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We consider the ground-state magnetic phase diagram of the two-dimensional Hubbard model with nearest-
and next-nearest-neighbor hopping in terms of electronic density and interaction strength. We treat commen-
surate ferromagnetic and antiferromagnetic as well as incommensurate �spiral� magnetic phases. The first-order
magnetic transitions with changing chemical potential, resulting in a phase separation �PS� in terms of density,
are found between ferromagnetic, antiferromagnetic, and spiral magnetic phases. We argue that PS has a
dramatic influence on the phase diagram in the vicinity of half-filling. The results imply possible interpretation
of the unusual behavior of magnetic properties of single-layer cuprates in terms of PS between collinear and
spiral magnetic phases. The relevance of our results to the magnetic properties of the ruthenates is also
discussed.
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I. INTRODUCTION

Investigation of two-dimensional �2D� strongly correlated
electronic systems attracts substantial interest, which has
been stimulated by the discovery of high-temperature super-
conducting cuprates.1 It is generally accepted that supercon-
ducting and magnetic properties of cuprates are closely re-
lated. While at half-filling the cuprates are
antiferromagnetically ordered, evolution of their magnetic
properties with doping is an interesting challenge.2 Neutron
scattering in La2−pSrpCuO4 reveals the coexistence of both
commensurate and incommensurate magnetic structures in
the vicinity of half-filling �hole doping p�0.02�.3 At p
�0.02 the system turns to an incommensurate �spin-glass�
state with the magnetic structure wave vector Q= ��−� ,�
−�� �the corresponding long-range order is denoted in the
following as diagonal�; the incommensurability parameter �
increases with increasing hole doping p. For p�0.06 a mag-
netic structure with wave vector Q= ��−� ,�� �the corre-
sponding magnetic phase is referred as parallel below� re-
places the diagonal incommensurate structure �Ref. 4�, �
being approximately proportional to the hole doping up to
p�0.12.5 At the same time, for the compound YBa2Cu3O6+y
there exists a rather wide doping window in the vicinity of
half-filling, where commensurate antiferromagnetism �or
low-energy commensurate antiferromagnetic fluctuations� is
observed at low temperatures, probably related to the double-
layer structure of this compound.6–9

Cuprates are not the unique example of quasi-2D �lay-
ered� systems changing their magnetic properties with vary-
ing physical parameters. The layered ruthenate Sr2RuO4 has
two sheets of Fermi surface � ,� formed by pairs of perpen-
dicular planes and a cylindrical sheet � �Ref. 10�. The nest-
ing provided by the � ,� sheets causes low-energy magnetic
fluctuations with wave vector Q= �0.6� ,0.6�� to carry the
dominant contribution to the magnetic spectral weight, but
the � sheet also invokes low-energy fluctuations of moderate
intensity with diagonal wave vector Q= �0.3� ,0.3��.11 The

compound Sr2RuO4, when doped by La, acquires a strong
tendency to ferromagnetic ordering �Ref. 12�, which is mani-
fested by an enhancement in the uniform susceptibility.
However, no long-range ferromagnetic order is observed
even for the Fermi level lying in the vicinity of the van Hove
singularity. At the same time, the isostructural compound
Ca2RuO4 exhibits ferromagnetism under pressure.13 Thus the
magnetic phase structure of the ruthenates is very sensitive to
experimental conditions.

The properties of layered and three-dimensional interact-
ing electronic systems are typically described within the
Hubbard model. Despite its simplicity, the Hubbard model
faithfully captures a wide range of complex phenomena that
arise from strong electron-electron interactions: ferromag-
netism, antiferromagnetism, and superconductivity. Surpris-
ingly that although the Hubbard model has been studied for a
long time, its magnetic phase diagram is not yet fully con-
structed even in the framework of the mean field �MF� ap-
proximation. Traditionally, only the competition of �collin-
ear� ferromagnetic �FM� and antiferromagnetic �AF� phases
was considered �see, e.g., Ref. 14�. While the antiferromag-
netism is energetically favorable at half-filling in the regime
of strong electronic correlations, Nagaoka15 has argued that
for three-dimensional Hubbard model at small doping and
infinitely large electronic on-site Coulomb interaction U the
ground state is saturated-ferromagnetically ordered; with de-
creasing U the ferromagnetic state appears to be unstable.

