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In the first part of this work we calculate the high-frequency magnetoelectric susceptibility of a simulta-
neously ferroelectric and canted antiferromagnetic �also known as weak ferromagnetic� thin film with magne-
tostrictive magnetoelectric coupling. We show that a dynamic coupling exists between the ferroelectric and
optic antiferromagnetic excitations. In the second part of the paper, we calculate, using an effective medium
method, the susceptibility of a heterostructure comprising alternating thin films of such a material together with
a ferromagnet. Dipolar magnetic fields serve to couple the ferromagnetic and optic antiferromagnetic modes,
which in turn couples the ferromagnetic and ferroelectric excitations. This provides a mechanism for creating
“electromagnon” modes in the microwave regime which may be useful for applications.
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I. INTRODUCTION

In the 1970s, Bar’yakhtar and Chupis calculated the high-
frequency magnetic, electric, and magnetoelectric suscepti-
bility of a model ferroelectric ferromagnet using second
quantization of the electric polarization P and the magneti-
zation M fields.1 They noted that the equilibrium directions
of P and M must not be parallel or perpendicular in order for
there to be a dynamic magnetoelectric coupling and in order
for the existence of coupled excitations, known as “electro-
magnons.” Maugin2 found a similar result. However, most
simultaneously magnetic and ferroelectric materials �known
as multiferroic� are not ferromagnetic and have a more com-
plicated spin structure.

Later, in 1982, Tilley and Scott3 used a Landau-Ginzburg
free energy and equations of motion to calculate the full
high-frequency susceptibility of the antiferromagnetic
�AFM� dielectric BaMnF4. They were able to explain the
observed frequency-dependent dielectric anomaly in
BaMnF4 by including a magnetoelectric coupling term of the
form ��1p+�2p2�MxLz, where p is the dielectric polarization,
M=Ma+Mb and L=Ma−Mb. The subscripts a and b denote
the two antiferromagnetic sublattices. �1 and �2 give the
strengths of the magnetoelectric coupling. This magnetoelec-
tric coupling term is a Dzyaloshinskii-Moriya4,5 �DM�-type
term that causes a canting of the antiferromagnetic sublat-
tices �hence the material is called a weak ferromagnet� that
may be altered by application of an electric field.6

A similar term has been used to model weak ferromag-
netic BiFeO3, the only known room-temperature magneto-
electric multiferroic material. deSousa and Moore7 demon-
strated how a coupling, P ·Ma�Mb, could lead to electric
field control of magnon dispersion with potential applica-
tions to spin-wave logic devices. Electromagnons have been
detected in bulk BiFeO3 �Ref. 8� and are due to hybridization
of a dielectric excitation with vibrations of an incommensu-
rate magnetic spiral structure. The incommensurate spiral
structure represents a gradual rotation of the antiferromag-
netic axis9 and is suppressed by strain in thin films of
BiFeO3.10

The DM coupling �P ·Ma�Mb� in BiFeO3 is symmetry
allowed11 but first-principles calculations suggest that the

weak ferromagnetism is not proportional to P and is rather
due to the rotation of oxygen octahedra.12 Moreover, a mag-
netoelectric coupling energy which is always symmetry
allowed is13

E = �J + �P2�Ma · Mb, �1�

where J is the antiferromagnetic exchange constant which is
perturbed slightly by the influence of the electric polarization
P. Ionic distortions in the displacive ferroelectric cause
changes to the effective exchange interaction between spins,
giving rise to this magnetostrictive magnetoelectric coupling.
Even if the DM magnetoelectric coupling is allowed since it
arises due to spin-orbit effects it may be much weaker than
the magnetostrictive coupling given in Eq. �1�. We will show
that this type of coupling, together with a weak canting of
antiferromagnetic sublattices �so that Ma/b and P are not ex-
actly perpendicular�, allows for a dynamic magnetoelectric
coupling. It is the “optic” antiferromagnetic mode, where the
two antiferromagnetic sublattices oscillate out of phase,
which hybridizes with the dielectric mode.

In Sec. II we calculate the full frequency-dependent mag-
netoelectric susceptibility tensor analytically from a starting
free energy for a thin-film ferroelectric weak ferromagnet.
Components of the susceptibility tensor have poles at the
magnetic, electric, and magnetoelectric resonant frequencies.

