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We present here a theoretical model in order to describe the competition between the Kondo effect and the
spin glass behavior. The spin glass part of the starting Hamiltonian contains Ising spins with an intersite
exchange interaction given by the local van Hemmen model, while the Kondo effect is described as usual by
the intrasite exchange JK. We obtain, for large JK values, a Kondo phase and, for smaller JK values, a
succession, with decreasing temperature, of a spin glass phase, a mixed spin glass-ferromagnetic one and
finally a ferromagnetic phase. This model improves the theoretical description of disordered Kondo systems
with respect to previous models and can account for experimental data in Cerium disordered systems such as
CeCu1−xNix alloys.
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I. INTRODUCTION

The interplay between disorder and strong electronic cor-
relations is recognized as a very interesting issue in con-
densed matter physics. There are now many experimental
evidences showing the very important role of the disorder in
f-electron systems in addition to the RKKY or Kondo
interactions.1 As a result, it can appear complex phase dia-
grams which show spin glass �SG� phases in addition to the
onset of antiferromagnetism �AF� or ferromagnetism �FE�,
regions dominated by the Kondo effect, the presence of
quantum phase transitions �QPT� and exotic regions which
present non-Fermi liquid �NFL� behavior.2

Earlier experimental results can illustrate the mentioned
complexity. For instance, in CeAu1−xCoxSi3 alloys,3 when Au
is replaced by Co, it first appears a SG phase, then there is
the onset of an AF phase with the Néel temperature decreas-
ing towards a quantum critical point �QCP�. Thus, the glassy
behavior tends to decrease with the increase of x and finally,
for x�0.9, there is a complete screening of magnetic mo-
ments due to the Kondo effect.

More recently, experimental findings in CePd1−xRhx
�Refs. 4 and 5� and CeNi1−xCux �Refs. 6 and 7� have enlarged
the set of nontrivial behavior in disordered f-electron sys-
tems. In both systems, there are strong indications that a
glassy behavior is present in a suitable range of doping and
this behavior has been recently identified to appear as a clus-
ter glass state. In the well studied CeNi1−xCux case, the
Kondo interaction is dominating for x smaller than approxi-
mately 0.2.8 However, the intermediate doping regime has
been extensively studied both experimentally and theoreti-
cally and finally a complex scenario is obtained when the
temperature is decreased. In the first experimental studies on
CeNi1−xCux alloys with x typically between 0.3 and 0.6, a SG
phase has been obtained below the paramagnetic state and
then there is a transition to a ferromagnetic phase at lower
temperatures.

More sophisticated experiments have recently shown that
dynamic magnetic clusters are developing at low tempera-
tures below the paramagnetic state. More precisely, there is

the formation of clusters due to short range ferromagnetic
correlations below a certain temperature T�. The volume
fraction of these clusters increases as temperature is lowered
and they become frozen at Tcl well below T� and, therefore,
it appears an inhomogeneous ferromagnetic order at very
low temperatures.6,7 Thus, there is a change, below the para-
magnetic phase, from a cluster spin glass to a disordered
ferromagnetic order without any sharp transition, but with a
mixed and disordered intermediate phase.

A Kondo-Cluster-Glass state has been also recently evi-
denced in CePd1−xRhx alloys at very low temperatures. This
system exhibits a continuous evolution from a ferromagnetic
order in CePd, with a Curie temperature Tc=6.6 K, to an
intermediate-valence ground state in CeRh. The Curie tem-
perature decreases continuously with increasing x and tends
to 25 mK at the value x=0.87. Despite pronounced non-
Fermi-liquid behavior in the proximity of this concentration
for specific heat and thermal expansion, it was concluded
from the analysis of the Gruneisen ratio that there is no
QCP.9 On the opposite, a “Kondo-cluster-glass” state was
found for x larger than 0.65: there is firstly the formation of
clusters with predominantly ferromagnetic couplings of the f
moments below a given temperature T� and then a random
freezing of the cluster moments below a smaller temperature
Tcl.

4,5 Thus, there are clearly similarities between the low
temperature behaviors of CeNi1−xCux and CePd1−xRhx alloys,
but both a more profound analysis of the different data and
the role of the Kondo effect have to be precise in these two
systems.