Furthermore, Khomskii considered the possibility of a
canted magnetic state at finite U, which is a superposition of
ferromagnetic and antiferromagnetic orders.16 Such a state
turns out to be, however, energetically unfavorable because
of its instability with respect to phase separation �PS�. In
particular, at large U Visscher17 obtained the existence of PS
region of ferromagnetic and antiferromagnetic states on the
phase diagram and determined its location. The PS of these
states was later extensively considered in Refs. 18–20. It was
shown19,21 that it is energetically favorable for conduction
electrons to be localized in some ferromagnetic regions on
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the background of antiferromagnetically ordered local mo-
ments. Such autolocalized states have been called ferrons.19

Thus, the system gains in kinetic energy of electrons at the
expense of loss in the local-moment subsystem energy.

Another type of instability of the paramagnetic �PM�
phase is the formation of incommensurate �spiral� magnetic
structures in the ground state, which was studied in the last
two decades for 2D itinerant systems.22–27 Using the MF
approximation, Arrigoni and Strinati24 considered the com-
petition of diagonal and parallel spiral phases in the Hubbard
model with nearest-neighbor hopping and found a first-order
transition between them. Applying the Maxwell construction,
these authors revealed the existence of spatial mixture of
commensurate antiferromagnetic and incommensurate mag-
netic phases in some region of the phase diagram. Chubukov
and Musaelian25 considered the effect of small doping on the
magnetic structure of the Hubbard model with finite next-
nearest-neighbor hopping and found that the diagonal spiral
magnetic structure is unstable with respect to PS, while the
parallel phase is stable. Recently similar results were ob-
tained within the t-J model at small doping.9,28

The electronic correlations were investigated beyond the
standard MF approximation within the functional renormal-
ization group �fRG� approach for small U and dynamical
mean field theory �DMFT� for intermediate and large U. The
account of electronic correlations within the fRG approach
of the 2D Hubbard model with nearest- �t� and next-nearest-
�t�� neighbor hopping in the vicinity of van Hove
filling29–33,39 showed that small values of t� / t favor the com-
petition between antiferromagnetic and d-wave supercon-
ducting ordering.29–33 The incommensurate magnetic order
was also shown to compete with both instabilities.30,34

Within the DMFT the magnetic phase diagram for the Hub-
bard model was constructed on a Bethe lattice with nearest-35

and next-nearest-neighbor hopping.36 For small t� the PS of
antiferromagnetic and paramagnetic phases, as well as an
incommensurate magnetic phase �the region where commen-
surate solutions of the DMFT equations do not exist�, were
found.

The ferromagnetic state was shown to compete with other
instabilities in the 2D Hubbard model for large t� / t �Refs. 31,
32, and 36�, being stable at low and moderate electronic
densities.36,37 Recently it has been shown that consideration
of incommensurate magnetic fluctuations with small wave
vectors significantly changes the boundary of ferromagnetic
region on the phase diagram of 2D Hubbard model,38 since
this region is “forced” out by diagonal incommensurate or-
der. Therefore, the study of competition between ferromag-
netic and incommensurate orders acquires special impor-
tance in determining the conditions for the stability of the
FM phase. Taking into account incommensurate fluctuations
and the shift of the chemical potential within the quasistatic
approximation reveals that even at van Hove filling, ferro-
magnetism cannot be realized at arbitrarily small U.38 The
fRG calculations taking into consideration the electronic
self-energy corrections39 also show the importance of incom-
mensurate fluctuations near the ferromagnetic ground state.

The discussed variety of magnetic orders is expected to be
strongly influenced by PS phenomenon. In previous studies
this influence was not considered systematically. The pres-

ence of PS as such within modern numerical calculations for
finite two-dimensional lattice is uncertain. Some early Monte
Carlo studies �see, e.g., Ref. 40� yielded no evidence for
phase separation at t�=0, U=4t. However, recent calcula-
tions using advanced type of boundary conditions41 show
signals for PS and relate it to the formation of magnetic
order.

