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We present an experimental and theoretical study of the magnetic field dependence of the mode frequency of
thermally excited spin waves in rectangular-shaped nanopillars of lateral sizes 60�100, 75�150, and 105
�190 nm2, patterned from MgO-based magnetic tunnel junctions. The spin-wave frequencies were measured
using spectrally resolved electrical-noise measurements. In all spectra, several independent quantized spin-
wave modes have been observed and could be identified as eigenexcitations of the free layer and of the
synthetic antiferromagnet of the junction. Using a theoretical approach based on the diagonalization of the
dynamical matrix of a system of three coupled, spatially confined magnetic layers, we have modeled the
spectra for the smallest pillar and have extracted its material parameters. The magnetization and exchange
stiffness constant of the CoFeB free layer are thereby found to be substantially reduced compared to the
corresponding thin-film values. Moreover, we could infer that the pinning of the magnetization at the lateral
boundaries must be weak. Finally, the interlayer dipolar coupling between the free layer and the synthetic
antiferromagnet causes mode anticrossings with gap openings up to 2 GHz. At low fields and in the larger
pillars, there is clear evidence for strong nonuniformities of the layer magnetizations. In particular, at zero field,
the lowest mode is not the fundamental mode but a mode most likely localized near the layer edges.
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I. INTRODUCTION

In the last few years, magnetic tunnel junction �MTJ�
nanopillars have received tremendous attention due to their
promising potential for applications in spin-transfer-switched
magnetoresistive random access memory or as spin-torque
oscillators for microwave generation.1–3 With gigahertz fre-
quencies, the operation speed of these devices happens to lie
in the same frequency range as the dynamic eigenexcitations
of the underlying nanoelements �thermally excited spin
waves�, which may therefore manifest themselves as un-
wanted noise sources. However, as eigenexcitations, thermal
spin waves also constitute an excellent probe for the intrinsic
magnetic properties of the nanopillars. The experimental de-
tection of spin waves in MTJ nanopillar devices and the un-
derstanding of their nature is therefore of great interest both
for fundamental and technological reasons.

Thermal spin waves in confined structures have been
studied extensively in arrays of single-layer dots with thick-
nesses between 40 and 15 nm and typical lateral dimensions
from 3 �m down to 200 nm.4–8 In these systems, two types
of spin-wave modes have been identified: quantized volume
modes located around the center of the element where the
internal field is basically homogeneous, and spin-wave well,
end or edge, modes localized near the element edges in the
inhomogeneity region of the internal field. The above ele-
ments are characterized by their thickness being significantly
larger than the exchange length of the layer material �typi-
cally 5 nm�. In structures with this property, the dominating
interaction is the magnetostatic dipolar interaction,9 which
causes the inhomogeneity of the internal field, thus determin-
ing the character and spatial profile of the modes.4

The eigenexcitations of a multilayer dot differ, in general,
significantly from those of an ensemble of isolated magnetic
dots due to the interlayer interactions between the magnetic
layers in the stack: mutual dipolar coupling and—for suffi-
ciently thin metallic spacer layers—interlayer exchange
coupling.10

Eigenexcitations of nanopillar structures have been the
subject of very few systematic studies so far. Thermal spin
waves have been investigated experimentally and theoreti-
cally in pseudospin valves11–13 of elliptical shape �smallest
dimension 200 nm� consisting of two magnetic layers of 10
nm thickness separated by a 10-nm-thick spacer layer. As the
layer thicknesses were �again� much larger than the exchange
length, the profiles of the modes in each of the two pillar
layers showed great resemblance with the mode profiles in
the corresponding isolated dots.7 In a symmetric spin-valve
stack, the main impact of the mutual dipolar coupling be-
tween the layers was found to be a fixed phase relation be-
tween the modes in the two layers for high applied field and
hybridization effects at low field.11

Common MTJ nanopillars differ qualitatively from the
pseudospin valves in three fundamental points: First, with a
free layer �FL� and a synthetic antiferromagnet �SAF�, they
consist of three magnetic layers. Second, the layer thick-
nesses are with 2–4 nm smaller than the exchange length,
such that the spin dynamics is now dominated by the ex-
change interaction. Third, the interlayer interaction of the
three layers is highly asymmetric: the reference layer �RL�
and the pinned layer �PL� of the SAF are strongly coupled by
the interlayer exchange and—more weakly—the mutual di-
polar coupling, where the PL is additionally subject to the
strong exchange-bias field; the FL interacts with the SAF via
the comparatively weak mutual dipolar coupling only. Con-

PHYSICAL REVIEW B 81, 094416 �2010�

1098-0121/2010/81�9�/094416�16� ©2010 The American Physical Society094416-1

http://dx.doi.org/10.1103/PhysRevB.81.094416


sequently, the eigenexcitations of an MTJ nanopillar are ex-
pected to be considerably more complex than those of the
pseudospin valves.

Magnetization dynamics in MTJ nanopillars is commonly
measured using electrical techniques, such as electrical-noise
power measurements13–16 or spin-transfer-driven ferromag-
netic resonance,17 which take advantage of the correspon-
dence of the magnetoresistance �MR� of the pillar and the
spin dynamics in the FL and the RL. Thermal spin-wave
modes in MTJ have been detected as “by-products” of ex-
periments on spin-transfer torque3,14,18 and in a few dedi-
cated experiments.16 However, so far there has been no sys-
tematic study of thermal excitations in MTJ nanopillars.

In this paper, we investigate the magnetic field depen-
dence of the mode frequency of thermally excited spin waves
in rectangular-shaped MgO-based MTJ nanopillars of differ-
ent lateral sizes. In Sec. II, we will describe the basic mag-
netic properties of the devices and the experimental tech-
nique used to acquire the spin-wave spectra. The features of
the measured spectra in dependence of the pillar size and the
direction of the applied field are described in the following
Sec. III. In Sec. IV, we will point out shortcomes of the
macrospin model when applied to our samples, as a conse-
quence of which we will introduce in Sec. V a model of
quantized spin-wave modes in nanopillars consisting of three
magnetic layers. In Sec. VI, we will use this model to extract
the material parameters of the pillar, which will finally be
discussed in Sec. VII along with the limitations of our
model.

II. SAMPLES AND EXPERIMENTAL TECHNIQUES

A. Samples and basic device properties

The fabrication and basic properties of our samples
are described in Ref. 19: they are rectangular-shaped
nanopillars, all patterned from the same MTJ stack of
composition Co60Fe20B20 �3 nm, free layer�/Mg�1.3�
�nat. ox.�/Co60Fe20B20 �2, reference layer�/Ru�0.8� /Co70Fe30
�2, pinned layer�/PtMn�20�, deposited by Singulus Technolo-
gies AG. The three layers following the MgO tunnel barrier
compose the SAF. The pillars were designed in three lateral
sizes: 60�100, 75�150, and 105�190 nm2, which will be
referred to as small �S�, medium �M�, and large �L� size,
respectively. Note that unlike in Ref. 19, the given dimen-
sions are not the nominal values but mean values measured
on the exposed e beam resist with a device-to-device devia-
tion of �10 nm. In order to obtain electrically contactable
devices, the nanopillars were inserted in series between co-
planar leads, following design rules ensuring high
bandwidth.20

The devices have a resistance area product of 16 � �m2

and typically 80% tunnel magnetoresistance ratio. Their hys-
teretic properties are consistent with the uniaxial anisotropy
expected from the rectangular pillar shape where the long
edge of the rectangle, oriented along the exchange pinning
direction of the PtMn antiferromagnet, is the easy axis �EA�,
and the short edge the hard axis �HA� of the magnetization.
Panels �b� and �d� of Fig. 1 show as a reference EA and HA

hysteresis loops of a nanopillar of size S calculated in mac-
rospin approximation using as material parameters literature
bulk values �see figure caption�. In comparison, the experi-
mental EA and HA loops for devices of pillar size S, M, and
L are depicted in panels �b�, �d�, and �f� of Figs. 2 and 3,
respectively.

At negative EA applied fields, the pillars are in the
parallel �P� state, at positive fields in the antiparallel �AP�
state; spin-flop �SF� transition of the SAF occurs typically at
EA fields around +170 mT. Room-temperature coercivity is
25–35 mT for devices of size S and M, and 20–25 mT for
size L. From astroid measurements19 mean anisotropy fields
of 37 mT, 46 mT, and 38 mT for pillar sizes S, M, and L,
respectively, have been determined. The EA loops of all
devices are off-centered toward negative fields, indicating
non-negligible antiparallel coupling of the free-layer

FIG. 1. �Color online� Macrospin description of a nanopillar of
size S: frequencies of the uniform modes versus external field along
�a� easy axis and �c� hard axis, calculated in macrospin approxima-
tion using as material parameters literature bulk or thin-film values
�see Appendix B2�: magnetization 2.2 T for CoFe, 1.9 T for an-
nealed CoFeB, exchange bias Jeb=4.5�10−4 J /m2, interlayer ex-
change Jint=−5�10−4 J /m2; the shape anisotropy fields were cal-
culated using demagnetizing factors extracted from OOMMF

simulations. Panels �b� and �d� show the corresponding calculated
hysteresis loops. In panel �a�, filled symbols are used for ascending
field �P→AP→SF� and open symbols for descending field
�SF→AP→P�.
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magnetization and the SAF. With increasing pillar size, this
coupling is decreasing while for size S, the shift is 5–11 mT,
it is only 3–7 mT for size M, and 1–5 mT for size L.

