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Computational study of configurational and vibrational contributions to the thermodynamics
of substitutional alloys: The case of Ni;Al
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We have developed a methodology to study the thermodynamics of order-disorder transformations in
n-component substitutional alloys that combines nonequilibrium methods, which can efficiently compute free
energies, with Monte Carlo simulations, in which configurational and vibrational degrees of freedom are
simultaneously considered on an equal footing basis. Furthermore, with this methodology one can easily
perform simulations in the canonical and in the isobaric-isothermal ensembles, which allow the investigation of
the bulk volume effect. We have applied this methodology to calculate configurational and vibrational contri-
butions to the entropy of the NizAl alloy as functions of temperature. The simulations show that when the
volume of the system is kept constant, the vibrational entropy does not change upon transition while constant-
pressure calculations indicate that the volume increase at the order-disorder transition causes a vibrational
entropy increase of 0.08kz/atom. This is significant when compared to the configurational entropy increase of
0.27kg/atom. Our calculations also indicate that the inclusion of vibrations reduces in about 30% the order-
disorder transition temperature determined solely considering the configurational degrees of freedom.
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I. INTRODUCTION

One of the goals of materials science in the field of alloys
is to predict and understand the relative stability of phases
characterized by different chemical disorder. The disorder in
an alloy can be considered as having a configurational con-
tribution (configurational degrees of freedom), which is the
disorder associated to the way the atoms are distributed in
the parent lattice; and a vibrational contribution (vibrational
degrees of freedom), which is the disorder associated to the
phase space region around a static lattice configuration. For a
very long time, most theoretical phase-diagram calculations
were done considering only the configurational degrees of
freedom.!? In the 1990s, however, several experiments mea-
suring thermodynamical properties of alloys in disordered
metastable states,>® demonstrated the existence of a strong
interplay between vibrational and configurational degrees of
freedom. It became clear that neglecting vibrational contri-
butions to the thermodynamical properties of alloys could
lead to inaccuracies, such as differences up to 30% between
order-disorder (OD) transition temperatures calculated with
and without vibrational degrees of freedom.!® Theoretical
studies of these alloys in a metastable disordered phase were
performed assuming the alloys to be either completely or-
dered or totally disordered.''""> The cluster-variation
method'® and its extensions!” have been used to calculate the
configurational contribution in partially disordered systems
in equilibrium. Different approaches have been used to in-
corporate the vibrational degrees of freedom when cluster
expansions are used, such as molecular dynamics,'® the
coarse graining method,'® and the structure-inversion
approach.'®?% In the last two methods, the vibration contri-
bution is taken into account through the harmonic approxi-
mation and anharmonicities are included via the quasihar-
monic approximation. These two cluster expansion methods

PACS number(s): 61.43.Bn, 63.50.Gh, 81.30.Hd, 65.40.gd

very demanding for today’s computer capabilities, and ap-
proximate approaches are still very useful.”! These recent
calculations®’ have shown that anharmonic effects play an
important role in the vibrational contribution to the thermo-
dynamics of Al-TM (TM =Ti,Zr,Hf) alloys. About ten years
ago, a methodology called Monte Carlo exchange (MCX)
was proposed in which both atomic interchanges and atomic
displacements are allowed.?>~2*

In this work, we present a methodology to investigate
phase equilibria of alloys that takes into account naturally
and simultaneously all configurational and vibrational contri-
butions, including all anharmonicities, through a combina-
tion of the MCX approach and efficient tools to determine
free energies, namely, the adiabatic switching (AS) (Ref. 25)
and the reversible scaling (RS) (Ref. 26) methods. An inter-
esting feature of our methodology is that it can be easily
implemented in simulations in the canonical (NVT) and
isobaric-isothermal (NPT) ensembles, which allows the in-
vestigation of the volume effect on the vibrational entropy at
the OD transition. We have applied this methodology to
quantify the vibrational-entropy difference at the thermody-
namical OD transition of the NijAl binary alloy.