The aim of the present paper is to relate the possibility of
phase separation to incommensurate order and to construct
the magnetic ground-state phase diagram of the 2D Hubbard
model on a square lattice with nearest- and next-nearest-
neighbor hopping within the MF approximation, including
both possibilities. This problem is relevant in the context of
high-temperature superconductivity in the cuprates as well as
for ruthenate systems. The plan of the paper is the following.
In Sec. II we consider possible types of magnetic ground
states, present the derivation of MF approximation for spiral
magnetic states and treat the formal aspects of the phase-
separation problem. In Sec. III we present the results of our
phase-diagram calculations. Section IV is devoted to the dis-
cussion of the results.

II. FORMALISM

We consider the Hamiltonian of the Hubbard model on
the square lattice

H = �
ij�

tijci�
+ cj� + U�

i

ci↑
+ ci↑ci↓

+ ci↓, �1�

where tij =−t for the nearest-neighbor sites i , j and tij = t� for
the next-nearest neighbors, ci�

+ �ci�� is a creation �annihila-
tion� electronic operator on site i with the spin projection �,
and U is the electronic �Hubbard� on-site interaction. Fourier
transformation of the hopping term yields the electronic
spectrum

	k = − 2t�cos kx + cos ky� + 4t��cos kx cos ky + 1� , �2�

where k= �kx ,ky�, the lattice constant is taken equal to unity.
The interacting part of the Hamiltonian �1� can be repre-
sented in the form

Hint = U�
i

ci↑
+ ci↑ci↓

+ ci↓ = U�
i

�ni
2/4 − �miui�2� , �3�

where ui is the �arbitrarily chosen� i-dependent unit vector
and we introduce the site density ni=��ci�

+ ci� and the site
magnetization mi=

1
2����ci�

+ �� ���ci� operators.
To demonstrate the peculiarities of competition between

different magnetic states we first consider the limit of large
U. In this limit spatial separation into antiferromagnetically
ordered regions with one electron per site and ferromagneti-
cally ordered hole-rich regions is most preferable. To obtain
the boundary of the PS region we modify Visscher’s
arguments17 for the case of square lattice with nonzero next-
nearest-neighbor hopping �in the derivation below we con-
sider the case of electronic density n�1�. The saturated fer-
romagnetic phase has the energy
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EFM = �
k

	kf�	k� = − 4tNh�1 − �1 + 2t�/t��nh/2� , �4�

where nh is the hole density in the ferromagnetic region, Nh
is the total number of holes, f�	�=
��−	� is the Fermi func-
tion at zero temperature �� is the chemical potential, and 
 is
the Heaviside step function. Note that nh actually depends on
the number of antiferromagnetically ordered sites NAF as nh
=Nh / �N−NAF�, N being the number of sites. The energy of
the AF region is EAF=−4t2NAF /U. Minimizing the total en-
ergy EFM+EAF with respect to NAF, we obtain the equation
for the PS region boundary �determined from the condition
NAF=0, so that nh=1−n, where n is the electronic density�

t/UPS�n� = �1 + 2 sign�1 − n�t�/t���1 − n�2/2, �5�

where we include the generalization to the case of n�1.
Therefore, for a given density n and U�UPS�n� the homo-
geneous magnetic state is unstable with respect to PS of fer-
romagnetic and antiferromagnetic states. However, for mod-
erate values of U incommensurate spiral magnetic states are
expected to be important, and we have to account also for
them.

To discuss the possibility of incommensurate order we
apply the MF treatment of the interaction term �3� as
follows:27

Hint → �
i

�− �ni − himi − U�ni�2/4 + U�miui�2� , �6�

where �=−Un /2. We choose ui directed along �mi� and as-
sume that �ni�=n. The first term in Eq. �6� corresponds to the
uniform charge mean field � �which can be interpreted as a
shift of the chemical potential�, the second term is the cor-
rection due to the site-dependent mean magnetic field hi
=2U�mi�, and the other terms correspond to the shift of the
total energy.

We consider the spiral type of incommensurate magnetic
order, which is a superposition of the rotation of order pa-
rameter in the xy plane, modulated with some wave vector
Q, and the ferromagnetic component perpendicular to the xy
plane27

�mi� = m�x̂ sin  cos�QRi� + ŷ sin  sin�QRi� + ẑ cos � .

