted for the J1 chain �J2=0�. For a sys-
tem of L spins, we observe zeros of y
�l� at “special” points
in Eq. �7� up to n=L /2. In the limit L→�, the energy dif-
ference asymptotically obeys36

T L L

N é e l

d i m e r

y

φy

FIG. 1. RG flow diagram of the sine-Gordon theory Eq. �3�. The
thick solid lines indicate the Kosterliz-Thouless-type transitions
�Ref. 41� between the TLL and the two ordered phases. The dotted
line indicates the Gaussian transition between the two ordered
phases.
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FIG. 2. �Color online� Energy difference �L /v��ED−EN� in the
unfrustrated case J2=0. The arrows indicate the “special” points in
Eq. �7� with n=3,4 , . . ., where � changes the sign.
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L

v
�ED − EN� = 2��0� L

2�
�2−2/�

. �15�

This formula is also plotted for L=24 �solid line in Fig. 2�,
which agrees well with the numerical result for ��0.8. For
larger �, better agreement is expected to be seen at larger L.

III. PHASE DIAGRAM

The phase diagram is determined by the level spectros-
copy and the iTEBD analysis as presented in Fig. 3. The blue
“+” symbols show Gaussian fixed points determined from
the condition EN=ED. The black open circles interpolated by
lines show the transition points from the TLL phase to the
Néel and dimer phases, which are determined by ES=EN and
ES=ED, respectively. This phase boundary between the TLL
phase and the gapped ordered phases is smoothly connected
to the ferromagnetic transition point42 J2 / �J1�=1 /4 in the iso-
tropic case �=1, at which the ground states are known to be
highly degenerate.43 The Gaussian fixed lines with �=0 start
from the “special” points given in Eq. �7� at J2=0 and are
therefore labeled by n=3,4 , . . . for convenience. Some of
them continue even after the cosine potential becomes rel-
evant for J2 / �J1��1 /4. From calculation of L=24 system,
we have identified five lines �corresponding to n=3, . . . ,7�
extending into the parameter region J2 / �J1��1 /4 and �
�0.995. Across these lines, there occur successive transi-
tions between the Néel and dimer phases as the anisotropy
parameter � is changed toward unity. However, for 0.995
���1, Lanczos diagonalization does not converge well due
to highly degenerate nature around �J2 / �J1� ,��= �1 /4,1�. For
this reason we have not been able to find the transition lines
beyond n=7.

Inside the Néel and dimer phases, there is a Lifshitz line
�pink “�” symbols�, where the short-range spin correlation

in the xy plane changes its character from commensurate to
incommensurate �indicated by C and IC in Fig. 3�. This line
was determined by observing the peak position of the equal-
time spin-structure factor calculated by iTEBD.31 The level
spectroscopy presented above is valid on the left side of this
line. By further increasing J2 / �J1�, the system enters the vec-
tor chiral ordered phase in which the vector product of
neighboring spins, � j,j+1

z
ª ��S j�S j+1�z�, is long-range or-

dered. The boundaries above and below the vector chiral
phase �black diamond symbols� were determined with rea-
sonable accuracy by observing the rapid increase in the order
parameter � j,j+1

z calculated by iTEBD.31 For 0.9���1 and
0.25�J2 / �J1��0.35, we have not been able to locate the
transition lines accurately because of a relatively poor con-
vergence of iTEBD around the highly degenerate point
�J2 / �J1� ,��= �1 /4,1�. However, we expect that both the lines
should continue to the point �J2 / �J1� ,��= �1 /4,1�. The vec-
tor chiral phase is smoothly connected to that found in the
frustrated ferromagnetic chain in a low magnetic field.11,12,14

Similar vector chiral phases have also been found previously
in the antiferromagnetic J1-J2 model with easy-plane
anisotropy25,26 or in a magnetic field.7,44–46

The nature of the dimer phase at ��0.7 is easy to under-
stand, as this phase extends to the XY point �=0, where the
sign of J1 can be reversed by performing the � rotations
around the z axis of the spins on every second sites. From the
fact that the ground state at the Majumdar-Ghosh point J2
=J1 /2�0 and �=0 �and more generally for all ��−1 /2�19

is given exactly by the product of singlet dimers ��↑↓�
− �↓↑�� /
2, one finds, through the above �-rotation transfor-
mation, that the ground states at J2=−J1 /2�0 and �=0 are
given by the dimer states whose dimer unit is now replaced
by the triplet state ��↑↓�+ �↓↑�� /
2.6 We expect that such a
“triplet” dimer nature should survive away from the XY
point and define the order parameter of the dimer phase. The
nature of the Néel phase in 0.7���0.9 is more elusive and
will be discussed in detail in the next section.