We chose the technologically important>’-2® NijAl as the
alloy model for our study mainly because it is supposed to
have the largest vibrational-entropy difference upon
disorder.>”1%-14 The vibrational-entropy difference due to
disorder at the thermodynamical OD transition should be
large enough to be unambiguously detected, since it is, in
general, a fraction of the corresponding configurational-
entropy difference, which is itself relatively small. We
also chose NizAl because it is particularly suitable to
assess the magnitude of the volume effect due to the large
difference between the atomic volumes of Al and Ni,?
(Var=Va)/ (Vao1+ Vi) /2=0.41. In the case of NizAl, most of
the research in the field, both experimenta13’7 and theoretical,

allow a first-principles description of the system, however, either using the embedded atom method'>'* or
even calculations within the harmonic approximation are still tight-binding!'3*  potentials, has found a significant
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vibrational-entropy difference between the totally disordered
(metastable) and the ordered phases. However, the subject is
not free of controversy, van de Walle et al.,'>>!' using ab
initio calculations, found that the totally disordered and the
ordered phases have essentially the same vibrational entropy.
Our results of NPT Monte Carlo simulations indicate an in-
crease of 0.08kp/atom in the vibrational entropy at the ther-
modynamical OD transition, which is significant when com-
pared to the corresponding configurational entropy increase
of 0.27kg/atom. Regarding the importance of the volume
effect, theoretical studies'' 1439 have found that this effect is
the main responsible for the increase in the vibrational-
entropy difference between the totally disordered and the or-
dered phase. This is supported by experimental work,>>* in
which it has been found an increase in the volume as the
system becomes totally disordered. We have found that the
volume increases 1.2% at the OD thermodynamical transi-
tion. In addition, our calculations indicate that the volume
effect is the responsible for the increase in the vibrational-
entropy difference at the OD transition.

The paper is organized as follows. In Sec. II we present
the general methodology. Section III describes the details of
the interatomic potential we have chosen to describe the
NizAl alloy. In Sec. IV, the methodology is applied to evalu-
ate the configurational and vibrational entropies as functions
of the temperature and the contribution of the volume effect
to the vibrational entropy at the OD transition. In Sec. V we
summarize the results.

II. METHODOLOGY
A. Monte Carlo algorithms

In real systems, the process of chemical disordering takes
place mainly through the migration of vacancies.>3® The
problem of realistically simulating the disordering process
through this mechanism is that the average vacancy concen-
tration is very low (less than 1073),37 implying the require-
ment of very large system sizes. For this reason, we chose
the atomic-exchange algorithms to simulate the chemical dis-
order. This dynamics can be implemented through the Monte
Carlo method. In this approach, the configurational degrees
of freedom are explored by selecting at random two atoms
belonging to different chemical species, their positions in the
lattice are then interchanged, the energy change upon the
atomic exchange is calculated, the Boltzmann factor associ-
ated to this change in energy is computed, and the move is
accepted or rejected according to the Metropolis acceptance
probability.® In order for the algorithm to be efficient, one
should keep two lists of atoms of each atomic species and
choose randomly one atom of each list to form the pair of
atoms to be interchanged. This can be easily done since the
number of atoms of chemical species is kept constant. This
algorithm is more efficient than the Kawasaki algorithm?®
and satisfies detailed balance. We consider a Monte Carlo
step (MCS) in the configurational algorithm as N attempts to
exchange the atomic positions of two atoms of different spe-
cies chosen at random, where N is the number of atoms. We
will refer to the calculations using this algorithm as configu-
rational Monte Carlo (CMC) simulations.
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In order to investigate the vibrational contributions to en-
tropy we considered two different algorithms within the
MCX approach, which result from the combination of the
configurational algorithm with the usual Monte Carlo
atomic-displacement algorithm in the NVT and NPT
ensembles.’® In the case of NVT simulations, a MCS was
considered as N attempts of atomic displacements followed
by N’ attempts to exchange atoms. We chose N'=N/10, in
the particular case of Ni3Al because it is the minimum num-
ber of attempts of atomic exchange needed for the potential
energy and the order parameter to relax to average values.
We will refer to the calculations employing this algorithm as
VMC simulations. In NPT simulations, a MCS was defined as
N atomic displacement trials followed by N'=N/10 ex-
changing trials, and one attempt to change the volume of the
system.*" In this case, the simulations will be called PMC.

B. Free-energy calculations

The thermodynamical quantity that underlies all this work
is the free energy, which is calculated through the AS (Ref.
25) and RS (Ref. 26) methods. The AS method allows one to
calculate the free energy by computing the work done by
adiabatically switching the Hamiltonian of the system of in-
terest to the Hamiltonian of a reference system (or vice-
versa) at a single given temperature. On the other hand, the
RS method allows one to evaluate the free energy in a range
of temperatures provided that it is known at a single given
temperature. These methods are very efficient since they
evaluate the free energy from only one simulation run, whose
length is determined by the required accuracy. In contrast
with other methods, such as the harmonic,*! or the
quasiharmonic'?>!*15 approximations, the AS and RS, take
into account naturally all anharmonic effects, which are cru-
cial for the calculation of vibrational-entropy differences.