�7�

This generalizes Khomskii’s idea16 of superposition of the
FM and AF ordering in the vicinity of half-filling. Note that
in this case only the direction, and not the magnitude of the
magnetic moment, depends on the site number. This state can
be contrasted to the collinear incommensurate spin-density
wave state,42,43 where only the magnitude, not the direction,
depends on the site number �mi� ẑ cos�QRi��. We restrict
our consideration to the spiral type of magnetic order, bear-
ing in mind the intuitive argument that one gains more mag-
netic energy for the largest possible magnetization at every
site. It is obvious that the MF thermodynamical potential
�TP� �MF=−T ln Tr�exp�HMF−�N��, where HMF is the MF
approximation for the Hubbard Hamiltonian �1�, N is the
particle number operator, and T is the temperature, can be
expressed through the TP of noninteracting electrons in the
self-consistently determined charge and magnetic fields. It is

convenient to write down the parameter dependence of TP
explicitly

�MF�Q,,m;��/N = �0�Q,,2Um;�,− Un/2�/N − Un2/4

+ Um2, �8�

where �0 is the TP of noninteracting electrons in external
charge and magnetic fields, calculated in the Appendix.

We find the preferable magnetic phase by minimizing
�MF in Eq. �8� with respect to the variables , Q, m, and n
for a given chemical potential �. We denote the values which
provide this minimum as min���, Qmin���, mmin���, and
nmin���. For a given magnetic structure specified by Q, ,
and �, the density n and magnetization m satisfy the MF
equations

n =
1

N
�
k

	f�EkQ
− ��,h�� + f�EkQ

+ ��,h��
 , �9�

m =
1

2N
�
k

	f�EkQ
− ��,h�� − f�EkQ

+ ��,h��
cos�2
k�h� − � ,

�10�

where h=2Um, 
k�h�, and EkQ
� �� ,h� are determined in the

Appendix; the preferred values of Q and  can be then ob-
tained from the minimization of TP.

In practice we determine the functions Qmin���, min���,
and nmin��� by using a rather dense grid for variables Q and
 to provide the minimum of �MF numerically. In fact we
always have min����� /2, so that the “ferromagnetic”
component introduced in Ref. 16 vanishes, therefore in the
following we omit . It is necessary to keep in mind that we
always have to account for the possibility of a paramagnetic
solution with m=0 �the solution with m�0, as a rule, is
unique�. Note that we choose the chemical potential � as a
basic variable instead of the density n, since this allows us to
avoid technical problems connected with using the Maxwell
construction for first-order transitions �see below�. Change to
the n dependence is easily given by the solution of MF equa-
tions.

Since the magnetization m of the spiral phase can be ex-
pressed through � and Q, excluding m we obtain the TP as a
function of Q, so that the wave vector Q serves as an order
parameter specifying the type of magnetic ordering, except
for the transition to the PM phase, where the magnetic phase
wave vector cannot be specified. We classify spiral phases by
the symmetry of the wave vector Q :Q= �0,0� for the ferro-
magnetic phase, �� ,�� for the antiferromagnetic �Néel�
phase, �0,�� and �Q ,�� for the parallel spiral phases, �Q ,Q�
for the diagonal spiral phase; we also consider the spiral
magnetic phase with the wave vector Q= �0,Q� �we assume
due to the symmetry x↔y that Qx�Qy�, where Q takes an
arbitrary value in the range 0�Q��. For the PM phase m
=0 and Q is not fixed.

We have a first-order phase transition, when the minimum
of TP in Eq. �8� for a given � is provided by two pairs of Q
and m: �Q1 ,m1� and �Q2 ,m2�. The transition through this
point results in a jump in the magnetic structure parameters
and a heterogeneous state appears. Since the solution of the
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MF equations gives the density as a function of the chemical
potential and wave vector Q, n=n�� ,Q�, this transition leads
to a jump �n���= �n�� ,Q1 ,m1�−n�� ,Q2 ,m2�� as well.
When n is between n�� ,Q1 ,m1� and n�� ,Q2 ,m2�, the sys-
tem consists of two spatially separated phases with densities
n�� ,Q1 ,m1� and n�� ,Q2 ,m2� in such volume fractions, that
provides an average density equal to n. If n is used as a basic
variable, this result can also be obtained through the Max-
well construction, since �MF as a function of n is not convex
and d� /dn is not positively defined in this case. Using � as
a basic variable is technically much simpler and reproduces
the Maxwell rule results.