Several theoretical studies have tried, since already some
time, to account for the previous experimental data. A Kondo
lattice with an additional Ising term and a random coupling
between localized spins, called here the Kondo-Ising lattice
�KIL� model,10–12 has been firstly used to study the compe-
tition between the Kondo effect and magnetism when disor-
der is present within the static approximation �SA�.13 It ap-
pears that, for CeAu1−xCoxSi3 alloys, a Gaussian random
distributed bond would be adequate as can be seen in Refs.
12 and 14. The same model has been also firstly used to
describe the case of CeNi1−xCux alloys, where the disorder
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has been introduced within the classical Sherrington-
Kirkpatrick �SK� model15 by taking Gaussian random inter-
site coupling Jij with a mean value J0 different from zero to
describe the ferromagnetic ordering.11 The phase diagram
giving the temperature T versus the strength JK of the Kondo
interaction has been computed and we have obtained, besides
the Kondo state, magnetic phases such as spin glass �SG�,
ferromagnetic �FE� and a mixed phase �SG+FE�. For this
particular solution, the ferromagnetic order occurs with rep-
lica symmetry breaking. This phase diagram could be, there-
fore, a good starting point to describe the scenario found in
CeNi1−xCux alloys. Unfortunately, for this particular kind of
disorder, the Curie temperature Tc is always higher than the
freezing one, which is a scenario opposite to the experimen-
tal situation observed in CeNi1−xCux system.

Thus, in order to solve the preceding difficulty, a com-
pletely different perspective has been adopted in Ref. 16. The
theoretical description of the disorder has been modified
from a bond disordered coupling to a site disordered one. In
that case, the Jij coupling is a generalization of the Mattis
model17 used extensively to study complex systems,18 given
as Jij =

J
2N��=1

p �i
�� j

�, where �i
� is a random variable which

follows a bimodal distribution.
One important aspect is that, in the corresponding mean

field approach using such Jij values, it is possible to intro-
duce a parameter which allows to control the level of frus-
tration in the problem.16 The first interesting result is that the
Kondo solution is robust in the large JK limit, no matter what
is the level of frustration. For weak frustration and small JK,
below a certain temperature, it appears a SG solution. When
the temperature is further decreased, the SG solution is re-
placed by Mattis states which have the same thermodynam-
ics as a FE phase.18 This result suggests that the situation
found in CeNi1−xCux alloys would be an example of weak
frustration. Nevertheless, there is an important difference be-
tween this model and the approach of the Gaussian distrib-
uted Jij. For the kind of disorder given by this generalized
Mattis model, there is no mixed phase solution for the order
parameters, but on the contrary, there is a first-order phase
transition between the SG and Mattis states; such solutions
can obviously coexist, but one of them is always metastable.
In conclusion, our previous Mattis-like model gives the SG
phase above the FE phase, but it cannot yield a real SG
+FE mixed Phase.16

Thus, in order to improve the preceding description and to
have, therefore, a better agreement with experiment, we in-
troduce here, in our previously used KIL model, a new kind
of site disordered coupling Jij, originally introduced by van
Hemmen �vH� to study the spin glass in the classical Ising
model.19 The phase diagram obtained from such a classical
model displays not only SG, FE+SG and FE phases, but also
they can appear in that order when temperature is decreased.
In this particular case, the SG+FE phase is characterized by
both non zero magnetization and SG order parameters. Re-
cently, a work20 has studied a mean field solution of a quan-
tum version of the vH model with an applied transverse field
� and it shows that some aspects of its classical counterpart
can still be preserved in the quantum vH model, and in par-
ticular the SG+FE phase. However, spin flipping introduced
by the presence of � in the quantum vH model can modify

the phase diagram, suppressing for instance the presence of
SG+FE phase.20 However, it is well known that an addi-
tional transverse field in the KIL model with a Gaussian
random bond coupling between the localized Ising spins op-
erators can produce important consequences as, for instance,
a QCP.21

In the present work, we will, therefore, study the KIL
model with both the vH type of disorder for the intersite
exchange interaction Jij and a transverse field � which al-
lows also to investigate the possible consequences for the
phase diagram with the spin flipping. There is also another
very important aspect related to the vH type of disorder in-
troduced in the present work: in the previous approaches
using the Gaussian random bond SK-type Jij �Refs. 10–12,
14, and 21� or the site disorder type given by the product of
random variables �i