The AS method is based on the well-known thermody-
namic integration (TI) method.* In the TI method, the abso-
lute free energy of a system of interest can be estimated by
computing the work done to transform the Hamiltonian of a
reference system, of which one knows the free energy, into
that of the system of interest. This can be achieved by con-
sidering the artificial Hamiltonian, H(\)=NHy+(1=N)H .,
where H,y, is the Hamiltonian of the system of interest, H,,,
is the Hamiltonian of the reference system, and X is a dimen-
sionless coupling parameter. By varying N from O to 1, one
can transform one Hamiltonian into the other one. The work
performed to switch between the two systems is given by the

integral
1
oH
F—F,ef:f d)\<—> . (1)
0 IN ]\

If now A is considered to be a function of time, and its value
continuously varied from O to 1 during the time of simulation
t,, the free-energy difference between the two systems is
given by
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s d\
F- Fref= 0 th(Usys - Uref) = Wirr = Wrev + Ediss7

(2)
where Uy, is the potential energy of the system of interest,
U,y is the potential energy of the reference system, W;,, and
W.., are the irreversible and reversible work, respectively,
and E;,, is the energy dissipation. Time in Eq. (2) can be
regarded as the actual time, as in a molecular-dynamics
simulation, or the fictitious time created by the successive
steps in a Monte Carlo simulation. The potential-energy dif-
ference between the reference system and the system of in-
terest appears in Eq. (2), instead of the Hamiltonian differ-
ence, because we consider the kinetic degrees of freedom to
be in equilibrium, and, therefore, the kinetic-energy terms
cancel each other. The energy dissipation is one source of
error, characteristic of nonequilibrium dynamic processes,
and can be estimated*? by performing the direct and inverse
transformations between the two systems

W}‘"efﬂsys + W;ys—»ref

r ir . 3
5 3)

Ediss =

In all AS and RS calculations we adopted this criterion to
quantify the free-energy error, which can be reduced by in-
creasing the simulation time. Another source of error*? is the
statistical fluctuations of the quantities in the integrand of
Eq. (2), which can be handled by simulating other trajecto-
ries and averaging the results.

There are subtleties in the AS method we must be aware
of in order to obtain the correct free energy. The external
conditions, such as temperature, and the parameters of the
reference system must be set in a way that the coupled sys-
tem, described by H(\), does not undergo a phase transition
along the transformation path. (We took particular care about
the choice of the reference temperature for the high-
temperature disordered phases in the VMC and PMC simula-
tions to avoid mechanical melting.)

Now let us discuss briefly the RS method and its
application.?® In contrast to the AS, the RS method allows
the calculation of the free energy in a range of temperatures.
This can be accomplished by realizing that the free energy of
the scaled system at a temperature 7, whose potential en-
ergy is given by U,.ueq=N\Uy,, (in the case of RS \ is not
restricted to the interval [0,1]), is related to the free energy of
our system of interest at a temperature T=T,/\.2%*? The free
energy of the scaled system at a given value of N can be
readily determined by computing the work performed to
change N\ from 1 to A=T,/T as it is done in the AS method
(provided that the free energy is known for A=1). It is shown
in Ref. 26 that the free energy of a system at temperature 7
can be estimated from the irreversible work W;,(¢) done to
bring the system from T, to T(z), as

FI(0] KTy W) 3 (1)

= ZkgN In——, 4
T(t) T, 7, 2% "7, @

where T(¢t)=T,/\(t), and F(T,) is the known free-energy ref-
erence. The logarithmic term of Eq. (4) corresponds to the
contribution of the kinetic degrees of freedom and must be
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omitted when only the configurational changes are consid-
ered. The estimation of the energy dissipation at a given
temperature is calculated, as in the AS method, using Eq. (3).
In the case where the external pressure is set zero, as in the
calculation of the free energies for the NPT calculations, the
Gibbs free-energy formula reduces to Eq. (4).