III. PHASE DIAGRAM

We have performed numerical calculations comparing TP
of different magnetic phases and varying � and U for several
ratios of t� / t=0, 0.2, and 0.45, solving the Eqs. �9� and �10�.
The integration over the 2D Brillouin zone was carried out
on the 500�500 k-point mesh using the method described in
Ref. 44. The results for different t� / t are presented below.

A. t�=0

For t�=0 we have the particle-hole symmetry �n↔2−n�
and we can restrict ourselves to the region 0�n�1. The
magnetic phase diagram using n as a basic variable �without
restricting TP �MF to be convex� is presented in Fig. 1�a�
�see also Refs. 26 and 27�. We have the Néel antiferromag-
netic state only at half-filling �n=1�, in the vicinity of half-
filling we observe only the spiral �Q ,Q� �diagonal� phase, far
away from half-filling we have a FM phase for large U / t and
the parallel spiral phase ��0,�� or �Q ,��� for moderate U / t.
However, detailed consideration of the dependence of the
chemical potential on density �see, e.g., Fig. 1�b� for U
=15t� reveals the insufficiency of this approach. The depen-

dence ��n� obtained using n as a basic variable �dashed line�
has a negative slope in the vicinity of half-filling, hence the
diagonal phase is unstable with respect to PS and the FM
→AF transition occurs through PS region. The use of � as a
basic variable �solid lines� treats correctly this instability: the
plateau of ��n� determines the position of PS region 0.78
�n�1.

In Fig. 2 we present the magnetic phase diagram con-
structed using � as a basic variable. As discussed above, the
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states in the vicinity of half-filling are phase separated: there
is a separation of AF and �Q ,�� phases for U / t�8.5, AF and
�Q ,Q� phases for 8.5�U / t�11, and AF and FM phases for
U / t�11, the boundary lines between these regions are actu-
ally crossover lines. In comparison with Fig. 1�a�, the pure
diagonal phase is strongly forced out by the PS regions and
shrunken into a small spot. The other regions are not strongly
affected: only narrow PS regions are present far away from
half-filling. To compare Visscher’s result in Eq. �5� with the
results of MF approach, we also plot in Fig. 2 the boundary
line of the PS region of FM and AF phases in the limit of
large U / t, Eq. �5�. One can see that this result agrees well
with the mean-field results. The paramagnetic region never
takes part in PS as it was rigorously proven in a recent study
for the t�=0 case.45 On the other hand, approaches not con-
sidering the possibility of incommensurate magnetic order
yield often the PS of paramagnetic and magnetic states,35,36

contradicting thus to the rigorous results.

B. t� Õ t=0.2

For t��0, the particle-hole symmetry is not preserved.
The magnetic phase diagram for t� / t=0.2 is presented in Fig.
3�a�. Comparing Figs. 2 and 3�a�, we conclude that already
for this value of t� / t strong asymmetry of the hole-doped
�n�1� and electron-doped �n�1� sides is observed. In con-
trast to the t�=0 case we have a finite critical U / t for the AF
state at half-filling.33,46,47 At the same time, with increasing
t� / t the FM and diagonal �Q ,Q� phase regions force out
those of parallel phase for n�1. On the electron-doped side
a rather wide region of pure AF state is observed for U / t
�7 near half-filling. For larger U / t we have a PS region of
AF and parallel incommensurate phases ��Q ,�� for U / t
� �3;8� and �0,�� for U / t�8�. These regions are more ex-
tended along the U axis as compared to the t�=0 case �see
Fig. 2�. We find a ferromagnetic region on the electron-doped
side only at very large U / t�16.

The hole-doped side of the phase diagram was considered
in Ref. 25 for small t� / t using n as a basic variable and the

existence of �Q ,�� phase at small U and �Q ,Q� phase for
larger U was found in the vicinity of half-filling. Contrary to
the present results, the �Q ,�� phase was found to be stable
with respect to PS in Ref. 25. However, the doping depen-
dence of the order parameter m was not taken into account in
that study assuming that the top of the lower AF band 	b
=−Um, considered as a reference point for �, is fixed with
doping. Our numerical calculations using n as a basic vari-
able �see Fig. 3�b�, the plot for m�n�� reveal a strong depen-
dence m�n�, such that 	b has a negative slope for n�1.
Therefore the chemical potential � acquires the correction
decreasing with increasing n, which makes the parallel phase
near half-filling also unstable with respect to PS.