The bell shape of the HA hysteresis loops �Fig. 3� is con-
sistent with the antiparallel coupling observed on the EA. At
zero HA applied field, the devices are always in the AP state.
With increasing �absolute value of the� field, the resistance
decreases continuously from the maximum resistance of the
AP state down to almost parallel remanence, as the magne-
tizations of the free layer and finally the two SAF layers
progressively tilt toward the applied field. Ascending and
descending field branch of the HA loops are for most devices
identical. In contrast, in the absence of coupling between free
layer and SAF, the pillar relaxes with equal probability into P
state or AP state when the HA field is switched off, resulting
in two branches of the hysteresis loop �see Fig. 1�d��. Finally,

note that the sharp bends in the resistance curve at about
�60 mT in the measured HA loop for pillar size L, and also
present in the calculated HA loop, become more and more
rounded for decreasing pillar size, i.e., for increasing antipar-
allel coupling.

We have used the intrinsic symmetry of the HA loops to
align the external field with the symmetry axes of the rect-
angle by choosing the field direction such that the loops
showed highest possible symmetry. For some devices, the
loops were, though symmetric at high fields, noticeably
asymmetric at low fields; in these cases we have cross
checked the alignment with the symmetry of the correspond-
ing HA spectra. The misalignment of the field should there-
fore not exceed 2°.

FIG. 2. �Color online� Power spectrum density �log scale, dB�
versus descending �SF→AP→P� easy-axis applied field for a de-
vice of �a� size S, �c� size M, and �e� size L. Panels �b�, �d�, and �f�:
corresponding hysteresis loops.

FIG. 3. Power spectrum density �log scale, dB� versus �ascend-
ing� hard-axis field for the same devices as in Fig. 2: �a� size S, �c�
size M, and �e� size L. Panels �b�, �d�, and �f�: corresponding hys-
teresis loops.
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B. Setup and experimental methods

To obtain their spin-wave spectra the devices were in-
serted into a high-bandwidth circuit similar to that in Ref. 21,
and their voltage-noise power spectrum density �PSD� was
measured for moderate dc bias currents as a function of the
applied magnetic field. The noise spectrum at each field step
was obtained by subtracting from the spectrum for nonzero
bias current a zero-current reference spectrum in order to
eliminate noise of nonmagnetic origin. In panels �a�, �c�, and
�e� of Figs. 2 and 3 examples of two-dimensional density
plots of the PSD versus the magnetic field are shown, where
the dark regions correspond to maxima in the PSD and there-
fore to eigenexcitations of the magnetic system,22 i.e., spin-
wave modes. The spectra are displayed in a contrast scaling
with the logarithm of the noise in excess to the noise at zero
current. As the difference in amplitude between the most
intense and the weakest modes is even on a logarithmic scale
still large, in all figures the gray scale of the PSD has been
modulated and black dots have been superimposed to better
evidence the weaker modes.

Bias currents used to measure the spectra were chosen as
low as possible in order not to affect the mode frequencies
but still high enough to obtain sufficient signal-to-noise ratio.
Devices of pillar size S were therefore mostly measured at
�0.1 mA, those of size M at �0.2 mA, and those of size L
at �0.3 mA. The differences in amplitude for opposite cur-
rent polarity were hardly noticeable on the logarithmic scale,
and the maximum difference in the mode frequencies, ob-
served for 0.3 mA, was 0.15 GHz. These observations are in
agreement with previous works23 on similar samples, where
a spin-torque threshold current of 1.6 mA for size-L devices
has been determined. On the frequency scales considered in
this paper, the bias-current dependence of the spectra can
therefore be neglected.

Note that electrical-noise measurement techniques allow
to detect the spin waves in individual pillars, in contrast to
the Brillouin light scattering used for the pseudospin valves
in Refs. 11 and 13, where the measured spectra were an
average over a large number of devices. Moreover, as no
optical or any other direct access to the magnetic layers is
needed, the pillars can be measured in their natural working
environment, i.e., as the stack actually used in a functional
device and subject to electrical currents. Finally, since the
magnetoresistance is a function of the relative orientation of
the magnetizations in the FL and the RL, these techniques
are equally sensitive to spin waves in both the FL and the
RL.

III. EXPERIMENTAL RESULTS

In this section, we describe the characteristics of the spec-
tra measured for easy-axis and hard-axis applied fields as
well as their dependence on the pillar size. Note that there is
no device possessing simultaneously on EA and HA, all the
properties stated as typical of a particular pillar size. The
properties described in the text are therefore those observed
on a majority of the EA spectra and a majority of the HA
spectra but not always for the same devices. For the basic
identification of the observed spin-wave modes, we recall in

Figs. 1�a� and 1�c� the mode dispersion in macrospin ap-
proximation for a nanopillar consisting of a SAF and an ideal
free layer �i.e., the latter is assumed not to interact with the
SAF�. EA and HA spectrum each contain two types of
modes: the uniform FL modes and the uniform acoustic
mode of the SAF. The acoustic SAF mode is thereby the
lower of the two SAF eigenmodes and corresponds to oscil-
lations, for which the in-plane components of the SAF layer
magnetizations stay antiparallel, i.e., the dynamical magneti-
zations oscillate 180° out-of-phase. The high-frequency sec-
ond eigenmode of the SAF, the optical mode �in-plane com-
ponents of dynamical magnetizations in-phase�, is not
detected in the measured frequency range up to 26 GHz, and
will therefore not be mentioned further.

A. Eigenexcitations for easy-axis applied field

1. Size-independent properties

For all pillar sizes, EA spectra �Fig. 2� contain two groups
of modes. The first group consists of V-shaped modes basi-
cally symmetric about zero field for high positive and nega-
tive fields and history dependent in the hysteretic field region
with a discontinuity at the coercive field. Since this is the
typical behavior of FL modes �Figs. 1�a� and 1�b��, the
modes in this group are labeled with F. The second-mode
group consists of modes having a minimum at or near the
spin-flop field of the SAF. This being the characteristics of
the acoustic modes of the SAF �Figs. 1�a� and 1�b��, the
modes in this group are labeled with A. Modes that cannot be
assigned unambiguously to one of the groups are labeled
with U �like unidentified�. Within each group, the modes are
numbered consecutively with increasing frequency. The low-
est FL mode FE has been labeled differently, because it
shows in several aspects a qualitatively different behavior
than the next-higher mode F0. As we shall see in the follow-
ing sections, there is evidence that it might belong to excita-
tions localized near the layer edges �hence the second label
E�. Occasionally, second harmonics, such as the mode 2FE in
Fig. 2�a�, are observed.

There are three FL modes common to all pillar sizes: the
modes F0 and FE, visible in the P and low-field AP state,
and—with a size invariant spacing of 5–6 GHz to F0—the
mode F3, mainly visible at high fields.

In the SF region at high positive fields, several SAF
modes are observed, the intense lowest modes having either
one single minimum �Fig. 2�e�� or two minima at different
fields �Figs. 2�a� and 2�c��. The minima are always posi-
tioned in the vicinity of significant changes in the slope of
the resistance in the hysteresis loop. The occurrence of more
than one such slope change clearly indicates that the magne-
tization of the reference layer does not undergo a single
abrupt transition as associated with the SF but that there are
several domains with different transition fields. Independent
of the number of observed minima at the SF, the SAF modes
show complicated, irregular structures, indicating strong
nonuniformities of the SAF layer magnetizations in this field
region, and will therefore not be discussed in more detail.

The modes after the SF, which are labeled with U, com-
prise the lowest FL modes and higher-order SAF modes.
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They cannot be identified with certainty because both mode
types have similar frequency, slope, and intensity in this field
region. Moreover, above the SF, the large angle between the
FL magnetization and the RL magnetization boosts the ex-
perimental sensitivity to both FL and SAF modes �see Sec.
V B� causing, in particular, for sizes S and M abrupt changes
in the mode intensity, such that FL modes suddenly appear-
ing above the SF field may be misinterpreted as SAF modes.

For some devices, a change in mode intensity is also ob-
served at a high negative field value �cf. F0, F3 in Fig. 2�a� at
−140 mT or A0 in Fig. 2�c� at −105 mT�, at which the
resistance changes by 10–20 � �not visible on the scale of
Figs. 2�b� and 2�d��. The reason for this is a change in the
micromagnetic configuration, very likely of the RL �see Sec.
V B�.

Finally, in the AP state, gaps with pillar size-dependent
opening from 2 to 0.5 GHz are observed in the modes FE
and, if visible, F0 �see, e.g., Figs. 2�e� and 2�a��. We will see
that this is a consequence of the mutual dipolar coupling
between the FL and the SAF leading to anticrossing of FL
and SAF modes.