III. THE Ni;Al SYSTEM

A. The choice of potential

Some well known and often used interatomic potentials
for modeling NizAl (Refs. 43 and 44) are not suitable to
describe the configurational degrees of freedom of this
alloy.* The reason for that is that this potential, in both
parameterizations,*>** does not yield the L1, phase as the
ground-state phase, giving rise to nonphysical thermody-
namical phases at low temperatures.*’ In order to modeling
appropriately the NizAl system we looked for a potential
which provides not only the correct ground state, but de-
scribes, at least qualitatively, the thermodynamics of the OD
and vibrational phenomena. We chose the tight-binding
Finnis-Sinclair*® potential whose parameterization was ob-
tained by Vitek et al.*’ Among the thermal features of this
potential we may cite the linear thermal-expansion coeffi-
cient (at 1050 K) of 21.7 X 107 K~!, which agrees well with
the experimental value of 19X 107 K=!;*8 the equilibrium
lattice parameter (at 1000 K) of au=3.6096 A, which
is in good agreement with the experimental value of
ay=3.6120 A;* and the calculated mechanical melting tem-
perature 77°"=1600+25 K at the Lindemanns’§ function
value of 0.12. We have determined the thermodynamical
melting temperature for this model of Niz;Al to be
T,=1328*+6 K. The thermodynamical melting point of a
substance is obtained by determining at which temperature
the solid and liquid phases have the same free energy. It is
important to point out that the thermodynamical melting
temperature we have obtained for the model is 20% lower
than the experimental value 7%,”=1636 K.* This discrep-
ancy in the melting transition temperature is not surprising
since the potential parameters are fitted from a database
which does not include data from the liquid phase. We will
return to this point later, after we present the results for the
OD transition. However, the important conclusion we should
advance at this point is that, despite numerical discrepancies,
the results from our simulations for the OD transition tem-
perature and the melting point are qualitatively consistent
with experimental findings.

B. Order parameters

In the case of L1, alloys, the order parameters can be
defined as follows. The long-range order parameter is con-
structed from the L1, phase by labeling the sublattice asso-
ciated to the Al (Ni) atom as an a(fB) sublattice. The long-
range order is then measured by the formula, first introduced
by Bragg and Williams'

Pu—0.25

) 5
1-0.25 ®)

’r’:

where p, means the fraction of Al atoms in the « sublattice.
In this way, =1 for the ordered L1, phase and 7=0 for the
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FIG. 1. (Color online) Thermal-equilibrium quantities obtained
from CMC simulations. The dotted lines indicate the OD tempera-
ture calculated from free energy calculations (Fig. 2). The order
parameter 7 is shown for two of the four sublattices of the L1,
structure, the order parameters not shown exhibit an identical be-
havior to that of sublattice 3.

disordered phase. This order parameter is very useful to
quantify the long-range order, however one must be careful
with its interpretation. First, when one performs computer
simulations to explore the configurational degrees of free-
dom through cooling experiments, at a relative low rate,
starting from the disordered phase at high temperatures, the
system should always end up in the L1, phase, but the Al
atoms not always are found in the arbitrarily defined a sub-
lattice. In other words, one does not know, in advance, which
one of the four possible sublattices will be a sublattice.
Hence, in this kind of experiment one must measure the
long-range order parameter in the four possible sublattices.
Second, when the system is in an antiphase boundary (APB)-
like configuration® a large fraction of Al atoms may be in a
ordered block at sites of a 8 sublattice, giving low and even
negative values for 7. Therefore, =0 does not distinguish
between a totally disordered and a particular APB configu-
ration. In Fig. 1(d), we show the results for the long-range
order parameter for the o and S sublattices.

Concerning the short-range correlations we measure the
short-range order parameter, first introduced by Bethe and
Wills* as

_ paini—9

12-9 (©

where p,p.n; means the average number of unlike bonds be-
tween an Al atom and its first neighbors. Note that =0
implies =0, however, =0 can correspond to o=1 as in a
particular APB configuration.

C. Implementation details

We have performed tests of our computational code by
calculating the melting temperature of the Ni system using
the Cleri and Rosato* potential, which agrees exactly with
the value reported in Ref. 51. Furthermore we compared our
Finnis-Sinclair calculations of antiphase boundary and stack-
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ing fault energies with Vitek et al.*’ results, and verified an
exact agreement.

The reference system chosen for the calculation of free-
energy references in the solid phases was the Einstein
crystal 33233 The chosen values for the vibration angular
frequencies are wy=75.4 rad THz, and wy;=31.4 rad THz,
for the Al atom and for the Ni atom, respectively. These are
the frequencies of the main vibrational modes of the ele-
ments, estimated from the experimental phonon density of
states from Ref. 54, which are expected to be optimal to
mimic the vibration of the atoms in the alloy. The reference
system chosen for the calculation of the free-energy refer-
ence of the liquid phase (used to estimate the melting tem-
perature) was the r~!2 repulsive fluid.>>-° The repulsive fluid
parameters are chosen in such a way that the position and
height of the first peak of the radial distribution function of
the 7~'2 repulsive fluid potential coincide with those of the
Finnis-Sinclair potential. This choice of parameters enhances
the probability of the reference system to be within the bor-
ders of the phase diagram of the system of interest thus mini-
mizing the risk of encountering a phase transition.>-33-7