The obtained results agree with the experimental data on
doping dependence of the magnetic structure in the hole-
doped compound La2−pSrpCuO4 which has a similar value of
t� / t. The PS near half-filling may explain the fact that chemi-
cal potential almost does not depend on doping for 0� p
�0.1.48 Apart from that, the experimentally observed se-
quence of magnetic transitions AF→ �Q ,Q�→ �Q ,�� with
increasing doping p �Refs. 3–5� is the same as calculated for
U / t�4 �see details in Fig. 3�b��. Note that the calculated
phase transitions pass through the PS regions. In the inset of
Fig. 3�b� we also plot the dependence Qx�n� to illustrate the
nearly linear relation between incommensurability and dop-
ing in the vicinity of PS region at small doping. The exis-
tence of PS of magnetically ordered and nonmagnetic metal-
lic phase was also recently observed in La2−xSrxCu1−yNiyO4
compound.49

Quite a different situation is observed for the electron-
doped compound Ni2−xCexCuO4 where a pure AF phase ex-
tends up to electron doping x�0.14 �Ref. 50� in agreement
with the phase diagram of Fig. 3�a�. Apart from that, a strong
dependence of the chemical potential on doping is observed
suggesting the absence of PS for this compound.51 This
agrees with our results on the magnetic structure of the
electron-doped side �see Fig. 3�a�� for moderate U / t�4.
Such small values of the interaction U / t for the cuprates may
be explained by strong renormalization �screening� of the
Coulomb interaction and by the absorption of a large part of
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the electron-electron interaction into the formation of Hub-
bard subbands.

C. t� Õ t=0.45

Now we consider the phase diagram calculated for t� / t
=0.45, see Fig. 4�a�. One can see that below and slightly
above the van Hove density �n=0.46� a ferromagnetic
ground state occurs, but well above the van Hove density a
diagonal spiral phase with small wave vector is more prefer-
able, the phase transition from the FM to diagonal spiral
phase being of the second order. The details of such a tran-
sition are shown in Fig. 4�b� where the density dependencies
of the magnetic structure wave vector and chemical potential
for U=4t are presented. It is seen that a second-order transi-
tion between the FM and diagonal spiral phases is accompa-
nied by a sharp drop of Q near transition. For n�1 the
parallel phases �Q ,�� and �0,�� are dominating. We also
have a pure AF phase in the vicinity of half-filling.

The existence of extended FM and incommensurate re-
gions on the hole-doped side of the phase diagram can be
explained as follows. In the considered case of large enough
t� / t the bottom of the band lies in the vicinity of the van
Hove singularity. The general condition for ferromagnetic
ordering, large DOS at the Fermi level, is easier fulfilled for
densities below the van Hove filling. At the same time, spiral
phases with small wave vectors compete with FM for fillings
above van Hove filling because of the peculiarity of the mo-
mentum dependence of noninteracting magnetic susceptibil-
ity ��q ,�=0�, which has a maximum at q�0. This compe-
tition was previously considered within the quasistatic
approach in Ref. 38, where the diagonal incommensurate
magnetic phase was found to be the most significant for
competition with the ferromagnetic phase. The critical value
of U for the stability of ferromagnetism was shown to in-
crease strongly due to this competition. Recent fRG calcula-
tions with self-energy corrections also suggest the existence
of such a boundary, which is close to that obtained above in
terms of renormalized hopping parameters.39

The obtained results may explain the magnetic properties
of unconventional superconductor Sr2RuO4 having four elec-
trons per three bands crossing the Fermi level �Refs. 12 and
13�. The contribution of the � sheet of Fermi surface, which
is responsible for the tendency toward diagonal incommen-
surate magnetic ordering, can be described by the one-band
Hubbard model assuming t� / t=−0.405 and n�4 /3 �Ref.
52�. This value of t� / t is close to that considered above, the
difference in sign being absorbed by the wave-function trans-
formation ci�→ �−1�ici�, which causes t�→−t�, n→2−n, so
that t� / t=0.4, n�2 /3. If we use the renormalized U / t�2
�Ref. 52� we obtain a PM phase in the proximity of the
transition to the diagonal incommensurate phase. With in-
creasing U / t or decreasing density the latter phase undergoes
the transition to the FM state.