In Sec. III we extend our calculation to consider a hetero-
structure containing alternating ferromagnetic and ferroelec-
tric weak ferromagnetic layers. Using a particular effective
medium method for long-wavelength dielectric excitations14

and long-wavelength magnetic excitations,15,16 the suscepti-
bility is found analytically and reduces to known limits. We
find that the ferromagnetic resonance couples to the optic
antiferromagnetic mode via dipolar fields and hence also
couples to the dielectric mode in the weak ferromagnet.
Therefore there is a magnetoelectric resonance in the low
gigahertz �GHz� �microwave� regime, whereas in single-
phase magnetoelectric materials the resonances are usually
all in the infrared regime. By combining such a ferromagnet
and weak ferromagnet it is possible to create an effective
material for tuning magnetoelectric response frequencies.
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Applications exist to microwave signal processing using ap-
plied electric fields17,18 or even to designing left-handed ma-
terials in small frequency ranges.19

II. WEAK FERROMAGNET SUSCEPTIBILITY

A. Geometry and energy density

The geometry of the ferroelectric weak ferromagnet is
shown in Fig. 1. The electric polarization P lies along the x
direction. The two antiferromagnetic sublattices Ma/b lie per-
pendicular to the electric polarization, predominantly along
the y direction, but are canted in the z direction by an angle
�. This angle is exaggerated in Fig. 1 and in BiFeO3, for
example, is given by ��0.14°.20 When considering the thin-
film geometry, the film thickness is in the z direction. This
minimizes depolarizing plus demagnetizing energies.

The energy density of the antiferromagnet is given by

EAFM = �J + ��Px�2�Ma · Mb − K��Ma
y�2 + �Mb

y�2�

+ D�Ma
yMb

z − Ma
z Mb

y� − h · M + 2��Ma
z + Mb

z�2.

�2�

The first term represents the antiferromagnetic exchange in-
teraction with J�0. A weak contribution to the exchange
constant is due to so-called “isotropic” or magnetostrictive
magnetoelectric coupling with strength given by �.13 It arises
since the soft-phonon mode associated with the electric po-
larization in the film P is coupled to the magnetic system
through magnetostriction. The second term is a uniaxial an-
isotropy energy which favors the alignment of the sublattice
magnetization in the y direction. The third term in Eq. �2� is
the Dzyaloshinskii-Moriya interaction with a Dzyaloshinskii-
Moriya vector D=Dx̂ giving canting in the z direction. The
fourth term describes the interaction with a small driving
field h. Finally, the last term in Eq. �2� is the demagnetizing
term in cgs form, assuming that the thin-film geometry has
an interface containing both sublattices.

The energy density of the dielectric part of the system is
given by

EFE = −
1

2
��Px�2 +

1

4
	�Px�4 − e · P +

1

2
����Py�2 + �Pz�2�

+ 2��Pz�2. �3�

� and 	 are phenomenological Landau coefficients giving a
spontaneous polarization in the x direction. The isotropic
magnetoelectric coupling constant � �see Eq. �2�� alters � by
a small amount. A one-dimensional model for the spontane-
ous polarization is valid when examining small amplitude
dynamics about equilibrium. The third term in Eq. �3� is the

interaction of the dielectric with a small driving field e. The
fourth term describes the strength of the dielectric stiffness
���0 of the material in the y and z directions. We make a
simplifying assumption that the system is isotropic in the y-z
plane. The last term is the depolarizing energy density.

B. Equations of motion

From the free energy, the equations of motion for the
magnetization and polarization can be found using the
Landau-Lifshitz �or torque� equation and the Landau-
Khalatnikov relaxation equation, respectively,

dM

dt
= 
M � �−

�E
�M

� , �4�

d2P

dt2 = f�−
�E
�P

� , �5�

where the derivatives, − �E
�M and − �E

�P , represent the effective
magnetic field and the effective electric field acting on the
systems. 
 is the gyromagnetic ratio and f is an effective
inverse mass term for the dielectric oscillations. We ignore
damping in both equations.

The equations of motion are obtained by substituting Eqs.
�2� and �3� into Eqs. �4� and �5�, assuming oscillating solu-
tions that vary in time according to e−i�t, and then linearizing
the resulting equations. The linearization is done by splitting
the two sublattice magnetizations and the polarization into
static and small dynamic parts and then ignoring terms which
are quadratic in small dynamic terms. If dynamic parts are
denoted by lower case letters, then according to the geometry
shown in Fig. 1 the equations are linearized using

Ma = �ax,M0 cos � + ay,M0 sin � + az� , �6�

Mb = �bx,− M0 cos � + by,M0 sin � + bz� , �7�

P = �P0 + px,py,pz� . �8�

The equilibrium canting angle � is given by minimizing Eq.
�2�

� =
1

2
arctan� D

J + �P0
2 + K + 4�

� �9�

and the equilibrium polarization in the x direction, P0, is
given by minimizing Eq. �3� plus Eq. �2�

P0 =��� − 2�M0
2�− cos2 � + sin2 ���

	
. �10�

Combining Eqs. �2�–�8� we obtain magnetization equations

−
i�



ax = − ay	�2Hd + Hex�P0� + Ha�sin � + HDM cos �


− az	�Hd + Hex�P0� + Ha�cos � − HDM sin �


+ by�HDM cos � + Hex�P0�sin �� − bz	�Hd + Hex�P0��

�cos � − HDM sin �
 − px2�P0M0
2 sin�2�� + M0hz

FIG. 1. The ferroelectric weak ferromagnet geometry.
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�cos � − M0hy sin � , �11�

−
i�



ay = ax��2Hd + Hex�P0��sin � + HDM cos ��

− bxHex�P0�sin � + M0hx sin � , �12�

−
i�



az = ax��Hex�P0� + Ha�cos � − HDM sin ��

+ bxHex�P0�cos � − M0hx cos � , �13�

−
i�



bx = ay�Hex�P0�sin � + HDM cos �� + az��Hd + Hex�P0��

�cos � − HDM sin �� − by��2Hd + Hex�P0�

+ Ha�sin � + HDM cos �� + bz��Hd + Hex�P0�

+ Ha�cos � − HDM sin �� + px2�P0M0
2 sin�2��

− M0hz cos � − M0hy sin � , �14�

−
i�



by = − axHex�P0�sin � + bx��2Hd + Hex�P0��sin �

+ HDM cos �� + M0hx sin � , �15�

−
i�



bz = − axHex cos � − bx��Hex�P0� + Ha�cos �

− HDM sin �� + M0hx cos � , �16�

where the effective exchange, anisotropy, demagnetizing,
and Dzyaloshinskii-Moriya magnetic fields are given, re-
spectively, by Hex�P0�=M0�J+�P0

2�, Ha=2KM0, Hd=4�M0,
and HDM =M0D. We write Hex�P0� as Hex below to shorten
the notation.

The only component of the dielectric polarization to
couple with the magnetization equations is px. It’s equation
of motion is given by

−
�2

f
px = �� − 2�M0

2�− cos2 � + sin2 �� − 3	P0
2�px + ex

− 2�P0M0�− ay cos � + by cos � + az sin �

+ bz sin �� . �17�

It can be seen that if the canting were to vanish, then
� ,ay ,by→0, and the magnetic and dielectric equations of

motion would not be coupled. So although the magnetoelec-
tric coupling enters into the exchange interaction, rather than
the Dzyaloshinskii-Moriya interaction, it results in a
dynamic magnetoelectric coupling.

The equations of motion for the remaining two compo-
nents of the dielectric polarization are

−
�2

f
py = − ��py + ey , �18�

−
�2

f
pz = − ��� + 4��pz + ez. �19�

C. Susceptibility

The seven equations of motion Eqs. �11�–�17� can be used
to solve for 	ax ,ay ,az ,bx ,by ,bz , px
 analytically as a function
of driving fields h and ex. First we set hz�0 and hx=hy

=ex=0. Then the equations for a and b are symmetric under
the transformation bx→−ax, by→−ay, and bz→az. This is
the so-called “optic” antiferromagnetic mode where the two
antiferromagnetic sublattices oscillate out of phase. Equa-
tions �11�–�17� reduce to

−
i�



ax = − ay��2Hd + 2Hex + Ha�sin � + 2HDM cos ��

+ M0hz cos � − az��2Hd + 2Hex + Ha�cos �

− 2HDM sin �� − px2�P0M0
2 sin�2�� , �20�

−
i�



ay = ax��2Hd + 2Hex�sin � + HDM cos �� , �21�

−
i�



az = ax�Ha cos � − HDM sin �� , �22�

−
�2

f
px = �� − 2�M0

2�− cos2 � + sin2 �� − 3	P0
2�px

− 4�P0M0�− ay cos � + az sin �� . �23�

Equations �21�–�23� can be substituted into Eq. �20� to get an
equation involving only ax

ax =
i�
M0hz cos �

�2 − �o
2 , �24�

where the optic antiferromagnetic frequency �o is given by

�o
2


2 = ��2Hd + 2Hex�sin � + HDM cos ����2Hd + 2Hex + Ha�sin � + 2HDM cos �� + �Ha cos � − HDM sin ��

���2Hd + 2Hex + Ha�cos � − 2HDM sin �� −
8�2P0

2M0
3 sin�2���cos � sin ��2Hd + 2Hex + Ha� − HDM�

�2

f
+ �� − 2�M0

2�− cos2 � + sin2 �� − 3	P0
2�

. �25�
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Since the Dzyaloshinskii-Moriya canting angle is small, �o
is approximated very accurately by taking the limit sin �
→0 and cos �→1. This gives