�, the disorder is treated using the so
called replica symmetry solution for the SG order
parameters.22 This solution is well known to have a serious
flaw, because it is locally unstable below the freezing
temperature.23 Certainly, that problem could be overcome by
the use of replica symmetry breaking schemes.24 However,
this kind of scheme increases the number of order parameters
in such a way that the search for order parameter solutions in
the KIL model becomes extremely complicated. Neverthe-
less, that is not the only problem with the use of replicas to
treat the disorder in the KIL model. There are also indica-
tions that the presence of one or other magnetic solutions
could be dependent on the particular kind of replica symme-
try breaking schemes.25 By contrast, that is not the case for
the disordered Jij given in the vH model �see following Eq.
�2��. The disorder can be treated without the use of replica
technique as demonstrated in the classical and quantum vH
models.19,20 Thus, the present use of the van Hemmen de-
scription of the disorder in the KIL model improves consid-
erably the description of the Kondo-Spin glass-
Ferromagnetism competition in disordered Kondo systems. It
is important to remark that the present work is typically a
mean field theory as in Refs. 10–12, 14, and 21. In particular,
the Static and saddle point approximations are used here. The
use of the first approximation can be justified since our goal
is mainly to describe phase boundaries as discussed in Ref.
21. The saddle point method is in fact exact here, as a con-
sequence of the long range nature of the vH coupling.

This paper is structured as follows. In the next section, we
introduce the model and calculate the corresponding thermo-
dynamics. The following section is dedicated to discuss the
numerical solutions of the saddle point equations for the or-
der parameters and to derive the phase diagram. Finally, the
last section is reserved to the conclusions.

II. GENERAL FORMULATION

The starting Hamiltonian in the KIL model is given by

H = �
ij,s

tijdis
† djs + �0�

i,s
n̂is

f + JK�
i

�Ŝfi
+ ŝdi

− + Ŝfi
− ŝdi

+ �

− �
i,j

JijŜfi
z Ŝf j

z − 2��
i

Ŝfi
x . �1�

In Eq. �1�, Ŝfi
z = 1

2 �n̂i↑
f − n̂i↓

f �, Ŝfi
+ = f i↑

† f i↓, Ŝfi
− = �Ŝfi

+ �†,
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Ŝfi
x = f i↑

† f i↓+ f i↓
† f i↑, ŝdi

+ =di↑
† di↓, ŝdi

− = �ŝsi
+ �†, n̂is

f = f is
† f is, where

f is
† �f is� and dis

† �dis� are fermionic creation �destruction� opera-
tors of f and d electrons, respectively. The spin projections
are indicated by s=↑ or ↓.

The random coupling Jij in Eq. �1� is given as in the vH
model by

Jij =
J

N
��i� j + �i� j� +

J0

N
, �2�

where �i and �i in Eq. �2� are random variables which follow
the bimodal distribution,

P�x� =
1

2
���x − 1� + ��x + 1�� . �3�

In Eq. �3�, ��x� is the Dirac delta function. As discussed in
the previous section, the coupling Jij given in Eq. �2� is an
infinite long range coupling which gives exact solutions in
the thermodynamical limit for the saddle point approxima-
tion used below.

The partition function is expressed within functional for-
malism using anticommuting Grassmann variables 	is�
� and
�is�
� associated to the f and d electrons, respectively, as10,21

Z =� D�����D�	�	�exp�AVH + AK + A0� . �4�

In the static approximation �SA� �Ref. 13� the actions in Eq.
�4� are given as

A0 = �
�

�
i,j

���� �i
†����i� − 
�0 + 
��� x��ij�� i���

+ 	� i
†��i� + �d��ij − 
tij�	� j���� , �5�

where, in the first term of Eq. �5�, the chemical potential � f
has been absorbed in �0.

AK
stat �

JK

N
�
is

�
�

�	i−s
� ����i−s�����

js
�
��

�� js
� ����	 js����� ,

�6�

AVH
stat = �

ij

JijSfi
z Sf j

z �7�

with

Sfi
z =

1

2�
�

�� i
†����� z�i��� . �8�

The action AK
stat is given in the mean field approximation

�see Ref. 10�. In the remaining components of the action A0
and AVH

stat, spinors are used,

	� i��� = �	i↑���
	i↓���

	, �� i��� = ��i↑���
�i↓���

	 �9�

and the Pauli matrices are given as usual by

�� x = �0 1

1 0
	 �� y = �0 − i

i 0
	 �� z = �1 0

0 − 1
	 . �10�

We follow a procedure close to that introduced in Ref. 10.
Therefore, the Kondo order parameter ����
= 1

N� j,�
� j�
� ���	i����� can be introduced in the partition

function Z defined by Eqs. �4�–�8�. Then, the 	 fields are
integrated and we obtain the following result:

Z/Zd
0 = exp�− 2N
����Zef f , �11�

where Zd
0 is the partition function of free d electrons and

Zef f =� D�����exp�AVH
stat + �

��
�
i,j

�� i�
� ���g� ij

−1����� j����	
�12�

with

g� ij
−1��� = ��i� − 
�0�I� + 
��z��ij −


2Jk
2�2

�i� + �d��ij − 
tij
I� .