2. Size-dependent properties

In the following, we describe the size-specific properties
of the EA spectra. We will see that with increasing pillar size,
the spectra undergo characteristic changes, some of which
are caused directly by the increasing dimensions while others
are most likely consequences of an increasing nonuniformity
of the magnetization.

a. Size S. In the EA spectra of the smallest pillars
�Fig. 2�a��, the modes FE, F0, and F3 are mostly the only
observed FL modes. The opening of the anticrossing gap in
F0 is typically 2 GHz. F3 has for all devices a frequency of
22–23 GHz at +240 mT. FE and F0 show a slightly larger
device-to-device variation. For some devices, the mode FE is
visible up to very high negative fields �as in Fig. 2�a�� with a
roughly constant spacing to F0 of about 1.5 GHz, for others
it is observed in the low-field region only where the resis-
tance departs from its saturation value, i.e., where the �FL�
magnetization shows signs of increasing nonuniformity; in
this case, FE rapidly approaches F0 for increasing field and
vanishes, once the resistance has reached its saturation value.
This correlation of FE to the nonuniformity of the static
magnetization suggests that FE might be an edge mode. An-
other observation in favor of this supposition is that the
mode FE has a noticeably higher slope than F0 �due to its
tendency to approach F0 asymptotically from below�, which
would not be the case if both modes were volume modes.
The average frequency of F0 is about 16 GHz at −190 mT
and 6.5 GHz at zero field.

b. Size M. The EA spectra of devices of pillar size M
�Fig. 2�c�� differ from those of the size-S devices in the
following points. The mode FE has developed a minimum at
low fields, which for some devices may almost reach zero
frequency. This effect is likely to be caused by the increased
nonuniformity of the magnetization in this field region. Oc-
casionally, the mode F0, too, becomes deformed, though
much less than FE. The relative intensity of F0 typically

decreases whereas that of FE increases. The observed evolu-
tion of FE with the pillar size, too, corroborates the assump-
tion that this mode might be an edge mode. The frequencies
of all modes decrease typically by 1 or 2 GHz at high fields.
The gap opening in the modes FE and F0 has decreased to
1–1.5 GHz. At very high fields, additional modes, most
likely belonging to the FL, appear just above or below the
mode F3.

c. Size L. For the size-L devices �Fig. 2�e��, the gap open-
ing in the mode FE does not exceed 0.5–1 GHz, and the
frequencies of FE and F3 have decreased by another giga-
hertz. The spacing between FE and F3 has not changed with
respect to size M or S. Above F3, three additional FL modes
�F4 to F6� with a spacing of 1 GHz, and below F3 two
extremely weak modes �F1, F2� have appeared. As for size
M, the mode FE is strongly deformed in the low-field region
and has still gained intensity with respect to F0.

B. Eigenexcitations for hard-axis applied field

1. Size-independent properties

In Fig. 3 are depicted the HA spectra of the same devices
as in Fig. 2. The FL modes have a characteristic W shape
with two minima in the lowest modes at about �70 mT.
Though 70 mT is for all pillar sizes substantially higher than
the measured anisotropy fields, the minima are often24 inter-
preted as to correspond to the saturation of the free-layer
magnetization along the HA �cf. also Figs. 1�c� and 1�d��.

At or near zero field, the modes F0 and F1 show typically
one, sometimes two sharp minima, which become deeper
with increasing pillar size, and which are not present in the
macrospin HA spectrum �Fig. 1�c��. We therefore suspect
that at least one of the modes observed at low fields is actu-
ally an edge mode FE. As a matter of fact, if at zero EA field,
the lowest mode is—as we think—an edge mode, then the
lowest mode at zero HA field must be an edge mode, too
because zero EA and zero HA field are formally identical.
The observed field dependence of the frequency of the mode
F0 then implies that its character must be changing �continu-
ously� from edge mode at low fields to volume mode at high
fields. Such a progressive change in the mode character
would be consistent with the expected saturation process of
the magnetization along the HA; for very low HA field, the
magnetization in the central part of the layer is aligned along
the EA due to the shape anisotropy, and only in narrow zones
along the short edges of the rectangle, the magnetization
starts to align with the HA. For increasing field, these edge
zones �domains� expand continuously toward the layer cen-
ter, until for some field value the volume magnetization and
finally the magnetization in the zones along the long edges of
the layer saturate along the HA. The oscillations of this in-
creasing part of the magnetization parallel to the field would
obviously correspond to edge modes at low fields, and to
volume modes at high fields; for intermediate field values,
they would have a mixed character.

Finally, for most devices, we also observe the almost hori-
zontal lowest acoustic modes of the SAF, A0 and A1 �see,
e.g., Fig. 3�a��, where A0 has a frequency of typically 10–12
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GHz at zero field. Note that, in particular, for size-S devices,
the SAF modes are strongly asymmetric w.r.t. zero field,
even though the FL modes and the hysteresis loop are basi-
cally symmetric. As will be shown in Sec. VI, this asymme-
try cannot be explained by a misalignment of the external
field with the HA.

2. Size-dependent properties
a. Size S. The HA spectra of size-S devices are character-

ized by rounded saturation minima of the FL modes at
�70 mT �cf. Fig. 3�a��. The frequency minima of the mode
F0 are thereby not zero but raised to values between 4 and 6
GHz, which is a consequence of the mutual dipolar coupling
between the FL and the SAF, as we shall see in Sec. VII.
Typically 5–7 FL modes, F0 to F6 in Fig. 3�a�, are observed,
where the first two modes have frequencies of 12 GHz and
14 GHz, respectively, at �190 mT. The lowest mode F0 has
much higher intensity than the other modes, and its fre-
quency at high fields is the same for all measured devices of
size S. The frequencies of the higher modes slightly vary
from device to device. �In Fig. 3�a�, the modes F2 and A1
seem to accidently coincide at positive fields; however, for
other devices, F2 is clearly resolved.� The presence of F1 and
F2 in the HA spectra for several devices of size S with rather
high intensity is of great importance because at least the
mode F2 is not observed in the EA spectra, not even after the
SF where the experimental sensitivity is comparable to that
on the HA �see Sec. V B�.

b. Size M. In the spectra of pillar size M �Fig. 3�c��, the
saturation minima at �70 mT in the mode F0 are much
deeper than for size S, which is consistent with the lower
dipolar coupling between the FL and the SAF concluded
from the EA hysteresis loops and spectra �see also Sec. VII�.
The minima at zero field are considerably sharper than for
size S indicating increasing importance of edge-domain ef-
fects. The acoustic SAF modes have with about 10 GHz at
zero field for A0 a slightly lower frequency than for size S,
which is either due to a smaller interlayer exchange or the
increasing nonuniformity of the SAF layer magnetizations
�resulting, e.g., on the EA in the observed stepwise switching
in the SF region�. Finally, the overall mode spacing has no-
ticeably decreased compared to size S, as should be ex-
pected.

c. Size L. In the spectra of pillar size L �Fig. 3�e��, the
minima in the modes F0 and F1 at �70 mT reach, as for
size M, markedly lower frequencies than for size S. Both F0
and F1 are strongly deformed in the vicinity of their minima
and may even cross each other. The minimum at zero field
has still become slightly deeper, the impact of edge domains
now being dominant. Contrary to size S, the shape of the
modes in the low- and medium-field region is strongly de-
vice dependent and sensitive to small changes in the field
direction.

IV. OUTCOMES AND LIMITS OF THE MACROSPIN
MODEL

Before making a detailed and rigorous analysis of the
field dependence of the modes frequencies in the next sec-

tion, we start by attempting to model the free-layer modes F0
using conventional Kittel fits. The aim is twofold: motivate
the need for a more elaborate analysis by showing quantita-
tive and qualitative limits of the macrospin approximation,
and obtain approximate starting values for the magnetiza-
tions.

Approximating the free layer as an isolated rectangular
platelet with only shape anisotropy, its ferromagnetic reso-
nance frequency is described by the well-known Kittel law,
which for EA applied field �x direction� reads

�2 = �0
2�Happl + Hk��Happl + �Nz − Nx�MS�

and for HA field �y direction�,

�2 = �0
2�Happl − Hk��Happl + �Nz − Ny�MS� ,

where MS is the saturation magnetization of the free layer
and Hk= �Ny −Nx�MS the in-plane shape anisotropy field.

Applying Kittel fits to the modes F0 in the high-field re-
gions of the spectra in Figs. 2 and 3, allows us to extract MS
and Hk for the different pillar sizes, independently for EA
and HA. Using the demagnetizing factors Nx, Ny, and Nz of
Ref. 19, we obtain from the modes F0 in the EA spectra the
following values for MS and Hk: for size S �0MS=1.14 T
�for most devices of size S �1.25 T� and �0Hk=37 mT, for
size M �0MS=1.04 T and �0Hk=35 mT, and for size L
�0MS=0.91 T and �0Hk=30 mT. In comparison, for the
modes FE, larger magnetizations �1.3–1.1 T� but much
smaller anisotropy fields �less than 12 mT� are obtained.
Similarly, the modes F0 on the HA yield for size S �0MS
=1.41 T and �0Hk=55 mT �universal for size S�, for size M
�0MS=1.40 T and �0Hk=76 mT, and for size L �0MS
=1.41 T and �0Hk=78 mT.

The minimum requirement for these values to be reason-
able approximations is that the magnetizations and shape an-
isotropy fields extracted from EA and HA spectrum of the
same device are roughly equal. However, as can be seen,
both MS and Hk are considerably larger on the HA, the dis-
crepancies becoming larger with increasing pillar size. In
addition, on the HA—and, if the mode FE is used, also on
the EA—the anisotropy fields are neither consistent with the
extracted magnetization nor with the anisotropies found by
astroid measurements19 �cf. Sec. II�. Therefore, treating the
free layer and the SAF as uncoupled systems consisting of
uniformly magnetized layers is obviously insufficient to de-
scribe the eigenexcitations of nanopillars. The next section
will be dedicated to a rigorous treatment of spin waves in a
coupled three-layer system with lateral confinement.

V. MODEL OF SPIN-WAVE MODES IN NANOPILLARS

A. Dipolar-exchange spin waves with quantized
wave vectors

1. Eigenexcitations of coupled three-layer system

An MTJ nanopillar consists basically of three confined
magnetic layers: the free layer, which will be labeled with
the index “F,” and below the two SAF layers—the reference
�top� layer and the pinned �bottom� layer—labeled with in-
dices “1” and “2,” respectively. The magnetization dynamics
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in each layer l� �F ,1 ,2� of this coupled three-layer system
is governed by the Landau-Lifshitz equation.