For all considered values of t� / t a common feature of the
phase diagrams is the strong influence of PS on the magnetic
structure in the vicinity of half-filling. We find a good agree-
ment between the large-U result in Eq. �5� and our result for
the PS of FM and AF phases in the vicinity of half-filling at
U / t�12 and n�1. Note that the result of Eq. �5� for the
hole-doped side of the phase diagram for large t� / t is much
lower than that for the electron-doped side �not plotted�,
which qualitatively agrees with the absence of FM on the
electron-doped side.

IV. DISCUSSION AND CONCLUSIONS

We have considered the ground-state magnetic phase dia-
gram of the 2D Hubbard model with nearest- �t� and next-
nearest- �t�� neighbor hopping in the framework of the MF
approximation �see Figs. 2, 3�a�, and 4�a��. We have taken
into account the possibility of both the incommensurate �spi-
ral� order and the PS. We compared the thermodynamical
potentials of different magnetic phases to determine the most
preferable phase. The resulting phase diagram is rich due to
the presence of spiral magnetic phases and PS, which has a
dramatic effect on the phase diagram in the vicinity of the
half-filling. In general, the diagonal incommensurate phase,
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FIG. 4. �Color online� �a� Magnetic phase diagram for t� / t=0.45 using � as a basic variable, notations are the same as in Fig. 2. �b�
Density dependence of the x-component Qx of wave vector Q �left axis, Qy =Qx�, chemical potential � �right axis�, magnetization m �left
axis� for t� / t=0.45, U / t=4. Notations are the same as in Fig. 1�b�.
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which in some previous studies23,26,27 was found to be stable
in the vicinity of half-filling for n�1, is replaced to a great
extent by PS regions of different other magnetic phases. In
contrast to previous approaches35,36 and in accordance with
the exact results45 it was found that the PM phase does not
take part in the PS �but the magnetically ordered phases do,
contrary to the results of Refs. 23, 26, and 27�. Therefore, the
interplay of spiral magnetic states and PS phenomena is of
crucial importance.

The breaking of the particle-hole symmetry due to the
finite next-nearest-neighbor hopping term �t�� makes the
phase diagram strongly asymmetric with respect to half-
filling �n↔2−n�. At large U we have PS of collinear FM
and AF states, which agrees with the analytical large-U result
for the PS boundary line UPS�n�. For n�1 the boundary
curve UPS�n� is much higher than for n�1, and the FM
region is replaced by regions of spiral phase for moderately
large U / t. With increasing t� / t we observe the tendency to
ferromagnetic and diagonal spiral magnetic ordering for n
�1 and the tendency to parallel spiral ordering for n�1.
The phases in the vicinity of half-filling are fully unstable
with respect to PS for n�1, but the AF region is found to be
stable for n�1, provided that t��0.

The theoretical issue concerning the PS of incommensu-
rate magnetic states in the vicinity of half-filling can be re-
lated to the explanation of some features observed in the
one-layer compound La2−pSrpCuO4 �Ref. 3�, in particular,
the unusual dependence of the chemical potential on hole
doping.48 Our approach can be generalized to the Hubbard
model with bonding and antibonding bands, in order to
model the electronic structure of double-layered compounds,
in particular, to explain the significantly different magnetic
behavior of YBa2Cu3O6+y upon doping. We believe the PS
phenomena should be taken into account in more compli-
cated approaches which are used for strongly correlated elec-
tronic systems, e.g., cuprates. Although the MF-based ap-
proach provides a basic picture of magnetic ordering in the
2D Hubbard model, it does not take into account the effect of
fluctuations, and its application to explaining the magnetic
behavior of cuprates should be performed with caution. One
should keep in mind, however, that for the first-order phase
transitions fluctuations are not expected to change the ob-
tained types of phases and to shift substantially the phase
boundaries. At the same time, the phase transitions from
magnetic to paramagnetic phase can be influenced more
strongly by fluctuations.