�o
2


2 � 2HDM
2 + Ha�2Hd + 2Hex + Ha� . �26�

Ignoring the effective Dzyaloshinskii-Moriya field HDM, this
frequency agrees with the well-known result for thin film
antiferromagnets with no canting.21 Equation �26� also

agrees with the resonant frequency calculated previously for
bulk canted antiferromagnets when instead Hd=0.22,23

The xz component of the magnetic susceptibility �xz
m

= �ax+bx� /hz is zero since ax=−bx. Similarly, �yz
m is zero. The

nonzero susceptibility components due to hz are �zz
m

= �az+bz� /hz and the electromagnetic susceptibility �xz
em

= px /hz which are given exactly by

�zz
m =

− 2
2M0 cos ��Ha cos � − HDM sin ��
�2 − �o

2 , �27�

�xz
em =

4f�P0
2M0
2 cos ��cos � sin ��2Hd + 2Hex − Ha� − HDM�

��2 − �o
2���2 − � fe

2 �
. �28�

�xz
em has a pole at the optic antiferromagnetic mode frequency

�o and also at the ferroelectric mode frequency � fe given by

� fe
2

f
= − � + 2�M0

2�− cos2 � + sin2 �� + 3	P0
2. �29�

Driving fields ex excite the same modes: the ferroelectric
mode and the optic mode. Equations �20�–�23� remain the
same apart from the removal of hz and the inclusion of ex.
Following the same working, it is found that �zx

me

= �az+bz� /ex=�xz
em, which is given in Eq. �28�. The only other

nonzero component appearing due to ex is

�xx
e = − f	�2 − 
2��2Hd + 2Hex�sin � + HDM cos ��

���2Hd + 2Hex + Ha�sin � + 2HDM cos ��

− 
2�Ha cos � − HDM sin ����2Hd + 2Hex + Ha�cos �

− 2HDM sin ��
/��2 − � fe
2 ���2 − �o

2� �
− f

�2 − � fe
2 . �30�

Next we set hx�0 and hz=hy =ex=0 in Eqs. �11�–�17� to
solve for the susceptibility components �ix �i=x ,y ,z�. The

equations for a and b are symmetric under transform of ax

→bx, ay→by, and az→−bz, which corresponds to the anti-
ferromagnetic sublattices oscillating in-phase and is referred
to as the “acoustic” mode. The magnetoelectric coupling
term at the end of Eq. �17� vanishes and hence px=0 when
the system is driven by a magnetic field in the x direction.

Equations �11�–�17� reduce to

−
i�



ax = − ay��2Hd + Ha�sin �� − azHa cos � , �31�

−
i�



ay = ax�2Hd sin � + HDM cos �� + M0 sin �hx,

�32�

−
i�



az = ax��2Hex + Ha�cos � − HDM sin �� − M0 cos �hx.

�33�

The two nonzero components of the susceptibility �xx
m and

�yx
m are given by

�xx
m =

2
2M0�sin2 ��2Hd + Ha� − cos2 �Ha�
�2 − �a

2 , �34�

�yx
m =

i2
M0	�2 sin � − 
2Ha cos ���2Hd + 2Hex + Ha�cos � sin � − HDM�1 – 2 cos2 ���

���2 − �a

2�
, �35�
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where the acoustic antiferromagnetic resonant frequency is

�a
2


2 = Ha�2Hex + Ha�cos2 � + HdHDM sin�2��

+ 2Hd�2Hd + Ha�sin2 � . �36�

Once again, if we make the approximation sin �→0 then
this expression reduces to the known acoustic frequency
�whether there is canting or not� given by21–23

�a
2


2 � Ha�2Hex + Ha� . �37�

Making hy �0 and hx=hz=ex=0, we find that driving
fields in the y direction also excite the acoustic antiferromag-
net mode and do not excite a dielectric mode. By symmetry,
the susceptibility component �xy

m =−�yx
m and so has already

been found. The remaining susceptibility component �yy
m is

found to be

�yy
m =

2
2M0 sin ��2Hd sin � + HDM cos ��
�2 − �a

2 . �38�

This component vanishes as �→0 since then the lineariza-
tion of the antiferromagnetic sublattice magnetizations re-
quires that there is no dynamic magnetization in the y
direction.