For small amplitude precessions, the magnetization
M� l�r� , t� can be decomposed in zeroth-order approximation
into a time independent uniform �U� equilibrium component
M� l

U �saturation magnetization Ml� and a small perpendicular
dynamical part �M� l

U�r� , t�. Static nonuniformities of the equi-
librium magnetization will be discussed in Sec. V B. The
dynamical component �M� l

U�r� , t� can be approximated as a
sum of plane spin waves,

�M� l
U�r�,t� = R�

k�
�M� l

U�k��eik�r�−i�k�t, �1�

where the wave vectors k� = �kx ,ky ,0� of the partial waves are
quantized due to the spatial confinement of the layers. The
out-of-plane component kz is zero for all modes in the ex-
perimental scope due to the very small layer thicknesses of
2–3 nm. The quantization of the in-plane components kx ,ky
will be discussed in detail later on. The frequencies �k� of the
partial waves are the eigenfrequencies of the three-layer sys-
tem.

In the effective fields acting on the magnetizations, the
following interactions have been taken into account: the ap-
plied field H� appl, the exchange-bias field acting on the bottom
layer of the SAF �coupling constant Jeb�, the interlayer ex-
change coupling of the SAF layers �coupling constant Jint�,
and the �intralayer� exchange interaction in each layer �ex-
change stiffness constant Al�, as well as the demagnetizing
fields and mutual dipolar coupling of the layers. For the de-
magnetizing fields, we use the standard tensor expression for
uniformly magnetized ellipsoidal bodies, where the diagonal
components of the diagonal �self-� demagnetizing tensors Nl
are the demagnetizing factors Nl

x, Nl
y, and Nl

z of the rectan-
gular layers. Although this approximation is expected to be
satisfying for the static demagnetizing field, it is rather crude
for the dynamical part since the dynamical magnetization is
nonuniform unless k� =0.

The fields resulting from mutual dipolar coupling
are given by analogous expressions where the
�self-�demagnetizing tensors of trace 1 are replaced by the
mutual demagnetizing tensors25 Nml of trace 0
�l ,m� �F ,1 ,2� , l�m�. For the given pillar geometry, Nml is
diagonal, too, as can easily be shown using the formulas for
the tensor components in Ref. 25. The diagonal components
will be referred to as the mutual dipolar coupling constants
Nml

x , Nml
y , and Nml

z .
Note that there is no significant perpendicular surface an-

isotropy at the top and the bottom surfaces of the layers in
MTJs, as has been demonstrated in Refs. 19 and 26. Since
the impact of the bias current on the experimental spectra has
been found to be negligible, we do not include current-based
interactions, such as spin torque or the Oersted field. The
latter does, e.g., not exceed 1 mT for a current of 0.3 mA and
an impact diameter of 100 nm.

With these approximations, the Landau-Lifshitz equations
of the three pillar layers become a system of 3�3=9
coupled linear equations for the components of the dynami-
cal magnetizations �M� l

U�k��. It can be solved as the eigen-

value problem of the 9�9 coefficient matrix F of the nine-
component vector ��M� F

U�k�� ,�M� 1
U�k�� ,�M� 2

U�k��� describing the
dynamics of the three-layer system as a whole. The eigen-
values of F are the eigenexcitations �k� of the three-layer
system and can be calculated numerically as a function of the
applied field, yielding the expected spin-wave spectra
�k��Happl� of the nanopillar.

2. Quantization of in-plane wave vector

The in-plane components kx ,ky of the wave vector are
determined by the boundary conditions �BCs� imposed on
the dynamical magnetization �Eq. �1�� at the lateral layer
boundaries x= �Lx /2 and y= �Ly /2. For simplicity, we will
consider the x component �along the long edge of the rect-
angle� as an example, where any of the following statements
hold equally for the y component with x and y permuted.

For the x component, the BC reads

	 �

�	x
�M� l

U�	x,	y� � dx
��M� l

U�	x,	y�

	x=�1/2

= 0, �2�

where 	x=x /Lx. Equation �2� is a modified version of the
effective BC derived by Guslienko et al.9 for thin magnetic
stripes. In difference to Ref. 9, we allow for different pinning
parameters dx

+ and dx
− at opposite boundaries x= �Lx /2 to

account for potential asymmetries in the pinning expected
from a real device. Moreover, instead of using the analytical
expression �5� in Ref. 9 to calculate the �dimensionless� pin-
ning parameters, we will extract approximate values for dx

�

from the experimental spectra �see Secs. VI and VII�.
Applying the BC �Eq. �2�� to the sinusoidal mode profile,

Reik�r� = sin�kxx + 
x�sin�kyy + 
y� , �3�

of the partial spin waves in �M� l
U �Eq. �1�� yields for the

wave-vector component kx and the phase 
x the quantization
conditions,

�kxLx cot��kx
Lx

2
+ 
x� = dx

�. �4�

It is convenient to express kxLx in the argument of the cotan-
gent as multiples of �, thus defining the—in general,
nonintegral—mode numbers,

nx =
kxLx

�
�5�

of the quantized spin-wave modes �nx ,ny�.
For symmetric pinning, dx

+=dx
−=dx, it follows from Eq.

�4� that the cotangent has to be antisymmetric, yielding

x

s =� /2 or 
x
a=0, i.e., symmetric or antisymmetric wave

functions �Eq. �3��. In the limiting case of totally unpinned
BC, dx=0, the mode numbers nx

0 are integers, starting at 0,
and the corresponding wave functions alter between symmet-
ric and antisymmetric for successive mode numbers, starting
with symmetric, such that there are always antinodes at both
boundaries.

For finite values dx
0 of the pinning, the mode numbers
nx are no longer integers. Plotting nx versus dx by means of
Eqs. �4� and �5� shows that with increasing dx, the deviations
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�nx of nx from the corresponding integral values nx
0 of the

unpinned case increase continuously from �nx=0 for dx=0
�unpinned� to �nx=1 for dx=� �totally pinned�. Therefore,
the mode numbers for total pinning, nx

�=nx
0+1, are integers

again. For a fixed intermediate value dx, the deviation �nx of
the mode number nx from the corresponding integral mode
number nx

0 is found to rapidly decrease with increasing nx
0.

For a given pinning, the mode numbers are therefore no in-
dependent variables once one mode number �e.g., that of the
lowest mode� has been fixed, all other mode numbers are
fixed, too.

In case of slightly asymmetric pinning, dx
+�dx

−, the phase

x differs from the values 
x

s,a by a small phase shift �
x,
such that the wave functions are no longer totally symmetric
or antisymmetric. In this case, the mode numbers nx are nec-
essarily nonintegral. In the hypothetic case of totally asym-
metric pinning, dx

+=0 and dx
−=� �or vice versa�, �nx=0.5

and �
x=�
x
max=� /4. For arbitrary pinning, �
x is an un-

known function of dx
� and nx.

The pinning for a given in-plane direction of a magnetic
element depends on its dimensions and in addition on the
inhomogeneity of the internal field.4,9,27 Consequently, the
mode numbers are expected to be larger for the x direction
than for the y direction of the same pillar, and possibly dif-
ferent for easy-axis and hard-axis applied field.

B. Expected experimental sensitivity

1. Formulation of the problem

As described in Sec. II, the experimental spin-wave spec-
tra are obtained by measuring the voltage noise of the pillar.
To be more precise, we measure the average of the local
voltage noise over the pillar area. The local voltage noise is
the product of the local current density and the local magne-
toresistance �MR� noise generated by spin waves in the FL
and the RL. In the ideal case of a homogeneous in-plane
distribution of the current, the measured voltage noise is pro-
portional to the average of the local MR noise. For the sake
of simplicity, we will derive the expected MR noise for ex-
citations in the FL, where the analogous expressions for the
RL are obtained by permuting the indices F and 1. The con-
sequences of inhomogeneities will be discussed later in this
section.

The MR noise signature of a partial spin wave with wave
vector k� representing the FL mode �nx ,ny� is in linear order
given by the square of

�RF�k�� =
1

Spil



Spil

M� 1�r�� · �M� F
U�k��Reik�r�dr� , �6�

where Spil is the pillar area, M� 1�r�� the micromagnetic equi-
librium magnetization of the RL, �M� F

U�k�� the amplitude vec-
tor, and Reik�r� the spatial dependence �wave function� of the
spin wave in the FL �cf. Eq. �1��. Decomposing M� 1�r�� as
before into a uniform macrospin component M� 1

U, dominating
in the central �volume� part of the layer, and the remaining
r�-dependent edge-domain components �M� 1

E�r��, yields as fi-
nal expression for the MR variation �6�,

�RF�nx,ny,
x,
y,�� = �MF
U�k���M1

V���W̄x�nx,
x�W̄y�ny,
y�

+ �Ml
E�nx,ny,
x,
y,��� . �7�

The first term, M1
VW̄xW̄y, is the contribution of the uniform

volume magnetization to the MR noise �hence the super-
script V�. M1

V���=sin �M1 is the projection of M� 1
U onto

�M� F
U�k��, where � denotes the angle between the macrospins

of FL and RL. W̄x and W̄y are the integrals of the x- and
y-dependent factors of the wave function �Eq. �3��, respec-
tively.

The second term, �M1
E, is the contribution of the static

edge-domain magnetization components of the RL to the
noise signature of the �volume� FL mode �nx ,ny� �not to be
confused with edge modes�. It is the spatial average of the
projection of �M� 1

E�r�� onto �M� F
U�k�� weighted by the wave

function �Eq. �3��.
Mathematical expressions for W̄x�W̄y� and �M1

E as well as
details on the derivation of Eq. �7� can be found in Appendix
A. For the following discussion, it is sufficient to consider
the leading-order terms of these quantities listed in Table I.