So far our argument for the emergence of the Néel and
dimer phases has been based on the effective SG theory. To
confirm their existence in an independent and unbiased way,
we have calculated the order parameters of these phases us-
ing the iTEBD algorithm,30 which can address physical
quantities in the thermodynamic limit directly through the
use of the matrix product representation of �ground� states.
When this algorithm is performed in an ordered phase, a
variational state finally converges to a symmetry-broken
state with a finite spontaneous order parameter �if it is al-
lowed by the periodicity of the matrix product state�. Hence,
the Néel phase is detected by a local magnetization �S1

z� and
the dimer phase by dimer order parameters

D123
xy = �S1

xS2
x + S1

yS2
y� − �S2

xS3
x + S2

yS3
y� , �16�

D123
z = S1

zS2
z − S2

zS3
z . �17�

These order parameters show alternating signs along the spin
chain. We choose the site labelings in such a way that �S1

z�
�0 and D123

z �0. We calculated these order parameters for
the parameter points �J2 / �J1� ,�� varying approximately
along the Lifshitz line; see Fig. 4. In this figure we observe

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

∆

J2/|J1|

TLL

Neel

dimer
↑↓+↓↑

C IC

chiral

dimer

n=3

n=4

n=5

n=6
n=7

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

∆

J2/|J1|

TLL

Neel

dimer
↑↓+↓↑

C IC

chiral

dimer

n=3

n=4

n=5

n=6
n=7

0.95

1

0.25 0.26

n=5

n=6

0.95

1

0.25 0.26

n=5

n=6

FIG. 3. �Color online� Phase diagram of the model Eq. �1�. The
level spectroscopy has been performed for L=24. We have observed
that finite-size effects are quite small and can be neglected. The
inset shows a zoom around the highly degenerate point
�J2 / �J1� ,��= �1 /4,1�.
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two transitions between the dimer and Néel phases, in agree-
ment with the level spectroscopy analysis. In the dimer
phases, D123

xy and D123
z show opposite signs in accord with the

“triplet” nature of the dimers. �Notice that D123
xy =−2D123

z

=1 /2 in the exact “triplet” dimer state at �J2 / �J1� ,��
= �1 /2,0�.�

The sudden changes in the order parameters in Fig. 4
seem to indicate first-order nature of the transitions between
Néel and dimer phases for this parameter regime. On the
contrary, a continuous transition of Gaussian type is expected
in the SG model �Fig. 1�. This discrepancy may be recon-
ciled by considering the effect of a higher-frequency cosine
potential cos�8
�
�, which was ignored in the SG theory
but is allowed by symmetry and can become relevant deep
inside the ordered phases. With a negative coefficient, the
potential cos�8
�
� has four minima corresponding to the
Néel and dimer orderings with doubly degenerate ground
states each. Different signs of � select different types of or-
derings, and thus the first-order transition at �=0 separates
the two phases.

We finally note that, in the small region near the upper
right corner of Fig. 3, a weak dimerization with the same
sign in D123

xy and D123
z was observed.31 In particular, D123

xy

=2D123
z in the isotropic case �=1. This result indicates that

this region is characterized as a dimer ordered phase having
a distinct nature from the “triplet” dimer phase in ��0.7.

IV. NATURE OF THE NÉEL PHASE

The appearance of the Néel phase is a natural conse-
quence of the SG theory �3� with ��0, but is quite counter-
intuitive in the presence of the easy-plane nearest-neighbor
ferromagnetic coupling. In Fig. 4, the Néel order parameter
is one order of magnitude smaller than the value �S1

z�=1 /2 of

the pure Néel state �↑↓ ↑ ↓¯�, which indicates that the
ground state is not well approximated by such a simple prod-
uct state. Here we analyze the nature of this phase in detail
using iTEBD with Schmidt rank �=200. We first analyze the
spin correlations; see Fig. 5. We observe that the Néel char-
acter of the correlations appears only at a relatively long-
distance scale r�6. At a short-distance scale, �S1

xS1+r
x � takes

larger amplitudes than �S1
zS1+r

z �, reflecting the easy-plane an-
isotropy. Furthermore, we note that �S1

zS3
z� takes relatively

large negative value, which is unusual in a Néel phase.
Such unusual correlations in a short-distance scale can be

understood in terms of trimer degrees of freedom. First, we
consider a three-spin model shown in Fig. 6�a�. In the iso-
tropic case �=1, the ground state is a quadruplet �q� �with
Stot

z == �
1
2 , � 3

2 � when J2 / �J1��1 /2. Because of the reflec-
tion symmetry around the site 2, the excited states are clas-
sified into symmetric and antisymmetric doublets, ��d�� and
��d� �� �with = �

1
2 �. When the anisotropy � is introduced,

�q�1/2� and �d�1/2� are mixed to form new eigenstates �q̃�1/2�
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FIG. 4. �Color online� The dimer order parameters D123
xy and

−2D123
z �left axis� and the local magnetization �S1
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and �d̃�1/2�. The eigenstates are summarized as follows:

�q+3/2� = �↑↑↑� , �18a�

�q̃+1/2���� =
1


2 + �2
��↑↑↓� + �↓↑↑� + ��↑↓↑�� , �18b�

�d̃+1/2���� =
1


4 + 2�2
���↑↑↓� + ��↓↑↑� − 2�↑↓↑�� , �18c�

�d+1/2� � =
1

2

��↑↑↓� − �↓↑↑�� �18d�

with �= 1
2 �
�̃2+8− �̃� and �̃=�+ �J2 / �J1����−1�. Other

eigenstates with =−1 /2 or −3 /2 are obtained by applying
the spin reversal to the above. The eigenenergies are plotted
in Fig. 7. Under the easy-plane anisotropy ��1, the ground
states are given by �q̃�1/2���� �with ��1�, in which Sj

x’s
correlate ferromagnetically and Sj

z’s antiferromagnetically for
any spin pair �if ��
2�. This property is in accord with the
anomalous spin correlations in Fig. 5 for r=1,2. Note, how-
ever, that the local magnetization �Sj

z� is almost uniform in
�q̃�1/2���� as shown in Fig. 6�a�, and we do not observe Néel
ordering pattern at this level.

Now we construct a Néel ordered state in a 1D chain as
follows. �The procedure is analogous to the construction of
the valence-bond solid ground state in the Affleck-Kennedy-
Lieb-Tasaki model,47 and more generally to the construction
of a projected entangled-pair state.48� The 1D model �Eq. �1��
can be viewed as the model on the zigzag ladder, where J1
and J2 give the interchain and intrachain couplings, respec-
tively. We place a trimer state �q̃+1/2���� ��q̃−1/2����, respec-
tively� on every up �down, respectively� triangle in the zig-
zag ladder, as shown in Fig. 6�b�. At this point, every site is
shared by three neighboring trimers. To define the state in the
original Hilbert space, we bind the three spins at every site
together to form a single spin-1

2 , as indicated by an ellipse in
Fig. 6�c�. This is done by a projection operator �↑ ���+�
+ �↓ ���−�, where ���� are defined for the three spins in an
ellipse. We require that �i� ���� have the reflection symmetry

about the central spin and that �ii� they have sufficient over-
lap with �↑↓↑� and �↓↑↓�, which are expected to have large
weights in the state before projection as can be seen in Fig.
6�c�. The states satisfying �i� can be written in the same way
as in Eqs. �18a�–�18c�. Considering also �ii�, we set ����
= �d̃�1/2����� with �� appropriately tuned. The obtained state
after the projection has a Néel ordering pattern as shown in
Fig. 6�d�. We expect that this should give an approximate
ansatz �with two variational parameters, � and ��� of the
Néel ground state found in the present model.

To support the trimer picture, we calculated the reduced
density matrix �123 for neighboring three spins �1, 2, 3� from
the ground state obtained by the iTEBD. It was done for the
same parameter point as in Fig. 5. Because of the reflection
symmetry about the site 2, �123 is diagonalized in the form

�123 = �q+3/2�a+�q+3/2� + �q̃+1/2��+��b+�q̃+1/2��+��

+ �d̃+1/2��+��c+�d̃+1/2��+�� + �d+1/2� �e+�d+1/2� �

+ �“+ ” → “ − ”� , �19�

where �+=1.225 and �−=1.250 are not far from �=1.122
obtained in the three-spin problem. Large weights are found
in b+=0.5803, b−=0.2633, e−=0.0999, and a−=0.0472, and
the others are orders of magnitude smaller. We see that the
trimer states �q̃�1/2����� occupy about 84% of the total
weight.