Finally, there are two nonzero components of the electric
susceptibility given by examining Eqs. �18� and �19�

�yy
e =

f

− �2 + f��

, �39�

�zz
e =

f

− �2 + f��� + 4��
. �40�

The total susceptibility tensor for the ferroelectric weak fer-
romagnet geometry takes the form

�̂ =�
�xx

m �xy
m 0 0 0 0

�yx
m �yy

m 0 0 0 0

0 0 �zz
m �zx

me 0 0

0 0 �xz
em �xx

e 0 0

0 0 0 0 �yy
e 0

0 0 0 0 0 �zz
e

� �41�

with the eight independent components being given in Eqs.
�27�, �28�, �31�, �34�, �35�, and �38�–�40�.

III. WEAK FERROMAGNET/FERROMAGNET
HETEROSTRUCTURE

A. Energy density and equations of motion

We now consider a heterostructure comprised of alternat-
ing thin films of a ferroelectric weak ferromagnet, as illus-
trated in Fig. 1, with thickness dw and a ferromagnet with
thickness df in the z direction. We shall assume that the fer-
romagnet has a uniaxial anisotropy in the y direction with
strength Kf and dielectric stiffness components given by x,

y, and z. Then the energy density of the ferromagnetic film
is given by

EFM = − Kf�Mf
y�2 − H f · M f +

1

2 
i=x,y,z

i�pf
i�2 − E f · p f ,

�42�

where M f = �mx ,Mf +my ,mz� is the linearized magnetization
and p f is the dynamic dielectric polarization and so is de-
noted by a lower case letter. H f and E f are the dipolar mag-
netic and electric fields, respectively. They have been written
in upper case to emphasize that these may have a static as
well as a dynamic part.

We rewrite the energy density for the ferroelectric weak
ferromagnet shown in Eqs. �2� and �3� so that the thin-film
demagnetizing and depolarizing terms are discarded and the
dipolar fields are written in a corresponding way as to in the
ferromagnet

EAFM = �J + ��Px�2�Ma · Mb − K��Ma
y�2 + �Mb

y�2�

+ D�Ma
yMb

z − Ma
z Mb

y� − Hw · M, �43�

EFE = −
1

2
��Px�2 +

1

4
	�Px�4 − Ew · P +

1

2
����Py�2 + �Pz�2� .

�44�

To calculate the analytic susceptibility and the resonant
k=0 frequencies of the heterostructure, we use an effective
medium method which requires that Maxwell’s boundary
conditions for dipole fields are satisfied at the interfaces be-
tween the materials.14–16 This method can also be used to
numerically calculate the frequencies of long-wavelength
spin waves with finite wave vector �k�0� in an approach
known as entire-cell effective-medium method24,25 and gives
results in good agreement with more computational-
demanding methods for including dipolar interactions.

Maxwell’s boundary conditions relate the dipolar fields in
the ferromagnet �H f, B f =H f +4�M f, E f and D f =E f +4�P f�
and the weak ferromagnet �Hw, Bw=Hw+4��Ma+Mb�, Ew
and Dw=Ew+4�Pw� according to

Hf
x = Hw

x = hx, �45�

Hf
y = Hw

y = hy , �46�

Hf
z + 4�Mf

z = Hw
z + 4��Ma

z + Mb
z� = C , �47�

Ef
x = Ew

x = ex, �48�

Ef
y = Ew

y = ey , �49�

Ef
z + 4�Pf

z = Ew
z + 4�Pw

z = D �50�

for the geometry shown in Fig. 1. The constants C and D are
defined for ease of notation in what follows. In particular, the
out-of-plane �z� boundary conditions couple the dipolar
fields to the magnetization and electric polarization in both
materials. For this reason we must calculate the iz compo-
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nents of the susceptibility tensor first in order to properly
take into account dipolar effects.

All of the dipolar fields are in fact dynamic, apart from
Hw

z since from the linearization Eqs. �6� and �7� together with
the boundary condition, Eq. �47�

Hw
z = C − 8�M0 sin � − 4��az + bz� . �51�

It is the dynamic part of Hw
z , namely hw

z =C−4��az+bz�,
which drives the magnetization and which we need to find in
order to calculate the dynamic effective-medium susceptibil-
ity.

Substituting the energy densities Eqs. �42�–�44� and
boundary conditions Eqs. �45�–�50� into the equations of mo-
tion Eqs. �4� and �5� we obtain the following equations. For
the ferromagnet we have

−
i�



mx = − mz�Haf + Hdf� + MfC , �52�

−
i�



mz = mxHaf + Mfh

x, �53�

where the effective anisotropy and static dipolar fields in the
ferromagnet are given by Haf =2KfMf and Hdf =4�Mf, re-
spectively. We assume that the gyromagnetic ratio 
 is the
same for both the ferromagnet and the weak ferromagnet.

The equations of motion for a and b are the same as
shown for the weak ferromagnet thin film in Eqs. �11�–�16�
apart from the replacement of hz→C. This is deceptive as it
appears that the boundary conditions have simply created a
thin-film demagnetizing effect. However, since the driving
field is hw

z =C−4��az+bz� rather than C, this is not the case
as will be shown later.