The terms M1
V and �M1

E, resulting from the equilibrium
magnetization, obviously depend on the static micromagnetic

TABLE I. Dependence of the magnetoresistance noise �Eq. �7��
on the static micromagnetic configuration of layer l� �F ,1� and
the mode character. �a� Leading-order contributions of volume
magnetization, Ml

V��� and edge-domain contributions,

�Ml
E�nx ,ny ,
x ,
y ,��, versus easy-axis and hard-axis applied field

in different field regions. �lm is the Kronecker symbol. �b� Leading-

order terms of integral W̄x�nx ,
x� of the wave function versus the
mode number nx=nx

0+�nx in the regime of weak and strong pin-

ning. W̄y is given by analogous expressions.

�a�
Field region Ml

V��� �Ml
E

Easy axis

Below second SF H�HSF2 Ml sin �0

P state High H Ml��

Low H Ml�� �Ml
E

AP state Low H Ml�� �MF
E�lF

High H Ml�� �M1
E�l1

Above SF H
HSF Ml sin �0

Hard axis

�H�
0 Ml sin �0

H�0 Ml�� �Ml
E

�b�

Mode number nx
0

Integral W̄x�nx ,
x�

For weak pinning
��nx�1�

For strong pinning
��nx�1�

0 1 2 /�

Odd �
x /nx ·2 /� �
x�1−�nx� /nx

Even �nx /nx 1 /nx ·2 /�
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configuration of the pillar layers. The quantities W̄x, W̄y, and
again �M1

E, involving the wave function, depend on the sym-
metry properties of the spin-wave mode. In the following, we
will show which modes are expected to be observed in the
experimental spectra under which conditions by analyzing
the micromagnetic configuration and mode character depen-
dence of the experimental sensitivity.

2. Micromagnetic configuration dependence of sensitivity

The micromagnetic configuration of the pillar is sensitive
to direction and strength of the external field, which is why
in the following we distinguish between easy-axis and hard-
axis applied field and identify field regions of distinct values
Ml

V and �Ml
E �l� �F ,1��.

The largest contributions to the MR noise and hence high-
est sensitivity are expected in the field regions of maximum
volume magnetization contributions Ml

V���, i.e., where
sin ��0. As can be seen from Table I�a�, a large zeroth-
order term sin �0 is found for nonzero HA fields, above the
SF at positive EA fields and below the SF at negative EA
fields. In the AP and the P state, sin �0=0, such that the
leading-order terms are of first order in ��. �0 thereby de-
notes the angle between the FL and the RL macrospins in
case of an ideal pillar, and �� a small deviation of � from �0
caused by a misalignment of the exchange-bias field or the
external field with the symmetry axes of the layers.

The presence of edge domains on the EA, as marked in
Table I�a�, can be deduced from the hysteresis loops, as is
explained in detail in Appendix A 1. Whether these edge
domains give nonzero contributions �Ml

E to the MR noise
depends on the symmetry properties of both the micromag-
netic state and the wave functions �see Appendix A 2 for
details�.

In summary, high sensitivity to both FL and SAF modes
can be expected on the HA at any finite field value and on the
EA above the SF at positive fields. Weak higher modes will
therefore be visible, if at all, in these field regions �cf. Figs. 2
and 3�. The sensitivity below the SF at negative EA fields is
also enhanced, though substantially less than for the other
two cases. The change in intensity can be nicely seen in Fig.
2�a� at −140 mT, and in Fig. 2�c� at −105 mT.

For EA fields between the two SF fields, i.e., in AP and P
state, modes become visible only through the misalignment
�� of the macrospins or through edge domains of appropri-
ate symmetry. From the latter, slightly increased sensitivity is
expected for FL modes in the AP state at high positive fields
just below the SF, and for both FL and SAF modes at low
fields in P and AP states. The presence of edge domains may
thereby entail the appearance of the corresponding edge
modes in the spectra.

3. Mode character dependence of sensitivity

The quantities W̄x, W̄y, and �M1
E depend on the symmetry

properties of the wave function of the mode �nx ,ny�. As the
edge-domain contributions become effective mainly in the
low-field region, in which our model is in any case not ex-

pected to be accurate, we consider only the integrals W̄x and

W̄y belonging to the volume magnetization contribution Ml
V,

dominating at high fields.

In Table I�b� the leading-order terms of W̄x are listed as a
function of the mode number nx=nx

0+�nx in the regime of
weak and strong pinning. nx

0, �nx, and �
x are thereby de-

fined as in Sec. V A. The y-dependent factor W̄y is given by
analogous expressions.

For zero pinning ��nx=�
x=0�, the fundamental mode
nx

0=0 is the only visible mode. In the presence of pinning,
the higher modes nx

0�1 begin to appear: for symmetric pin-
ning ��nx
0, �
x=0� only those with symmetric wave
functions �even nx

0�, in case of asymmetric pinning
��nx
0, �
x�0� also those with antisymmetric wave
functions �odd nx

0�.
For weak pinning ��nx�1�, W̄x is for all higher modes

nx
0�1 of first order in a small quantity: in �nx for even nx

0, in
�
x for odd nx

0. In Appendix A, we show that the expected
intensities of the higher modes �nx

0 ,ny
0�= �1,0�, �0,1�, and

�2,0� are about two orders of magnitude lower than that of
the fundamental mode �nx

0 ,ny
0�= �0,0�, whereas the mode

�nx
0 ,ny

0�= �1,1� is expected to have a four orders of magni-
tude lower intensity than �0,0�.

For strong pinning ��nx�1�, the natural reference mode
numbers are the mode numbers nx

�=nx
0+1 of total pinning:

even �odd� nx
0 in the table correspond to odd �even� nx

�. W̄x
for symmetric wave functions �even nx

0, odd nx
�� has now

become a zeroth-order quantity like for the lowest mode
nx

0=0�nx
�=1� whereas for antisymmetric wave functions

�odd nx
0, even nx

��, it has become second order in �1−�nx�
and �
x. Consequently, the lowest higher-order modes close
to �nx

� ,ny
��= �3,1� and �1,3� will have intensities comparable

to that of the fundamental mode �nx
� ,ny

��= �1,1�. Modes with
an even mode number nx,y

� are expected to be at least four
orders of magnitude weaker than �1,1�.

The above results on the expected relative mode intensity
have been obtained under the assumption of homogeneous
current density and homogeneous saturation magnetizations.
Under these conditions, the voltage noise is proportional to
the MR noise, and—at high fields where the edge-domain
contributions are negligible—the MR noise is proportional to

�W̄xW̄y�2. As we have seen, in this case higher modes become

visible if the integrals W̄x and W̄y are nonzero, that is for
nonzero asymmetric pinning. However, even in the absence
of pinning, the measured voltage noise can be nonzero,
namely, if the saturation magnetization or the current distri-
bution are inhomogeneous because then the average �Eq. �6��
over the pillar area becomes an integral of a generally
unharmonic—and for asymmetric inhomogeneities also
asymmetric—function. For real devices, we may therefore
expect finite sensitivity to most of the higher modes.

VI. EXTRACTION OF MATERIAL PARAMETERS

In Sec. V A, we have derived the mode frequencies �k� as
a function of the material parameters Ml, Al, Jeb, and Jint, and
the geometry parameters �Lx ,Ly�, �Nl

x ,Nl
y ,Nl

z�, and
�Nml

x ,Nml
y ,Nml

z �, as well as the mode numbers �nx ,ny�. In this
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section, we will finally extract these parameters from the
experimental spectra. Since the model is based on the as-
sumption of uniform equilibrium magnetizations, its applica-
tion can be expected to be reasonable only for the smallest
pillar size S, for which the nonuniformities of the magneti-
zation had been found to be minimum. Following the experi-
mental evidence, we assume that in the EA spectra, the
modes F0 and F3, and in the HA spectra, the modes F0 to F5
and A0, A1 are �at sufficiently high fields� volume modes
describable by the model.

As a matter of fact, not all of the above quantities are free
input parameters to the model. In Appendix B, we show that
on the basis of the measured layer dimensions, basic OOMMF

simulations, previous works published in the literature, and a
couple of reasonable assumptions, the number of free param-
eters can be reduced to the following quantities: the three
mutual dipolar coupling constants NF1

x , NF2
x , and N12

x ; mag-
netization MF and exchange stiffness constant AF of the free
layer; interlayer exchange Jint and exchange bias Jeb of the
SAF; the mode numbers of the lowest FL and SAF mode.

Also in Appendix B, we extract minimum and maximum
values for the remaining parameters by adjusting the calcu-
lated modes and hysteresis loops to the corresponding ex-
perimental data �Figs. 2, 3�a�, and 3�b��. In particular, we
show that from the experimental constraints, it follows that

the pinning of the magnetization at the boundaries must be
weak.

Best overall agreement of experiment and theory is ob-
tained for the parameters in Table II. The calculated spectra
and hysteresis loops are shown in Fig. 4. In the following,
we will point out similarities as well as differences between
experiment and theory, and will discuss the “technical” reli-
ability of the parameter values. The physical consequences
are subject of the next section.