In trying to explain the PS phenomena in real compounds,
it is impossible to avoid a consideration of additional long-
range Coulomb energy originating from electronic inhomo-
geneity that is not taken into account within the Hubbard
model. Rigorously speaking, the Hubbard model is appli-
cable only provided that the dopant-site distribution coin-
cides with the electronic inhomogeneity distribution, thereby
canceling the long-range Coulomb energy. If this cancella-
tion is not perfect, the long-range Coulomb energy as well as
the surface energy of PS regions should be considered. The
problem of PS in realistic systems requires therefore further
consideration.
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APPENDIX: CALCULATION OF THERMODYNAMICAL
POTENTIAL OF NONINTERACTING ELECTRONIC

SYSTEM IN EXTERNAL CHARGE AND
MAGNETIC FIELDS

In this appendix we solve an auxiliary problem of calcu-
lating the thermodynamical potential of noninteracting elec-
trons in a uniform charge and a Q-modulated magnetic
fields. The electronic Hamiltonian in the external charge, �,
and magnetic, h, fields has the form

H�,h = �
ij�

tijci�
+ cj� + �H�,h, �A1�

where the correction due to the external fields �H�,h is
determined as

�H�,h = − �
i

�himi + �ni� , �A2�

the operators mi and ni are defined in the main text �see Sec.
II�. The magnetic field is assumed to depend on the site
number as hi=h�x̂ sin  cos�QRi�+ ŷ sin  sin�QRi�
+ ẑ cos �, which yields

�H�,h = − �h/2�sin �
k

�ck+Q↓
† ck↑ + ck↑

† ck+Q↓�

+ cos �
k�

�ck�
† ck�� − ��

k�

ck�
+ ck�, �A3�

where we define the electronic Fourier transform as ci�

= 1
�N

�keikRick�. Therefore, we obtain

H�,h = �
k�

	k�ck�
† ck� − �h/2�sin �

k
�ck+Q↓

† ck↑ + ck↑
† ck+Q↓�

�A4�

with 	k�=	k− �h /2�cos �−�. Since the subspace spanned
by the states �k↑� and �k+Q↓� �we denote it by U�k↑ ,k
+Q↓�� is invariant with respect to H for any k i.e.,
H�,hU�k↑ ,k+Q↓��U�k↑ ,k+Q↓�, we can consider all
these subspaces separately and the total matrix of the Hamil-
tonian is split into a direct sum of the 2�2 matrices. There-
fore we can restrict ourselves to the diagonalization of the
2�2 matrices. The spin dependence of the effective electron
spectrum here allows a straightforward diagonalization, con-
trary to the spinless Harper-Hofstadter Hamiltonian, subject
to an incommensurate uniform magnetic-flux density, which
requires a more advanced technique �e.g., Bethe Ansatz�, see
Refs. 53 and 54.

We proceed with diagonalizing H�,h �see Eq. �A4�� using
the Bogolubov transformation. The magnetic field mixes the
states �k↑� and �k+Q↓�, so that the transformation reads
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ck↑ = cos 
kQ�kQ + sin 
kQ�kQ,

ck+Q↓ = − sin 
kQ�kQ + cos 
kQ�kQ, �A5�

where tan�2
kQ�h��=h sin  / �	k↑−	k+Q↓�. After the trans-
formation we obtain

H�,h = �
k

�EkQ
+ �kQ

† �kQ + EkQ
− �kQ

† �kQ� , �A6�

where the electronic excitation spectrum reads

EkQ
� =

	k↑ + 	k+Q↓ � sign�	k↑ − 	k+Q↓���	k↑ − 	k+Q↓�2 + h2 sin2 

2
. �A7�

For density n and magnetization m we obtain

n =
1

N
�
k

���kQ
† �kQ� + ��kQ

† �kQ�� , �A8�

m =
1

2N
�
k

���kQ
† �kQ� − ��kQ

† �kQ��cos�2
k�h� − � ,

�A9�

where ��kQ
† �kQ�= f�EkQ

+ � , ��kQ
† �kQ�= f�EkQ

− �, f�	�= �1 /2�
	1−tanh��	−�� / �2T��
 is the Fermi function. For the TP we
obtain

�0�Q,,h;�,�� = − T ln Tr	exp�− �H�,h − �N�/T�


= �
k

�EkQ
+ − ��f�EkQ

+ � + �EkQ
− − ��f�EkQ

− � .

�A10�

The right-hand side of Eq. �A10�, calculated at T=0, is used
in the main text, see Eq. �8�.
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