The linearized electric equations of motion are

−
�2

f f
pf

x = − xpf
x + ex, �54�

−
�2

f f
pf

y = − ypf
y + ey , �55�

−
�2

f f
pf

z = − �z + 4��pf
z + D , �56�

−
�2

fw
pw

x = �� − 2�M2
2�− cos2 � + sin2 �� − 3	P0

2�pw
x + ex

− 2�P0M2�− ay cos � + by cos � + az sin �

+ bz sin �� , �57�

−
�2

fw
pw

y = − ��pw
y + ey , �58�

−
�2

fw
pw

z = − ��� + 4��pw
z + D , �59�

where f f and fw are the effective inverse mass terms of the
respective dielectric materials.

B. Effective medium susceptibility

As shown in Sec. II, the magnetizations and electric po-
larizations can be found as a function of dipolar field and
then the susceptibility can be derived. As already mentioned,
the �iz �i=x ,y ,z� components of the susceptibility must be
found first for the heterostructure which involves setting C
�0 and D�0 and ignoring all other dipolar field compo-
nents. In the effective-medium approximation the fields in
the two materials are averaged �for example, �mx�=dfm

x

+dw�ax+bx�� giving susceptibility components

�iz
m =

dfm
i + dw�ai + bi�

df�C − 4�mz� + dw�C − 4�az − 4�bz�
�

�mi�
�hz�

,

�60�

�iz
e =

dfpf
i + dwpw

i

df�D − 4�pf
z� + dw�D − 4�pw

z �
�

�pi�
�ez�

, �61�

�iz
em =

dfpf
i + dwpw

i

df�C − 4�mz� + dw�C − 4�az − 4�bz�
�

�pi�
�hz�

,

�62�

�iz
me =

dfm
i + dw�ai + bi�

df�D − 4�pf
z� + dw�D − 4�pw

z �
�

�mi�
�ez�

. �63�

Each term is weighted by the corresponding film thickness
dw or df.

The other susceptibility components can then be found.
For example, by setting hx�0 the �ix

m and �ix
em components

can be found according to

�ix
m =

dfm
i + dw�ai + bi� − �iz

m�hz� − �iz
me�ez�

�df + dw�hx

�
�mi� − �iz

m�hz� − �iz
me�ez�

�hx�
, �64�

�ix
em =

�pi� − �iz
em�hz� − �iz

e �ez�
�hx�

, �65�

where the susceptibility components on the right-hand side
of Eqs. �64� and �65� were found in the previous step using
Eqs. �60�–�63�.

It should be noted that the method described is identical to
existing effective-medium methods,14–16,24,25 apart from the
fact that we treat both dielectric and magnetic systems. This
only works since the equation of motion for pw

z and pf
z are not

coupled to the equation of motion for mz, az, and bz. If the
out-of-plane dielectric and magnetic oscillations were
coupled, then the effective dipolar fields �hz� and �ez� would
be coupled and much more complicated expressions for the
susceptibility components, as compared with Eqs. �60�–�63�,
would need to be found. This represents a new extension to
the effective-medium method which will be discussed in a
later paper.

Without providing working, the result for the nonzero
components of the frequency-dependent susceptibility is
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�zz
m =