The HA spectra �Figs. 3�a� and 4�c�� show quantitative
agreement for the FL modes F0 to F3 at medium and high
fields, and for the lowest SAF mode A0 at high negative field
only. However, there is no calculated mode corresponding to
the mode F4; the frequency of the mode f21, which is the
next-higher mode after f20/f11, is much too high for F4. A
possible reason for this discrepancy might be our for higher
modes rather crude approximation of the dynamical demag-
netizing field �see below�. The systematic asymmetry of the
SAF modes, resulting in a much lower frequency of A0 at
positive field, cannot be accounted for by a tilting of the field
w.r.t. to the HA, as this would affect both FL and SAF modes
as well as the hysteresis loop. It might rather be caused by a
misalignment of the exchange-bias field, determining the
magnetic symmetry axis of the SAF, with the geometrical
symmetry axes of the rectangle, coinciding with the mag-

TABLE II. Material and geometry parameters used to calculate the spectra and hysteresis loops in Fig. 4.
Error bars for the parameters are given in the text. The labels fmn and amn associated to the mode numbers
are those in Fig. 4.

Parameter Extracted value

Saturation magnetization �0MF,1 1.27 T

�0M2 1.4 T

Exchange stiffness AF,1 18.0�10−12 J /m

A2 14.0�10−12 J /m

Exchange bias Jeb 4.5�10−4 J /m2

Interlayer exchange Jint −3.9�10−4 J /m2

Lateral pillar dimensions Lx 100 nm

Ly 60 nm

Demagnetizing factors �NF
x ,NF

y ,NF
z � �0.035,0.065,0.9�

�N1,2
x ,N1,2

y ,N1,2
z � �0.027,0.049,0.924�

Dipolar coupling constants �NF1
x ,NF1

y ,NF1
z � �0.01,0.018,−0.028�

�NF2
x ,NF2

y ,NF2
z � �0.005,0.009,−0.014�

�N12
x ,N12

y ,N12
z � �0.007,0.012,−0.019�

Mode numbers easy axis �nx ,ny� f00, a00: �0.4,0.0�
f10, a10: �1.13,0.0�
f01, a01: �0.4,1.0�
f20, a20: �2.05,0.0�
f11, a11: �1.13,1.0�

Mode numbers hard axis �nx ,ny� f00, a00: �0.2,0.0�
f10, a10: �1.05,0.0�
f01, a01: �0.2,1.0�
f20, a20: �2.02,0.0�
f11, a11: �1.05,1.0�
f21, a21: �2.02,1.0�

HELMER et al. PHYSICAL REVIEW B 81, 094416 �2010�

094416-10



netic symmetry axes of the free layer. In the zero-field re-
gion, the differences between calculated and experimental
HA spectra become substantial, as the measured modes de-
velop pronounced minima whereas the model predicts a local
frequency maximum.

On the EA �Figs. 2�a� and 4�a��, the calculated modes f00
and f20/f11 fit the average experimental modes F0 and F3
�see Sec. III A� rather well. In particular, the gap opening in
the mode F0 is reproduced in the theoretical spectrum. The
modes f01 �F2�, and—if none of the unidentified modes U is
F1—also f10, are not observed in the experimental EA spec-
tra. Their absence is likely to be due to either an overall lack
of intensity, first noticeable for the weakest modes or a lower

sensitivity to these particular modes on the EA, although our
considerations in Sec. V B yield no satisfying explanation
for the different visibility for EA �above the spin flop� and
HA field. For the SAF modes, there can be only qualitative
agreement due to the multiple SF in the experiment, which—
like the low-frequency supposed edge modes FE—can of
course not be described by a macrospin-based model. Fi-
nally, the calculated hysteresis loops in Figs. 4�b� and 4�d�
are in qualitative agreement with the measured loops.

Main error sources for any of the parameters are obvi-
ously the various assumptions in Sec. V A and Appendix B.
In particular, our representation of the dynamical demagne-
tizing field in the standard tensor expression for uniformly
magnetized ellipsoidal bodies can be expected to be a rea-
sonable approximation only for the lowest mode because
there the dynamical magnetization is indeed almost uniform.
As we extract all material parameters except for the ex-
change stiffnesses from this mode, their values are only little
affected by this approximation. Moreover, in small magnetic
elements, the exchange interaction is the dominating contri-
bution to the frequencies of the higher modes and not the
dipole interaction.

The value of �0MF is found to be between 1.25 and 1.3 T,
AF is expected to lie in the interval �18�3��10−12 J /m.
Under the assumptions of Appendix B, the same holds true
for M1 and A1. The error of M2 and A2 is significantly larger
than for the FL and the RL because of the additional
dependence on the thin-film value of the CoFe layer
and the ignorance of the experimental exchange bias
and the actual SF field. �0M2 is expected to be contained in
the interval �1.4�0.1� T and A2 in �16�4��10−12 J /m.
Jint is estimated to be �−4.0�0.4��10−4 J /m2 and
Jeb�4.2�0.7��10−4 J /m2.

The mode numbers of F0 �f00� have to be smaller than
�0.6,0.0�, or �0.3,0.2� for ny 
0, in order to ensure satisfac-
tory agreement in frequency and a reasonable value for AF.
The agreement is better, if the mode numbers are chosen
smaller on the HA than on the EA, and nx
ny. For the sake
of simplicity, we have therefore set ny =0.

NF1
x =0.01 and NF2

x =0.005 are uniquely determined by the
experimental constraints with a maximum deviation of
�0.002. The deviations of �10 nm of the lateral dimensions
Lx ,Ly from the mean values will change all geometry related
parameters accordingly.

VII. DISCUSSION

In the previous sections, we have modeled the spin-wave
spectra of MTJ nanopillars as eigenexcitations of a coupled
three-layer system with lateral confinement. In this section,
we will see, which properties of the experimental spectra can
be explained in the scope of this analytical model and which
cannot. First, we will discuss the material parameters of the
pillar extracted from the high-field regions of the spin-wave
spectra. Thereafter, the low-field anomaly of the spectra and
its relevance for applications will be discussed. Finally, we
will summarize the properties of the experimental spectra,
which are beyond the approximations of our model, includ-
ing the pillar size dependence.

FIG. 4. �Color online� Calculated mode frequencies versus mag-
netic field along �a� easy axis and �c� hard axis for a pillar of size S.
Panels �b� and �d� show the corresponding calculated hysteresis
loops. The parameters used to calculate the spectra are given in
Table II. The modes f20 and f11 have practically identical fre-
quency, which is why only one mode is displayed. In panel �a�,
filled symbols are used for ascending field �P→AP→SF� and open
symbols for descending field.
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A. Material and geometry parameters

In this section, we will discuss the physical relevance of
the extracted parameter values of the pillar in Table II. With
1.27 T, the saturation magnetization of the Co60Fe20B20 lay-
ers of the pillar is significantly reduced compared to the thin-
film value of �1.8�0.1� T �Refs. 19 and 28� or the bulk
value for the underlying Co75Fe25 of �2.2�0.1� T.29,30 A
reduction in the magnetization in nanopillars has already
been observed in previous studies on pillar devices.14,16,31

Three scenarios are usually suggested to account for this
phenomenon: process-induced damages,19,32 current-induced
heating,33,34 or a nonlinear change in the frequency with high
mode amplitude.35 As we work with low bias current,
current-induced heating can be excluded in our case. Simi-
larly, since spin-torque-induced auto-oscillations in our
samples occur typically for currents above 1.6 mA for size
L,23 high amplitude nonlinear effects as possible cause can
be rejected, too. Therefore, some sort of process damage,
such as ion implantation, diffusion, intrinsic chemical modi-
fications, or interface effects, must be at the origin of the
magnetization reduction, whose further investigation exceeds
the scope of this paper.

Concerning the boundary conditions and exchange stiff-
ness, we have come to the following conclusions: Strong
pinning can be ruled out in our pillars �see Sec. VI�; reason-
able agreement between calculated and experimental data is
obtained under the assumption of weak pinning. The pinning
parameter deduced from the extracted mode numbers is with
d�1 about ten times smaller than the one calculated by
means of Eq. �5� in Ref. 9 �d�10� when using the material
parameters of Table II. Any value of d substantially larger
than 3 is found to yield mode numbers for the lowest mode
very close to 1, i.e., strong pinning. This discrepancy be-
tween our result and the predictions of Guslienko’s analytical
model9 is not understood, as the latter is expected to be valid
in the regime of element thicknesses smaller than the ex-
change length as well.

We emphasize that, just as the magnetization, the ex-
change stiffness of the free layer does not exceed 2/3 of the
thin-film value, independent of the boundary conditions.
Therefore, the magnetic properties of the nanopillar can by
no means be described by the values measured on the unpat-
terned thin films.

The mutual dipolar coupling accounts for several features
of the experimental spectra. In the HA spectra, the mutual
dipolar coupling of the FL and the SAF raises the frequency
minima of F0 by several gigahertz, pushes them to slightly
higher fields, and lowers the slope of the modes, reducing
their frequency at �190 mT by about 1 GHz. It also causes
the bell shape of the HA hysteresis loop, by forcing the pillar
into the AP state at low fields, and smoothes out the sharp
bends at the anisotropy fields, which are observed in the case
of an uncoupled free layer.

In the EA spectra, the gap openings in the mode F0 stem
from the anticrossing of F0 with the acoustic SAF modes due
to coupling-induced mode hybridization. Finally, the net di-
polar coupling field created by the SAF layers and favoring
the antiparallel configuration of the pillar causes a shift of 5
mT of the EA hysteresis loops to negative fields, which is

approximately 50% of the observed total shift. The remain-
ing 50% may be due to an unequal reduction in the coercive
fields at positive and negative fields, which occurs if the
micromagnetic configuration causes the FL to switch more
easily from the P state to the AP state, than from the AP state
to the P state. Indeed, the FL magnetization is expected to be
more nonuniform—and consequently easier to switch—in
the low-field P state because of the mutual dipolar coupling
field pointing antiparallel to the magnetizations in the P state
but parallel in the AP state.