In the AS and RS calculations we chose time simulations
such that the energy dissipation was less than 10™* eV/atom,
which typically leads to simulation lengths of 2 X 10° MCS.
The functional form of \(z) was always chosen to be a linear
interpolation between the initial and final simulation times,
which correspond to the initial and final temperatures. To
circumvent surface effects we applied periodic boundary
conditions and the minimal image convention.*’ Since both
the Einstein crystal and the r~'2 repulsive fluid do not have
any cohesion, the simulations involving these systems have
to be performed at fixed volume, which is chosen to be the
average volume of a NPT equilibrium simulation at the
given pressure and temperature of interest. Aside from the
systematic errors due to dissipation, statistical errors in free-
energy calculations were handled by taking averages over
typically ten samples. The error bars in the entropy differ-
ences were obtained from the fluctuation of entropy data be-
low and above the transition in the standard way. In most of
the results that will be presented in the following section, a
simple running average smoothing procedure was used in
order to remove the unwanted fluctuations introduced by the
numerical derivative calculations. All the calculations were
performed using a cubic simulation cell containing 500 at-
oms. Finally, we tested a larger system size using a 1372-
atom simulation cell and found no significant finite-size ef-
fects in entropy differences and transition temperatures.

IV. RESULTS AND DISCUSSION
A. CMC simulations

Let us discuss briefly the equilibrium numerical experi-
ments performed in order to bracket the OD temperature for
the CMC simulations. We set the L1, phase at a fixed volume
corresponding to the equilibrium volume obtained at zero
pressure and T,=10> K. Then we turned on the exchange
dynamics and performed a series of equilibrium simulations
on a relatively fine grid over a temperature interval of 2000
K. The measured thermodynamical quantities are shown in

094204-4



COMPUTATIONAL STUDY OF CONFIGURATIONAL AND...

Fig. 1. The abrupt changes in the behavior of the potential
energy, specific heat, and order parameters indicate the OD
transition at 7%4,-=1925+ 30 K. Note the abrupt change in
the long-range order parameter 7, and the nonzero value of o
after the transition. In order to estimate the effect of the
chosen fixed volume on our results, we performed an analo-
gous series of calculations at the equilibrium volume at 0 K,
which is substantially smaller than the one at zero pressure
and T,=10? K. We found the OD transition to be only 5%
larger than the previous one, and such small difference indi-
cates that the chosen value for the volume is not relevant for
our conclusions.

We now discuss the free-energy calculations. We consider
the free-energy reference in this case to be at infinite tem-
perature because in this limit the configurational entropy per
atom of a system with N atoms has an analytical expression
corresponding to the ideal solid solution, which is

Na!Ny! ™

1
Sconf(oc) = NkB In

This quantity measures the number of distinct configurations
obtained by arranging N,; and Ny; atoms in the lattice. Thus,
for a system containing 500 atoms, we have approximately
Seonf(®)=0.556kp/atom. The advantage of using the RS
method in this case results from the fact that the method
maps the problem of determining the free energy for an in-
finite interval of temperature onto a problem of finding the
free energy for a finite interval of the scaling parameter \.
We determine the work done to take the system from
To=10> K (A=1) to the virtually infinite temperature
(A=0). Combining this work and the entropy from Eq. (7),
we are able to calculate the free energy at T, using Eq. (4),
noting that in the CMC simulations the logarithmic term
should be dropped since in this case the atoms are not al-
lowed to vibrate. From the free-energy reference at T, and by
computing the work done to take the system from A=1 to
any A\<<1, we are able to calculate F as a function of 7T as
shown in Fig. 2.

In order to estimate the energy dissipation we compute the
work performed to take the system from N=0 (infinite tem-
perature) to N=1 (7). As we can see in Fig. 2(a) the energy
dissipation in the direct and reverse processes is less than
10~* eV/atom. The configurational entropy, shown in
Fig. 2(b), is obtained by computing numerically
—d(Fcpe)/ dT, where the brackets denote an average over
uncorrelated samples of the configurational free energy. This
averaging procedure is done in order to reduce the statistical
noise in the numerical derivative (subsequently the remain-
ing noise is further reduced by applying a running average
smoothing procedure). The OD transition temperature, which
in this case is considered to be at the center of the coexist-
ence region of the two phases, was found to be
T,-=1925+30 K, which agrees with the transition tem-
perature determined by analyzing the behavior of
thermodynamical quantities in Fig. 1. The configurational
entropy difference calculated at the OD transition is
ASEL=0.18 £ 0.01k5/atom. In Fig. 3(a) we show the be-
havior of the order parameters as function of the temperature.