�13�

In Eq. �13�, we use the notation ��2�
�2 and I� means the
unitary matrix.

Introducing Jij given by Eq. �2�, the action AvH
stat becomes

composed of two terms: one randomic and the other one
ferromagnetic. They can be rearranged to introduce SG and
FE order parameters in Zef f. The details of such calculations
are shown in the Appendix.

The free energy is, therefore, given by


F = 2
JK�2 − lim
N→�

1

N
ln Zef f . �14�

Using the saddle point solution for Zef f �see Eqs. �A3� and
�A4��, the free energy in Eq. �14� becomes


F = 2
JK�2 + 2
Jq1q2 + 
J0m2 − �
�

ln�det G� ij
−1���hj�� .

�15�

The Green’s function G� ij
−1�� �hj� is given in Eqs. �A5�–�A10�.

In order to proceed to the calculations, we use in the last
term of Eq. �15� the approximation introduced in Ref. 10
which decouples the random magnetic field hj from the
Kondo lattice. Thus, we obtain

ln det�G� ij
−1���hj�� �

1

N
�

j

ln�det �� ��
−1���hj�� �16�

with

���
−1���hj� = ��i� − 
�0�I� − �zhj + 
��x����

− 
2Jk
2�2 1

N
�

k�

eik�R� ��

�i� + �d� − 
�k
I� . �17�

Now, in the last term of Eq. �15�, we can use self-averaging
property 1

N� j f�� j ;� j�= 

f�� ;������. Therefore
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1

N
�

j

ln� 1

N
�

k�
��

�

���k�,hj�	�
=��ln� 1

N
�

k�
��

�

���k�,h�	���
��

, �18�

where



f��,������ =� d�d�P��,��f��,�� . �19�

Then, by assuming that �d=0 and �0=0, the free energy can
be found as


F = 2
Jk�
2 + 2
Jq1q2 + 
J0m2

−�� 1


D
�

−
D

+
D

dx ln�cosh� x + H

2
	

+ cosh�1

4
�x − H�2 + 
2Jk

2�2���
��

�20�

with

H = 
��2J��q2 + �q1� + 2J0m�2 + �2. �21�

In Eq. �20�, the sums over the Matsubara frequencies and
over k� have been done in a way similar to Ref. 10. We have
also used here the usual approximation of a constant density
of states for the d electrons, �= 1

2D for −D���D. The use
of this density of states allows a direct comparison of phase
diagrams obtained in this work with previous ones given in
Refs. 10, 11, and 16. Finally, assuming that the probability
distribution P�� ,��= P���P���, we can compute 

 . . . ���� in
Eq. �20� using Eqs. �3� and �19�.

III. NUMERICAL RESULTS

The coupled saddle point equations for q1, q2, m, and �
can be obtained directly from Eqs. �20� and �21�. The nu-
merical solutions for such order parameters allow us to ob-
tain the following phases: �i� paramagnetism �PARA� given

by q1=q2=0, m=0, and �=0; �ii� the SG phase given by
q1=q2�0, m=0, and �=0; �iii� the mixed phase �SG+FE�
given by q1=q2�0, m�0 and �=0; �iv� ferromagnetism
�FE� given by q1=q2=0, m�0 and �=0; �v� Kondo state
where only � is different from zero. For numerical results,
D /J=12 is used.

Phase diagrams giving temperature T versus JK �in units
of J� can be built for several values of J0 /J and � /J. In
Figure 1, such a phase diagram is displayed for J0 /J=1.6 and
� /J=0. For this case, in the large JK region there is only one
solution which corresponds to the Kondo state. When JK
decreases, the Kondo solution disappears. Actually, it is sub-
stituted by the magnetic solutions PARA, SG, and FE which
appear in that order when T is lowered. In Figure 2, we take
J0 /J=1.3 and �=0. This decrease of J0 /J from 1.6 to 1.3
does not affect the Kondo state, but changes a lot the mag-
netic solutions. In Figure 2, the solution FE is replaced by
the mixed phase SG+FE, while the size of the region where
the SG solution exists remains almost the same as in Figure
1. In Figure 3, the transverse field � is maintained equal to 0
and we take an intermediate value J0 /J=1.4. As in the two
previous cases, the Kondo state is not really affected in the
large JK region, but the region of the magnetic solutions in
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FIG. 1. Phase diagram T /J versus JK /J for J0 /J=1.6 and
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the phase diagram is again modified. Besides the existence of
SG and SG+FE solutions, when the temperature is
decreased, there is also an additional FE solution at much
lower temperatures. In other words, in a small range of J0 /J
�1.3�J0 /J�1.6�, the phase diagrams present several sce-
narios concerning the existence of magnetic solutions. In
contrast, the Kondo state is robust to such changes of J0 /J.