We also applied the systematic method for determining
the order parameter proposed in Ref. 49. In this method, we
use the pair of symmetry-broken ground states ��1,2�—one is
obtained directly by iTEBD and the other by applying the
spin reversal to it. For a subregion A of the system, we con-
struct the reduced density matrices �A

1,2 from these states and
measure the mutual distance

diff��A
1 ,�A

2� = �
j

�� j� , �20�

where � j’s are the eigenvalues of �A
1 −�A

2 . This measure takes
a value from 0 to 2 and shows to what extent the two states
are distinguished in the concerned region. �See Refs. 49 and
50 for details.� For one- and two-site regions, we obtain the
same value diff=4�S1

z�=0.1773. The three-site region A
= �1,2 ,3� gives a much larger value diff=0.9128. These re-
sults indicate that, although the symmetry breaking can be
detected through a single-spin operator as expected for a
Néel phase, it is much more visible in terms of a three-spin
operator. This also supports the trimer picture for the Néel
state.

Finally, we note that a Néel ordering in the presence of
easy-plane anisotropy has been found in an antiferromag-
netic model with explicit trimerization.51 This example also
suggests that the formation of trimers can change the nature
of the anisotropy of the system.

V. CONCLUSIONS

We have analyzed the phase diagram of the spin-1
2 frus-

trated ferromagnetic chain �1�, starting from the bosonization
picture in the unfrustrated case J2=0. A crucial observation
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FIG. 7. Spectrum of the three-spin model in Fig. 6�a� for
J2 / �J1�=0.31. The eigenstates are given in Eq. �18�.
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is that the effective sine-Gordon theory shows a cascade of
sign changes in the coupling of the cosine potential when
changing the anisotropy �. When the cosine potential is
made relevant by the competing J2 exchange interaction, it
gives rise to alternate appearance of Néel and dimer orders.
Although the Néel phase has a long-ranged staggered spin-
ordering pattern, we have argued that this ordering should
rather be interpreted as the ordering of the trimer degrees of
freedom.

The successive sign changes in the coupling of the cosine
term in the effective theory of the FM J1 XXZ chain is ex-
plicitly seen in the exact expression �5� obtained in Refs. 27
and 28. Our study has shown for the first time that it has a
dramatic physical consequence, the alternation of the Néel
and dimer ordered phases. It will be interesting to further
examine the effect of the sign change in the presence of other
types of perturbations.
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APPENDIX: FINITE-SIZE SPECTRA IN THE SINE-
GORDON THEORY

In this appendix, following Cardy52 and Bortz et al.,36 we
present a simple derivation of the excitation energies �14�
based on the perturbation theory from the Gaussian model.
This is complementary to the derivation by Nomura29 using
the correlation functions.

In a finite-size system of length L, the effective Hamil-
tonian is given by

H = HGauss + Hcos

= �
0

L

dx�v
2
�K�d	

dx
�2

+
1

K
�d


dx
�2	 −

v�
2�

cos�
16�
�� ,

�A1�

where the lattice spacing is set to unity.
Let us start from the Gaussian part HGauss. It is useful to

rescale the fields as ��
 /
K and ��
K	 to simplify the
Hamiltonian

HGauss = �
0

L

dx
v
2
��d�

dx
�2

+ �d�

dx
�2	 . �A2�

Assuming the periodic boundary condition, we perform the
mode expansions of the bosonic fields

��x� = �0 + Q̃
x

L
+ �

n�0

e−�n�/2�


4��n�
�eiknxan + e−iknxan

†� , �A3�

��x� = �0 + Q
x

L
+ �

n�0

e−�n�/2�


4��n�
sign�n��eiknxan + e−iknxan

†�

�A4�

with kn=2�n /L. Here, an with n�0 �n�0� represents a
right �left� moving mode. We have introduced an ultraviolet
cutoff �, which will be determined later. The operators in the
expansions obey the commutation relations

��0,�0� = − i, �Q̃,�0� = i, �Q,�0� = i, �an,am
† � = �nm.