PHYSICAL REVIEW B 81, 094204 (2010)

—

4562 a

-4.564
$-4.566 3
3 "3
| | &
>
~54.568 (- \ ~
S r ) 2
4570~ !

457121 od od

Teye Ty ]

sl Lo L1 e T T S RO B

~T000 1200 1400 1600 1800 2000 1400 1600 1800 2000 2200 2400

T (K) T (K)

FIG. 2. (Color online) Helmholtz free energy and entropy versus
temperature obtained from CMC simulations. In (a) the solid line
and the dashed line correspond to single realizations of the quasi-
static heating and cooling processes, respectively. In (b) solid line
depicts the entropy obtained from smoothing the —d{(Fcyc)/dT
data, dashed lines correspond to the coexistence region, and the OD
transition temperature Té‘fwczl925i30 K is estimated from the
center of the coexistence region. The inset shows the entropy of a
typical single realization where the coexistence behavior can be
observed.

We can see that the long-range order parameter goes to zero
at the OD transition temperature, whereas the short range
remains finite above the transition, approaching zero only for
extremely high temperatures. Due to the persistence of the
short-range order, we note that the configurational entropy
reaches its maximum only at very high temperatures. The
similar behavior of the configurational entropy and short-
range order parameter with temperature allows us to estab-
lish a direct relationship between these two magnitudes. This
relationship will be used in the calculation of free-energy
references for the calculations of the vibrational contribu-
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FIG. 3. (Color online) Behavior of the order parameters and
entropy as functions of temperature in a logarithmic scale obtained
from CMC simulations. In (a) the long-range order parameter 7
vanishes at the OD transition, in contrast to the short-range order
parameter o, which vanishes only at very high temperatures. This
behavior is reflected in the configurational entropy showed in (b).
The dashed line in (b) indicates the value of S, ().
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FIG. 4. (Color online) Behavior of the short-range order param-
eter o as a function of temperature in heating and cooling numerical
experiments at a rate of 0.02 K/MCS. From left to right, the two
pairs of curves are for the PMC and VMC simulations. The
dashed lines indicate the OD transition temperatures, obtained
from the crossing of the free-energy curves, which are
T¥Mce=1339+20 K and T¥pc=1497 =40 K. The curves are the
smoothed data from averages over ten samples.

tions. This result may also be especially useful at much
higher pressures where the OD temperature is much lower
than the melting point.®

B. vMC and PMC simulations

Now we turn to the study of the vibrational contributions
to the thermodynamics of the OD transition, where we con-
sidered simulations in the NVT and NPT ensembles. When
vibrations are allowed, the limit of infinite temperature is no
longer a suitable reference for the free energy since the sys-
tem would not remain a solid. In order to bracket the OD
transition temperatures for each case, we performed a series
of heating and cooling experiments. In Fig. 4 we plot the
short-range order parameter o as a function of the tempera-
ture, for the VMC and PMC simulations. The metastability
exhibited in each case allows suitable choices of reference
temperatures for the calculation of reference free energies
using the AS method. For each case, two reference tempera-
tures are chosen, one below and one above the guessed OD
transition temperature provided by the metastability region.
These free-energy references are subsequently used in the RS
method to calculate the free-energy curves starting from both
reference temperatures. Starting at the lower reference tem-
perature, the RS method generates a free-energy curve for
increasing temperatures; from the higher reference tempera-
ture, on the other hand, the RS method provides a free-
energy curve for decreasing temperatures. The crossing of
these two curves gives the OD transition temperature. These
OD transition temperatures are indicated by dotted lines in
Fig. 4. The error bars for the transition temperatures were
obtained from the free-energy reference error bars in the
same way as in Ref. 59: the RS method is performed again,
this time starting from the extremes of the error bar of free-
energy reference given by the AS method. The temperature
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error bar is then obtained by the two crossings points that are
the farthest from each other among the four curves intersec-
tions around the transition. Next, we discuss the details of
these calculations and further results.

The total free energy at the reference temperature 7, for
the VMC and PMC simulations is then calculated by adding
the contributions from the vibrational and configurational de-
grees of freedom as

F(Tref) = Fvib(Tref) - TrefSconf[O-(Tref)]’ (8)

where F;,(T,.;) is the vibrational free energy calculated
through the AS method to a reference system which does not
take into account the configurational entropy, e.g., the Ein-
stein Crystal, and S, is the configurational entropy corre-
sponding to the short-range order parameter at 7,,. The
mapping between S, and o is obtained from their tempera-
ture dependence in the CMC calculations, using the data
given in Fig. 3.