Furthermore, a new situation is obtained when the trans-
verse field is turned on, as can be seen in Figure 4. For
instance, for �=1.0, the Kondo solution is obtained for a
value of JK /J a little larger than that found previously for
�=0.4 or �=0 and simultaneously, the range of JK /J where
the magnetic solutions are found is increased. Moreover, for
such a decrease in � from 1 to 0, the transition temperatures
between the magnetic phases are clearly depressed. But the
most important feature observed with the increase of � con-
cerns the magnetic solutions, because the SG+FE and FE
phases disappear completely and it remains only the SG
phase for a sufficiently large � value.

IV. CONCLUSIONS

In the present work, the KIL model has been studied with
assuming that the intersite spin coupling Jij between local-
ized spins is a random coupling given by the van Hemmen
model as given in Eq. �2�. It has also been added to the
model a transverse field � which mimics a Heisenberg spin-
flipping term.

The results are shown in Figures 1–4. For �=0, they ba-
sically display two regimes when the strength JK of the
Kondo interaction is varied in units of the component J of
the coupling Jij �see Eq. �2��. In the first regime obtained for
large JK values, there is only the Kondo phase. In contrast,
the second regime with only the magnetic solutions SG,
SG+FE and FE exists when JK is decreased. One important
point is the order in which the magnetic phases are found
when the temperature is decreased. For instance, the SG

phase is found at higher temperature. Then, it can appear a
SG+FE phase. The pure FE phase is found only at the lowest
temperatures. It is also important to notice that the existence
of the different solutions SG, SG+FE or FE depends on the
strength of the ferromagnetic component J0 �given in units of
J� of the coupling Jij, as can be seen in the Figs. 1–3. When
� is different from zero, the two regimes discussed previ-
ously are affected. While the Kondo solution needs larger
values of JK to be found, the magnetic solutions found at
lower temperatures disappear rapidly when � is increased.

It should be emphasized that the present approach using
the Jij coupling given by the vH model yields two important
improvements with respect to previous approaches. The first
one concerns the use of the replica method which is not
necessary here to generate the thermodynamics. This is an
important improvement with respect to the previous ap-
proaches using the bond disorder given by the SK-like
Gaussian random Jij in the KIL model1–12,14,21 or using the
previous Mattis-like approach.16 For instance, the presence
of magnetic solutions in these approaches is quite dependent
on which particular scheme of replica solution is used, as
explained in the discussion of Ref. 25.

As our present results suggest, the second improvement
concerns the particular kind of site disorder given by the vH
model introduced in the KIL model with a certain range of
J0, which allows to obtain magnetic solutions SG, SG+FE
and FE phases when the temperature is decreased. In that
sense, the weakness of the approach proposed in Ref. 16 is
overcome and we are able to introduce here a mixed phase
SG+FE.

Thus, our present calculation using the van Hemmen site
disorder can describe Cerium disordered physical systems
such as CeNi1−xCux or CePd1−xRhx alloys. In particular, Figs.
3 and 4 can describe the phase diagram of CeNi1−xCux with
JK increasing with an increasing Nickel concentration, by
explaining the Kondo behavior observed for x close to 1 and
by proposing a good interpretation of the complicate mag-
netic behavior observed for smaller x values. These are indi-
cations that the use of the van Hemmen site disorder could
be useful to describe physical systems such as CeNi1−xCux or
CePd1−xRhx alloys, although the low temperature phase is in
these alloys a Kondo-cluster-glass followed by a disordered
ferromagnetic one. However, it is important to notice that
canonical spins have been used in the present work. This
description is obviously not sufficient to capture the com-
plexity of the cluster glass state. However, earlier results for
a mean field formulation of the cluster glass indicate that
there are no essential differences between canonical spins
and clusters of spins, as far as the phase boundaries are
concerned.26 One can, therefore, expect that most of the pre-
vious discussion concerning the sequence of magnetic orders
as a function of JK can be preserved even if the problem is
formulated in terms of clusters of spins instead of canonical
spins as it is done in the present work.