Within the diagonal tensor approximation of the mutual
dipolar coupling, the tensor components are found to be sig-
nificantly smaller than the values predicted by the formalism
developed by Newell et al.25 or by the simplified version
using for the in-plane components of the mutual dipolar cou-
pling tensor the corresponding components of the self-
demagnetizing tensor, as is commonly practiced when mod-
eling flip-flop switching in magnetoresistive random access
memory cells.36,37 The coupling between, e.g., the free layer
and the reference layer of our pillars would be overestimated
by Ref. 25 by a factor of 2, and by Refs. 36 and 38 by a
factor of 3. A possible explanation for this reduction in the
interlayer dipolar coupling may be that the coupling field
extracted from the experiment is actually an effective mutual
dipolar coupling field comprising the dipolar coupling due to
the charges at the lateral layer boundaries as well as some
Néel-type coupling resulting from the correlated roughness
of the three magnetic layers. This orange-peel coupling may
partially compensate the antiparallel coupling due to the
charges at the layer edges. Another possibility is a reduction
in the dipolar coupling due to the nonuniformity of the mi-
cromagnetic magnetization at the layer edges, though this
effect should be small at high fields.

Finally, the extracted exchange-bias energy and the inter-
layer exchange coupling are consistent with the large body of
dedicated literature �see, e.g., the values in Appendix B 2�.

B. Low-field behavior and its relevance for applications

In Secs. II and III, we have seen that at low fields, both
EA and HA spectra show for all three pillar sizes unmistak-
able signs of nonuniform magnetizations: in the HA spectra,
the FL modes possess at zero field, instead of the local maxi-
mum predicted by the model, sharp minima, whose depth
increases with increasing pillar size, indicating increasing
nonuniformity of the magnetization. In fact, the modes F0
and F1 are likely to change character from volume modes at
high and medium fields to edge modes at low field. The EA
spectra contain low-frequency edge modes FE, which be-
come progressively deformed around zero field for increas-
ing pillar size, i.e., for increasing nonuniformity of the mag-
netization.

The nonuniformities of the magnetizations are expected to
influence the switching dynamics of the pillar. The first con-
sequence is that they lower the coercive field �as discussed in
the previous paragraph�, thus enlarging its difference to the
shape anisotropy field. This effect has indeed been found to
be particularly strong for size L �see Sec. II�. More impor-
tantly, the fact that the lowest mode is not the uniform mode
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but an edge mode, will affect the magnetization reversal path
in current-induced switching, favoring nonuniform reversal
paths, as has already been concluded indirectly from reversal
speed experiments.39

C. Spin-wave phenomena beyond the analytical
approximations

Based on the assumption of macrospin equilibrium
magnetizations, our model is certain not to describe any
effect resulting from nonuniformities of the magnetization.
This is the case, e.g., for the low-field behavior discussed in
the previous paragraph, or the occurrence of more than one
spin-flop transition of the SAF at positive EA field.
However, even for high fields and pillar size S where the
model is expected to work reasonably well, there are
qualitative discrepancies between calculated and
experimental spectra in frequency or visibility of higher-
order modes.

Similarly, the high-field evolution of the spin-wave spec-
tra with the pillar size is not consistent with the predictions
by the model. Although the model allows to reproduce quali-
tatively the EA spectra for pillar size L under reasonable
assumptions, it fails for the high-field HA spectra.

VIII. CONCLUSIONS

In this paper, we have studied the magnetic field depen-
dence of the mode frequency of thermally excited spin waves
in rectangular-shaped MgO-MTJ nanopillars of different lat-
eral sizes. The spin-wave spectra �frequency versus easy-axis
and hard-axis applied field� of individual devices were ob-
tained using spectrally resolved electrical-noise power mea-
surements.

In all spectra, several independent quantized spin-wave
modes stemming from eigenexcitations in the free layer and
the SAF layers of the MTJ have been observed. By diago-
nalizing the dynamical matrix of a system of three coupled,
spatially confined magnetic layers, we have modeled the
mode frequencies for the smallest pillar size, 60�100 nm2,
obtaining quantitative agreement for a majority of modes at
high and medium applied fields. Our ability to detect a par-
ticular spin-wave mode depends on the static micromagnetic
configuration of the layers as well as on the symmetry prop-
erties of the mode. With the help of these discrimination
criteria, we could identify the observed modes and extract
the material parameters of the pillar �Table II�. The magne-
tizations and exchange stiffness constants were found to be
significantly reduced compared to the corresponding thin-
film values whereas the interlayer exchange coupling and the
exchange bias are consistent with their thin-film counter-
parts. The interlayer dipolar coupling between the different
layers could be well described in terms of an effective mu-
tual dipolar coupling. Moreover, we could infer that the pin-
ning of the magnetizations at the lateral boundaries must be
weak.

Finally, at low fields and for larger pillar sizes, there is
clear evidence for strong nonuniformities of the layer mag-
netizations, leading to qualitative differences between calcu-
lated and measured spin-wave frequencies.
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APPENDIX A: DERIVATION OF MAGNETORESISTANCE
NOISE SIGNATURE

In this appendix we derive Eq. �7� and the leading-order
terms in Table I starting from Eq. �6� The first step is to
evaluate the dot product in Eq. �6� of the dynamical magne-
tization �M� F

U�k�� of the FL with the equilibrium magnetiza-
tion M� 1�r�� of the RL. Since �M� F

U�k�� is perpendicular to the
macrospin component M� F

U, the dot product of �M� F
U�k�� with

M� 1
U can be expressed in terms of the angle � between the

macrospins M� F
U and M� 1

U of the two layers. Similarly, decom-
posing �M� 1

E�r�� into a component �M1,�
E �r�� parallel to the

macrospin M� 1
U, and a component �M1,�

E �r�� perpendicular to
M� 1

U, allows to evaluate the dot product of �M� 1
E�r�� with

�M� F
U�k��. With that the MR variation �6� becomes

�RF�k�,�� = �MF
U�k���M1

V�k�,�� + M1
E�k�,��� , �A1�

where

M1
V�k�,�� = sin �M1W̄x�nx,
x�W̄y�ny,
y� , �A2�

W̄x�nx,
x�W̄y�ny,
y� =
1

Spil



Spil

Reik�r�dr� , �A3�

and

M1
E�k�,�� =

1

Spil



Spil

�cos ��M1,�
E �r�� + sin ��M1,�

E �r���Reik�r�dr� .

�A4�

As the edge-domain contributions �Eq. �A4�� are relevant
only on the EA in P and AP states where � is basically 0 or
�, the term with sin � in Eq. �A4� is in all practical cases
negligible, such that only the term �M1,�

E �r��=�M1,y
E �x ,y� re-

mains.
In the following, we derive the leading-order terms of

these quantities listed in Table I.

1. Micromagnetic configuration dependence

Decomposing � into the angle �0 between the two mac-
rospins for an ideal pillar, and a small deviation �� due to
misalignments, sin � and cos � in M1

V�k� ,�� and M1
E�k� ,�� can

be expanded in �� about �0, where the leading-order terms
for the different field regions are summarized in Table I. The
underlying values of �0 are as follows: for EA applied field,
�0=0 in the P state, �0=� in the AP state, and 0��0��
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above the SF at positive fields, and below the secnd SF at
negative fields. For HA field, �0 decreases continuously from
� at zero field to a value close to � /2 at the saturation field
of the FL, and finally toward zero as the RL magnetization
continues to tilt toward the HA.

The presence of edge domains on the EA can be deduced
from the hysteresis loops: deviations of the resistance from
its saturation values in P and AP states indicate nonuniformi-
ties of the FL and/or the RL magnetization. For example, in
the P state, the resistance increases continuously when the
�ascending� field approaches the switching field to
the AP state, both magnetizations being subject to an
increasing effective antiparallel field consisting of the
�self-�demagnetizing field, the mutual dipolar coupling field,
and the external field as soon as it becomes positive.

In the AP state, at low negative field just before the
switching to the P state, both the external field and the inter-
layer dipolar coupling field are parallel to the magnetization
of the RL, thus partly suppressing the edge domains created
by the �self-�demagnetizing field; in contrast, edge domains
in the FL are only suppressed by the interlayer dipolar cou-
pling field but enhanced by the external field. Indeed, the
resistance in the low-field AP sate departs much less from AP
remanence than it does from the P remanence in the low-field
P state.

Finally, in the high-field AP state, the resistance starts to
decrease continuously already long before the SF transition
due to increasing nonuniformities of the RL magnetization,
which is pointing antiparallel to the high external field.

On the HA, edge-domain contributions are negligible
compared to the zeroth-order contributions of the volume
magnetization, except for zero field where the macrospins
are antiparallel.

2. Mode character dependence

By means of Eqs. �3� and �5�, the two integrals W̄x and W̄y
over the layer dimension in directions x and y, respectively,
are easily evaluated as

W̄x�nx,
x� =
2

nx�
sin�nx

�

2
�sin 
x, �A5�

where W̄y�ny ,
y� is given by an analogous expression.
Decomposing the mode numbers and the phase as

in Sec. V A, nx=nx
0+�nx and 
x=
x

0+�
x, where

x

0=� /2+nx
0 ·� /2 is the phase for symmetric pinning,

W̄x�nx ,
x� can be expanded in �
x�1 and either �nx�1
�weak pinning� or �1−�nx��1 �strong pinning�. The result
as a function of nx is shown in Table I�b�.