The physical justification of Eq. (8) is based on the as-
sumption that the entropy (or free energy) can be written as a
sum of the configuration entropy (free energy) and vibra-
tional entropy (free energy), which is widely used in other
methodologies, including cluster-expansion calculations.!”
Another way to state this hypothesis is that configurational
and vibrational degrees of freedom can be considered as two
subsystems that interact very weakly and can be treated as
two decoupled systems. Therefore, the validity of the map-
ping between S,,,, and o when the system is also vibrating
crucially depends on the hypothesis of decoupling between
configurational and vibrational degrees of freedom. In order
to verify this assumption, we devised the following test. In
the RS method, both configurational and vibrational degrees
of freedom are treated on an equal footing basis and the
mapping only participates indirectly in the calculation, pro-
viding a reference free energy. Let us now use Eq. (8) to
compute the free energy at two different temperatures in
which the system remains in the same phase. We can now
use one of these two free energies as a reference in a RS
calculation. If the hypothesis that configurational and vibra-
tional degrees of freedom are decoupled is correct, the free
energy given by the RS method at the other temperature
should agree with the result given by Eq. (8). We calculated
the free energies in the NVT ensemble at the temperatures of
1300 and 1450 K using Eq. (8) obtaining —-5.0755 and
—5.1794 eV/atom, respectively. Starting at 1300 K, we per-
formed a RS calculation, which yielded a free energy of
—5.1796 eV/atom at 1450 K. The deviation between the two
results is only 2 X 10~* eV/atom, which is of the same order
of magnitude of the systematic error due to dissipation in the
configurational free energy obtained in the CMC simulations.
From this result, we can conclude that the assumption used
in Eq. (8) is indeed valid.

In order to evaluate the contribution of the volume effect
to the vibrational entropy, we initially calculate the free en-
ergy of the system in the NVT ensemble. In Fig. 5 we show
the free energy and entropy curves below and above the OD
transition. The crossing of the two free curves determines the
OD transition. The entropy is then computed by the numeri-
cal derivative of the free-energy curves. The OD transition
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FIG. 5. (Color online) Free energy and entropy as functions of
temperature obtained from vMC simulations. The dashed line indi-
cates the OD temperature of T{/pjc=1497 =40 K obtained from
the crossing of the free-energy curves. The lines in the entropy plot
are obtained from the smoothing of the —d{Fynmc)/dT data.

temperature obtained is T{/yc=1497 =40 K. Once the tran-
sition temperature is obtained, one can go back to the
data in Fig. 4 to determine the short-range order
parameter for the ordered and disordered phases at the
OD transition, and from that the configurational-entropy
difference at the OD transition. The total-entropy
difference and the configurational-entropy difference at the
transition are AS{Upc=0.23 £0.02kg/atom and ASic
=0.22 = 0.0kp/atom, respectively. So the entropy difference
due to only the vibration

AS{vc = AS{mc - AS¥Ric )

is 0.01 = 0.02kp/ atom.

Simulations of the system in the NPT ensemble were em-
ployed to evaluate the variation in the volume of the system
at the OD transition. The calculated OD temperature
Temc=1339+20 K essentially coincides, within the error
bars, with the melting temperature of 7,,=1328 =6 K. This
is in agreement with experimental findings.*>-%° Although the
Finnis-Sinclair potential cannot reproduce quantitatively the
values obtained experimentally, it provides results that are
consistent with the experimental results.

In order to show the significance of the configurational
disorder on the vibrational properties of the alloy, we depict
in Fig. 6 the vibrational entropy of the alloy obtained from
PMC simulations as a function of temperature in comparison
with the total entropy of the alloy in the NPT ensemble for
the perfectly ordered L1, phase (in the latter atomic swaps
are not performed). In the PMC calculations the vibrational
entropy is obtained by subtracting the configurational en-
tropy from the total entropy. The configurational entropy is,
in turn, obtained as a function of temperature from its map-
ping with the measured short-range parameter. The entropy
of the L1, phase is purely vibrational. Therefore, the differ-
ence between the vibrational entropy from PMC simulations
and that of the ordered L1, alloy is only due to the configu-
rational disorder. We see that, as the temperature increases,
Sphc increases steadily, however, for temperatures above
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FIG. 6. (Color online) Total entropy as a function of temperature
from PMC simulations (solid curve) and vibrational entropy from
NPT simulations of the perfectly ordered L1, phase (squares). The
open circles depict the vibrational entropy, which is the difference
between the total entropy and the configurational entropy. The ver-
tical short dashed line indicates the PMC OD temperature. The open
circles represent the smoothed data from averages over ten samples.
The solid and long dashed lines are fittings to the smoothed data
and the error bars are smaller than the symbols (squares and
circles).