− df

2MfHaf��2 − �o

2� − dw
2M0 cos ��Ha cos � − HDM sin ����2 − � f
2�

df��2 − �o
2���2 − � f�

2 � + dw��2 − �o�
2 ���2 − � f

2�
, �66�

�xz
m =

− i�
Mfdf��2 − �o
2�

df��2 − �o
2���2 − � f�

2 � + dw��2 − �o�
2 ���2 − � f

2�
, �67�

�yx
m =

i2
M0dw	�2 sin � − 
2Ha cos ���2Hd + 2Hex + Ha�cos � sin � − HDM�1 – 2 cos2 ���

��df + dw���2 − �a

2�
, �68�

�xx
m =

dfMf

2�dfHaf��2 − �o

2� + dw�Haf + 4�Mf���2 − �o�
2 ��

�df + dw��df��2 − �o
2���2 − � f�

2 � + dw��2 − �o�
2 ���2 − � f

2��
+

2dw
2�M0 sin2 ��2Hd + Ha� − M0Ha cos2 ��
�df + dw���2 − �a

2�
, �69�

�yy
m =

2dw
2M0 sin ��2Hd sin � + HDM cos ��
�df + dw���2 − �a

2�
, �70�

�xz
em =

− dw4�
2fwP0M0
2 cos ��cos � sin ��2Hd + 2Hex − Ha� + HDM���2 − � f

2�
��2 − � fe

2 �	df��2 − �o
2���2 − � f�

2 � + dw��2 − �o�
2 ���2 − � f

2�

, �71�

�xx
em =

i�dfdw4�
34�fwP0M0
2Mf cos ��cos � sin ��2Hd + 2Hex − Ha� + HDM�

�df + dw���2 − � fe
2 �	df��2 − �o

2���2 − � f�
2 � + dw��2 − �o�

2 ���2 − � f
2�


, �72�

�zz
e =

df�− �2/fw + �� + 4�� + dw�− �2/f f + z + 4��
df��2/f f − z���2/fw − �� − 4�� + dw��2/fw − �����2/f f − z − 4��

, �73�

�xx
e =

− 1

�df + dw�� df f f

�2 − f fx
+

dwfw

�2 − � fe
2 � , �74�

�yy
e =

− 1

�df + dw�� df f f

�2 − f fy
+

dwfw

�2 − fw��

� , �75�

where the optic antiferromagnetic frequency in a weak fer-
romagnetic thin film �o is given in Eq. �25�, the acoustic
antiferromagnetic frequency �a is given in Eq. �36� and the
ferroelectric mode frequency � fe is given in Eq. �29�. In
addition, we have new frequencies for the ferromagnet in
thin film � f and in bulk � f�

� f
2


2 = Haf�Haf + 4�Mf� , �76�

� f�
2


2 = Haf
2 . �77�

An additional frequency associated with the optic antiferro-
magnetic mode in bulk is given by

�o�
2


2 =
�o

2


2 − 2Hd cos ��Ha cos � − HDM sin �� . �78�

Compared with the weak ferromagnet in isolation �Sec.
II� two extra components are nonzero in the susceptibility
tensor, namely, �xz

m and �xx
em. �xz

m appears since it is nonzero in

the ferromagnet. �xx
em arises purely due to the coupling of mx

in the ferromagnet to the out-of-plane dipolar field and is
given by

�xx
em =

df4�mx�xz
em

�df + dw�hx . �79�

C. Limiting cases

We consider some limiting cases to test the effective me-
dium method. We use �zz

m �see Eq. �66�� to demonstrate the
results. First we consider replacing the ferromagnet with a
nonmagnetic material �Mf →0�. The component becomes

�zz
m =

− dw
2M0 cos ��Ha cos � − HDM sin ��
df��2 − �o

2� + dw��2 − �o�
2 �

. �80�

Then taking the limit that the weak ferromagnetic films are
much thinner than the nonmagnetic spacers �df �dw�, the
isolated thin film result from Sec. II is recovered �Eq. �27��,
namely,

�zz
m,film =

− 2
2M0 cos ��Ha cos � − HDM sin ��
�2 − �o

2 . �81�

Next we consider removing the ferromagnetic layers
�df →0�. This gives
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�zz
m,bulk =

− 2
2M0 cos ��Ha cos � − HDM sin ��
�2 − �o�

2 , �82�

which is the same as the result found for the isolated thin
film weak ferromagnet �Eq. �27��, apart from the pole being
at the bulk frequency �o� rather than at the thin-film fre-
quency �o. Hence the bulk limit is correctly recovered. Simi-
larly, the bulk ferromagnetic susceptibility is recovered in the
limit of the weak ferromagnet vanishing

�zz
m,bulk =

− 
2HafMf

�2 − � f�
2 . �83�

The effective medium method recovers the correct limits
for both bulk and thin-film geometries and therefore seems
reliable.

D. Dynamic magnetoelectric coupling

What is most significant when examining Eqs. �66�–�75�
is that the effective medium susceptibility is not, in general,
given by an average of the susceptibility in each film. This
means that instead of finding poles in �zz

m at the ferromag-
netic bulk frequency � f� and at the optic antiferromagnetic
bulk frequency �o�, we find two resonant frequencies given
by the solution to

0 = df��2 − �o
2���2 − � f�

2 � + dw��2 − �o�
2 ���2 − � f

2� .

�84�

These two frequencies correspond to modes that are common
to both materials and are a signature of the fact that the
out-of-plane dipolar magnetic fields serve to hybridize the
ferromagnetic and optic antiferromagnetic resonances. In
Sec. II we showed that for a weak ferromagnet with magne-
tostrictive magnetoelectric coupling, the ferroelectric and op-
tic antiferromagnetic modes are coupled. This in turn means
that the ferromagnetic resonance is coupled to the ferroelec-
tric mode. Examining the expression for �xz

em in Eq. �71�, it is
indeed seen that there is a magnetoelectric resonance involv-
ing the ferromagnet.