�A5�

Using the mode expansions, the Hamiltonian is diagonalized
as

HGauss =
2�v

L � 1

4�
�Q̃2 + Q2� + �

n�0
�n�an

†an	 , �A6�

where � is taken to infinity. The ground state �0� is defined

by an�0�= Q̃�0�=Q�0�=0 and its energy is set to zero. The

compactification radii R and R̃ for � and � are given by

2K =
1

2�R2 = 2�R̃2. �A7�

Then Q̃ and Q are quantized as

Q̃ = Sz/R̃, Q = m/R, with Sz,m � Z . �A8�

Here, the integer Sz coincides with the total magnetization.
The entire spectrum is then given by

�E0�Sz,m,�mn�� =
2�v

L � 1

4�� �Sz�2

R̃2
+

m2

R2� + �
n�0

�n�mn	
�A9�

with mn�0 integer, and the corresponding eigenstates are

�Sz,m,�mn�� = eiSz�0/R̃+im�0/R �
n�0

�an
†�mn�0� . �A10�

The excitation �ES is associated with e�i�0/R̃ and is thus
given by

�ES = �E��1,0,0� =
2�v

L

1

4�R̃2
=

2�v
L

1

2 + y
�A11�

with y�4K−2. This coincides with the expression �14a�
when �y��1. On the other hand, �EN/D are associated with
cos��0 /R� and sin��0 /R�, respectively. In the Gaussian
model, these energies are degenerate and are given by

�EN/D = �E�0, � 1,0� =
2�v

L

1

4�R2 =
2�v

L
K . �A12�

So far, we have ignored the cutoff �. It is determined so that
the two-point correlation function of vertex operators satis-
fies the simple normalization condition
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�0�ei��x�e−i��x���0� =
1

�x − x��
2/2�

�A13�

for �x−x���L. Using the expansion �A3�, the lhs of Eq.
�A13� is evaluated as

exp�− 2�0���x���x���0��

= exp�− 2 �
n�0

e−�n�/�

4��n�
�1 − e2�i�n��x−x��/L�	

= � 1 − e−1/�+i2��x−x��/L

1 − e−1/� �−2/2�

� �2� sin
��x − x��

L
�−2/2�

. �A14�

Hence, we set �=L /2� to satisfy Eq. �A13�.
Now we introduce Hcos as a perturbation. It splits the

degeneracy between �E�0, �1,0�. We calculate the matrix
element

C ª �0,− 1,0�Hcos�0,1,0�

= −
v�
2�
�

0

L

dx�0�ei�0/R cos�2��x�
R

�ei�0/R�0� .

�A15�

Using the expansion �A3�, the integrand is evaluated as

�0�ei�0/R cos�2��x�
R

�ei�0/R�0� =
1

2
�0�ei�0/Re−2i��x�/Rei�0/R�0�

=
1

2
�0�exp�−

2i

R
�
n�0

e−�n�/2�


4��n�
�e2�inx/Lan + H.c.�	�0�

=
1

2
exp�−

1

�R2 �
n=1

�
e−n/�

n
� =

1

2
�−4K. �A16�

In first-order perturbation theory the new eigenstates are
given by the linear combinations

1

2

��0,1,0� � �0,− 1,0�� , �A17�

and the corresponding eigenenergies are

�EN/D =
2�v

L
K � C =

2�v
L

�1

2
+

y

4
� ��2�

L
�y	 .

�A18�

Equations �A11� and �A18� are nonperturbative in y and per-
turbative in �.

So far, we have used the bare coupling constants, y and �.
Now we relate the above results to the running coupling
constants, y�l� and y
�l�, focusing on the vicinity of the mul-
ticritical point �y ,y
�= �0,0�. Both the cosine potential and
the change in the Luttinger parameter y are marginal pertur-
bations at this point. In general, the excitation energy �En
associated with an operator On is related to the inverse of the
correlation length  n of the operator. Under a global scale
transformation by a factor el, it scales as

�En !  n
−1�y,y
,L−1� = e−l n

−1
„y�l�,y
�l�,L−1el

… .

�A19�

Setting el=L /2�, this is given by a universal function in
terms of y�l� and y
�l�

�En =
2�

L
�n„y�l�,y
�l�… . �A20�

Namely, L�En depends on L only through y�l� and y
�l�.
We compare this with Eqs. �A11� and �A18�. As shown in

Fig. 1, for y� �y
�, y�l� finally converges to a constant. If the
bare value of y is sufficiently close to the final constant, the
RG equations are solved as

y�l� = y, y
�l� = y
e−yl. �A21�

Thus, under the correspondence el=L /2�, Eqs. �A11� and
�A18� are expressed by Eq. �14�, which show a linear depen-
dence on y�l� and y
�l�. Equation �A20� implies that we
can extend the range of validity of Eq. �14� to all
�y�l�� , �y
�l���1.
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