On the other hand, we are presently working on a theo-
retical description of the Kondo-Cluster-Glass, by solving
exactly the problem in a small cluster with ns atoms interact-
ing between them by a disorder spin glasslike interaction. We
have already solved the problem with only ns=3 and a dis-
order intercluster bonding given by the Sherrington-
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FIG. 4. Phase diagrams T /J versus JK /J for J0 /J=1.4 and three
values of � /J :0, 0.4 and 1.0. The dashed, dotted and full lines are
results for � /J=1.0, � /J=0.4 and � /J=0.0, respectively. The criti-
cal lines for � /J=0 occur at higher temperatures than those ones for
� /J=0.4 and � /J=1.0. In particular, for � /J=1.0 there is no more
SG+FE and FE solutions.
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Kirkpatrick interaction.27 We think that the van Hemmen ap-
proach is easier to treat and we are presently working on
clusters with a larger number ns, in order to have finally a
more local description of the Kondo-Cluster-Glass observed
in some disordered Kondo Cerium systems.

In conclusion, we have to remark that our van Hemmen-
Kondo description yields considerable improvements with
respect to previous theoretical models in the two following
points, the nonconsideration of the replica method and the
problem of the mixed SG+FE phase. The validity of the van
Hemmen model, which does not use the replica trick method,
has been discussed in detail and it has been shown that this
model is perfectly able to describe the spin glass experiments
and that it is simpler than the other models for a mathemati-
cal treatment.28,29 On the other side, our van Hemmen-
Kondo model gives with decreasing temperature a SG phase,
a SG+FE one and finally a ferromagnetic phase and the in-
termediate SG+FE phase is a real mixed phase with together
nonzero SG and FE order parameters. This model gives a
good account for the experimental phase diagrams of disor-
dered Cerium systems, such as CeNi1−xCux alloys, and can
be used to have a more local description of the Kondo-
Cluster-Glass phase.
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APPENDIX

In this appendix, we present in details the procedure
which allows to introduce the SG and FE order parameters in
the problem. First, the random component of Jij given in Eq.
�2� can be rewritten as


J

N
�
i�j

��i� j + �i� j�Si
zSj

z

=

J

N ��
j=1

N

�� j + � j�Si
z�2

−

J

N ��
j=1

N

�iSi
z�2

−

J

N ��
j=1

N

�iSi
z�2

−
2
J

N
�
j=1

N

��iSi
z���iSi

z� �A1�

while the ferromagnetic one is


J0

N
�
i�j

Si
zSj

z =

J0

N ��
i

Si
z�2

−
J0

N
�

i

�Si
z�2. �A2�

The last terms in Eqs. �A1� and �A2� vanish in the thermo-
dynamic limit.

The Hubbard-Stratonovich transformation can be used to
linearize the action AvH

stat. Thus Zef f in Eq. �12� becomes

Zef f = � N

2�
	2�

−�

+�

dq̄1�
−�

+�

dq̄2�
−�

+�

dq̄3

��
−�

+�

dm exp�−
N

2
�q̄1

2 + q̄2
2 + q̄3

2� −
Nm̄2

2

+ ln ��q̄1, q̄2, q̄3,m̄�	 �A3�

where the function ��q̄1 , q̄2 , q̄3 , m̄� in Eq. �A3� is

��q1,q2,q3,m� =� D�����

� exp��
i,�

�
�

�� i�
� G� ij

−1���hj��� j����	
�A4�

with

G� ij���hj� = ��i� + 
�0�I� − �zhj + 
��x��ij

−

2Jk

2�2

i�� + �d��ij − 
tij
I� . �A5�

The random field in Eq. �A5� is

hj = �2
J�i� jq̄1 + i� jq̄2 + �� j + � j�q̄3� + �2
J0m̄ . �A6�

The saddle point solution of Eq. �A3� gives

q̄1 = i�
J
1

N�
j


� jSj
z� = i�2
Jq1, �A7�

q2 = i�
J
1

N�
j


� jSj
z� = i�2
Jq2, �A8�

q̄3 = �2
J�q1 + q2� , �A9�

and

m̄ = �2
J0
1

N
�

j


Sj
z� = �2
J0m . �A10�

The symbol 
 . . . � is the thermodynamical average and
i2=−1 in Eqs. �A7�–�A10�. The integral over the Grasmann
fields can be performed in Eq. �A4�, leading to

��q1,q2,m� = exp��
�

ln�det G� ij
−1���hj��� . �A11�
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