To demonstrate that one of the magnetoelectric resonant
frequencies may be in the GHz regime through this indirect
coupling of ferroelectric-optic-ferromagnetic modes, ap-
proximate frequencies for a NiFe /BiFeO3 �ferromagnet/
weak ferromagnet� heterostructure are calculated. Equal vol-
umes of both materials are assumed �df =dw�. The relevant
frequencies of the isolated films and bulk samples are given
in Table I. Substituting these into Eq. �84�, we find two of the
three magnetoelectric resonant frequencies in the hetero-
structure at 4.07 and 548.0 GHz. The former value shows
how such a heterostructure may be designed to give dynamic
magnetoelectric coupling in the microwave regime. With a
change in the ferromagnet used, application of an applied
magnetic field, or a change in the relative thicknesses of the
two materials, this frequency can be tuned.

We should stress that the only mechanism in this model
for a dynamic magnetoelectric coupling between the weak
ferromagnet and the ferromagnet is through dipolar fields. In
a real system exchange coupling at the film interfaces may

also lead to a dynamic magnetoelectric coupling by coupling
the ferromagnetic and optic antiferromagnetic modes. Ex-
change coupling leads to an asymmetry between the two
antiferromagnetic sublattices and so the effective-medium
susceptibility must be found numerically rather than analyti-
cally. Also, for relatively thick films, the exchange coupling
only represents a small contribution to the energy density
and so will not change the resonant frequencies significantly
from those calculated here.

IV. CONCLUSION

In this work we have shown that a magnetostrictive mag-
netoelectric coupling together with a canting of antiferro-
magnetic sublattices �known as weak ferromagnetism� in a
material leads to a dynamic coupling between ferroelectric
and optic antiferromagnetic excitations. Such a model is ap-
plicable to known multiferroic materials, such as BiFeO3.
Hybrid magnetoelectric excitation �or electromagnons� are
interesting for probing the origin and strength of magneto-
electric coupling but also may have application to high-
frequency signal processing. Most antiferromagnetic and
ferroelectric resonant frequencies are in the infrared regime.

In the second part of the work, we used an existing effec-
tive medium method to calculate the high-frequency suscep-
tibility of a ferroelectric weak ferromagnet/ferromagnet het-
erostructure. Dielectric and magnetic susceptibilities have
been found simultaneously using this method. The main re-
sult is that the magnetic dipolar coupling between the films
mediates a dynamic coupling between the ferromagnetic and
ferroelectric modes. This means that there is an electromag-
non in the low GHz or microwave regime. Heterostructures
may be designed to produce electromagnons in a desired
frequency range.

The strength of the dynamic magnetoelectric coupling is
in general weak via this mechanism. For example, for the
BiFeO3 /NiFe heterostructure, with parameters given in the
caption of Table I, the ratio �xz

em /�zz
m is under 5% for frequen-

cies away from resonances �using Eqs. �66� and �71� and
assuming that the magnetoelectric coupling proportional to �
is 1% as strong as the exchange energy�. However, this cal-
culation does not include damping and so the spectral
weights or the power absorbed by different resonant modes
cannot be compared accurately. All excitations correspond to
an infinite pole in the susceptibility when damping is ig-
nored. Including damping and obtaining a better estimate of

TABLE I. The resonant frequencies of NiFe �thin-film and bulk
ferromagnetic modes� and BiFeO3 �thin-film and bulk optic modes�.
These are estimated by assuming 
=2��2.8�106 Hz /Oe, that
for NiFe Haf =10 Oe and Mf =867 Oe, and that for BiFeO3, Ha

=880 Oe �Ref. 10�, Hex=2.7�105 Oe �Ref. 26�, M0=750 Oe
�Ref. 27� and HDM =1400 Oe. The value for HDM is estimated us-
ing the canting angle �=0.14° �Ref. 20� together with Eq. �9�.

� f

�GHz�
� f�

�GHz�
�o

�GHz�
�o�

�GHz�

5.81 0.176 552.6 543.3
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the electromagnon’s spectral weight, which would be of in-
terest to experimentalists, therefore represents an area of fu-
ture work.

For applications it appears that magnetostrictive/
piezoelectric composites with an interface strain-mediated
coupling are much more promising since they have static
magnetoelectric coupling strengths up to 100 times larger
than in single-phase materials �see, for example, the review
article by Nan et al.28�. Such heterostructures may be treated
using the effective-medium method detailed in this paper,
with an appropriately chosen magnetoelectric coupling be-

tween films. A microscopic entire-cell effective medium
method may prove more useful for calculating the suscepti-
bility since the magnetoelectric coupling is an interface
effect.
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