1300 K it becomes larger than Sle- That shows that even
below the OD transition, where Sp} ¢ suffers a finite discon-
tinuity, the configurational disorder causes an increase in the
vibrational entropy.

The total-entropy difference and the configurational-
entropy difference at the OD transition in the case of PMC
simulations are ASBvc=0.35£0.02kz/ atom and
ASEc=0.27 £0.01kg/atom, respectively. So the
vibrational contribution to the entropy difference is
ASER1c=0.08 £0.02kz/atom. This result shows that the
vibrational-entropy difference at the OD temperature is about
23% of the total-entropy difference when the volume is al-
lowed to relax. Furthermore, this vibrational entropy increase
is accompanied by a volume increase of 1.2%. This result,
together with the essentially zero vibrational-entropy differ-
ence found in the VMC simulations, indicates that the volume
change is the responsible for the vibrational-entropy increase
in NizAl The increase in volume upon disorder is consistent
with all experimental®?>-346! and theoretical work.!'3-15-30:31
The result that the vibrational-entropy difference increases at
the OD transition is consistent with all the experimental®’
and most of the theoretical work,'=1430 which have observed
a positive vibrational-entropy difference between the totally
disordered (metastable) and the totally ordered phases. The
OD temperature in the NPT ensemble is approximately 30%
lower than the OD temperature calculated when only the
configurational degrees of freedom are considered. Ozolins,
Wolverton, and Zunger® proposed a relation between the
OD transition temperature calculated considering only the
configurational degrees of freedom and the transition tem-
perature determined including also vibrations
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FIG. 7. (Color online) Behavior of the total entropy as a func-
tion of temperature for the liquid phase and all cases studied. The
inset shows the results from CMC calculations. The curves are the
smoothed data from averages over ten samples.

vib -1
Tc)gnﬂ in = Té[rlvlc<1 + ASPMC) (10)
: ASEE

Using the results from our calculations as input for Eq. (10),
namely, 7T%9,c=1925 K,  AS&/.=0.18kz/atom,  and
ASgRr1c=0.08kp/atom, we find T, .,,;,=1333 K, ie., the
inclusion of vibrations lowers the OD transition temperature
by 31%, with respect to the purely configurational transition
temperature, which agrees with the lowering of 30% we have
determined for the NPT ensemble. Finally, in order to com-
pare the changes in entropy for all cases studied, including
the melting transition, we show in Fig. 7 the total entropy as

a function of the temperature.

V. SUMMARY

In this work we employ to the greatest possible advantage
the RS and the Monte Carlo techniques, providing a meth-
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odology to evaluate both the configurational and vibrational
free energies as functions of temperature for n-component
substitutional alloys. This methodology is used to quantify
the contributions of the vibrational degrees of freedom by
performing simulations in the NVT and NPT ensembles.
Therefore, these simulations allow to evaluate the volume
effect at the OD transition. Our calculations show that in the
VMC simulations, in which atoms can be swapped and also
vibrate, but volume is kept constant, the vibrational entropy
essentially remains the same at the OD transition. On the
other hand, in the PMC simulations, in which the volume is
allowed to vary, the vibrational-entropy difference at the OD
transition is ASpRic=0.08 £ 0.02kz/atom, which is substan-
tial when compared with the configurational-entropy differ-
ence of ASPRc=0.27 £0.01kpz/atom. This indicates that the
effect of volume relaxation is the source of the increasing in
the overall vibrational entropy upon disorder. Moreover, the
volume increase at the OD transition is of 1.2%. A particu-
larly relevant result is that the OD transition temperature
obtained from the PMC simulations is approximately 30%
less than that calculated when only the configurational de-
grees of freedom are considered in the CMC calculations.
This result corroborates the importance of the vibrational
degree of freedom in the determination of precise OD phase
diagrams. Finally, as this methodology is not restricted to a
particular crystal structure and stoichiometry, it can be ap-
plied to any n-component substitutional alloy to evaluate the
configurational and vibrational entropies as function of the
temperature and quantify the importance of the volume
changes in the vibrational entropy.
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