The edge-domain contributions �Ml
E to the MR noise in

the P and AP states can be evaluated on the basis of symme-
try considerations. In spite of a nonuniform equilibrium mag-
netization, �Ml

E is zero if the product of the wave function
and the function describing the spatial dependence of the y
component of the edge-domain magnetization under the in-
tegral �Eq. �A4�� is either zero or antisymmetric in x or y
coordinate. For strong pinning, the product of the two func-
tions is zero �or negligibly small� because near the layer

edges, where the edge-domain magnetization is nonzero, the
wave function has minimum amplitude due to the pinning.
Significant contributions from edge domains can be expected
for weak pinning only. In this case, the integral �Eq. �A4��
will vanish for certain modes if the magnetization for a given
micromagnetic state is invariant under reflection or rotation
or a combination of both. The flower state, e.g., is invariant
under reflections about x and y axes, i.e., the y component of
the magnetization is antisymmetric in both x and y coordi-
nates. �Ml

E is therefore nonzero only for modes with two odd
mode numbers. Similarly, it can be shown that for the S state,
�Ml

E is nonzero for modes, whose mode numbers are either
both odd or both even; the C state renders modes with odd nx
visible.

Finally, we derive the expected relative intensity of the
modes. �nx for weak pinning or �1−�nx� for strong pinning
are of the order 0.1. We may assume that for small asymme-
tries of the pinning, �
x is at most of the same order of
magnitude as �nx �or �1−�nx��. Therefore, for weak pin-

ning, W̄x�nx
0�1��0.1 /nx is one order of magnitude smaller

than W̄x�nx
0=0��1, and we expect to observe in addition to

the quasiuniform mode close to �0,0� higher modes with
mode numbers close to �1,0�, �0,1�, �2,0�, �0,2�, and possibly

�3,0�. Their intensities, being proportional to �W̄xW̄y�2, scale
with factors quadratical in �
x,y or �nx,y, and are therefore
two orders of magnitude lower than that of �0,0�. The inten-
sities of all other modes, such as �1,1�, are of forth order in
�
x,y and �nx,y, or strongly reduced by the factor 1 / �nxny�2,
and therefore most likely too weak to be detected.

For strong pinning and even nx
0, W̄x�nx

0�1��1 /nx is of

the same order of magnitude as W̄x�nx
0=0��1. In contrast,

for odd nx
0, W̄x�nx

0�1��0.01 /nx is two orders of magnitude

smaller than W̄x�nx
0=0�. Consequently, the higher modes

close to �3,1�, �1,3�, and �5,1� will have intensities compa-
rable to that of the fundamental mode close to �1,1�, or one
order of magnitude lower due to the factor 1 / �nxny�2.

APPENDIX B: DETAILS ON EXTRACTION
OF MODEL PARAMETERS

In this annex, we present the arguments used to extract the
material parameters Ml, Al, Jeb, and Jint, the geometry param-
eters �Nl

x ,Nl
y ,Nl

z� and �Nml
x ,Nml

y ,Nml
z �, as well as the mode

numbers �nx ,ny� from the experimental spectra.

1. Reduction in number of free parameters

Given the �approximate� layer dimensions Lx ,Ly ,Lz, the
demagnetizing factors Nl

x, Nl
y, and Nl

z can be calculated
using, e.g., OOMMF simulations, where we find
Nl

z�1− �Nl
x+Nl

y� and Nl
y /Nl

x�Lx /Ly as should be expected.
Using the formulas in Ref. 25 it can be shown that
the dipolar coupling constants obey similar relations,
Nml

y /Nml
x =Lx /Ly and Nml

z =−�Nml
x +Nml

y �, and for symmetry
reasons, Nml=Nlm. The remaining components NF1

x , NF2
x , and

N12
x are kept as free parameters to be extracted from the

experiment, although they can be calculated by means of
Ref. 25.
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On the basis of previous measurements on MTJ stacks,
the number of free parameters can be further reduced: In Ref.
26, it has been shown that the magnetization of the CoFeB
free layer does not depend on the layer thickness in the
range from 2 to 3 nm. We may therefore assume that
the FL and the RL—being of the same material but having
different thicknesses—have equal magnetizations,
M1=MF. Moreover, we expect the layer magnetizations in
the pillar to be reduced for all layers by the same �relative�
amount w.r.t. the thin-film saturation magnetizations,
M2

pillar /M2
film=MF,1

pillar /MF,1
film. Analogous relations are ex-

pected to hold for the exchange stiffness constants
Al: A1=AF and A2

pillar /A2
film=AF,1

pillar /AF,1
film.

2. Literature values

In this paragraph, we list as an orientation literature val-
ues for the material parameters. As thin-film exchange stiff-
ness constants we use the values of the 40 nm CoFeB and
CoFe films in Ref. 28: AF,1

film=28.4�10−12 J /m and
A2

film=27.5�10−12 J /m.
The magnetizations of CoFe and annealed CoFeB depend

on the percentage of Fe in Co. The bulk value for both
Co70Fe30 and Co75Fe25 �corresponding to Co60Fe20B20� is
�2.2�0.1� T.29,30 The �thin-film� free layer magnetization
of our MTJ stack has been measured to be
�0MF

film= �1.8�0.1� T.19 The thin-film value for the
CoFe layer is expected to be in the interval
�0M2

film= �2.0�0.2� T.
The exchange-bias field in a Co90Fe10 �5 nm�/PtMn �20

nm� system has been measured to be �0Heb�67 mT,40,41

which corresponds to an exchange-bias energy of
Jeb=4.5�10−4 J /m2, using 2.0 T as saturation magnetiza-
tion of the CoFe layer. For the interlayer exchange energy, a
maximum value of Jint=−5�10−4 J /m2 has been reported.42

Reference 25 allows to calculate the dipolar coupling con-
stant for two rectangular layers of equal thicknesses. As in
our pillars the FL has a different thickness than the two SAF
layers, only N12

x may be calculated directly, yielding
N12

x =0.016. The dipolar coupling constants NF1
x and NF2

x in-
volving the FL can only be estimated as the mean value of
the constants calculated for two 3-nm-thick layers and for
two 2-nm-thick layers, from which we obtain NF1

x �0.018
and NF2

x �0.013 �maximum deviation �0.003�.

3. Regression method

MF is determined by the modes F0 on the EA with a weak
dependence on the chosen mode numbers of F0 �see discus-
sion below�. A minimum value for MF of 1.25 T follows
from the measured room-temperature anisotropy field, which
must be smaller than the calculated �zero-temperature� aniso-
tropy field. M1 and M2 cannot be extracted directly but de-

pend entirely on the above assumptions. Once M1 and M2
have been fixed, Jint and Jeb can be estimated from the spin-
flop field and the mode A0 on the HA. NF1

x and NF2
x follow

from the gap opening in the mode F0 on the EA and the shift
of the EA hysteresis loop to negative fields: We have used
the above calcuted values for NF1

x , NF2
x , and N12

x as starting
values, which we have adapted to the experimental data by
rescaling, assuming that the deviation of the mutual dipolar
fields, e.g., due to micromagnetics, is similar for all pillar
layers. It turns out that NF1

x as the largest component can be
maximum 0.01 because otherwise the gap opening exceeds
the observed 2 GHz �maximum value of 2.5 GHz for the
calculated coefficients�. On the other hand, the difference of
NF1

x and NF2
x must be at least 0.005 to ensure a shift of the

hysteresis loop of minimum 5 mT. NF1
x =0.01 and NF2

x

=0.005 are therefore uniquely determined �maximum devia-
tion �0.002�. Since for the calculated constants N12

x is be-
tween NF1

x and NF2
x , we set N12

x =0.007.
The exchange stiffness constant AF and the mode numbers

�nx ,ny� cannot be extracted separately since they enter the
effective field �and consequently the frequencies� only as a
product. The BC in the pillar being unknown, the lowest
modes can have any mode numbers between �0,0� �unpinned
BC� and �1,1� �totally pinned BC�, where nx can be larger
than ny �cf. Sec. V A�.

In order to adjust F0 on the EA with the mode �1,1� in the
limit of strong pinning, we would need AF��1 /20�AF

film and
�0MF�1.1 T; this value for MF is significantly smaller than
the allowed minimum, and the reduction in AF w.r.t. its thin-
film value is unreasonably large given that MF��2 /3�MF

film.
In addition, a discrepancy of more than 1.5 GHz between
calculated and measured mode F0 is observed on the HA
even at high fields. Similarly, fitting F0 with the mode
�0.5,0.5�, which might be considered as the border between
strong and weak pinning for nx=ny, or the mode �1,0�, for
maximum difference nx−ny, still requires AF� �1 /5�AF

film

and �0MF�1.2 T. Consequently, strong pinning can be ex-
cluded in our pillars; the mode numbers of F0 must be well
below �0.4,0.4� or �0.8,0�. The pinning is weak. This is also
corroborated by the fact that, in particular, on the HA the
lowest mode F0 has much higher intensity than the higher
modes F1 to F5, which is a characteristics of weakly pinned
systems �cf. Sec. V B�.

If we assume totally unpinned BC—fitting F0 with �0,0�
and the higher modes with �1,0�, �0,1�. etc.—we get
�0MF=1.3 T and AF��2 /3�AF

film, i.e., approximately
AF�MF. To narrow the mode numbers down within these
borders, we assume that indeed nx
ny, which finally con-
fines �nx ,ny� on the HA to �nx ,ny�� �0.2,0.1� and on the EA
to �nx ,ny�� �0.4,0.2�. To fit F0 on EA and HA simulta-
neously, requires that the mode numbers on the HA are
smaller than on the EA, as had already been suggested in
Sec. V A.
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