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Ab initio density functional calculations of the response of V, Nb, and Ta to tensile and shear loading have
been performed. We find that the behavior of all three metals of the V group under large strains differs
considerably from that reported for the other body-centered cubic �bcc� transition metals �Mo, W, and Fe�.
Under unaxial �100� tensile loading, V and Nb undergo a bifurcation from a tetragonal to an orthorhombic
deformation path, associated with a shear instability, before reaching the stress maximum. The bifurcation
strongly reduces the ideal tensile strengths to 11.5 GPa for V and 12.5 GPa for Nb. For Ta the bifurcation point
coincides with the stress maximum of 13.6 GPa along the tetragonal path so that the metal fails under tensile
strain by shear and not by cleavage. The stress-strain curves calculated for the �110��111� and �211��111� slip
systems are strongly asymmetric; the ideal shear strengths for both slip systems are 6.5 �5.5� GPa for V and 7.8
�6.0� GPa for Nb. Hence the ideal shear strengths are only half as large as for the bcc metals Mo and W, but
much larger than expected on the basis for the low shear moduli of V and Nb. Ta shows a behavior interme-
diate between these two groups of metals, with a calculated ideal shear strength of 7.1 �6.5� GPa, in excellent
agreement with the experimental estimate from nanoindentation experiments. The saddle-point structure de-
termining the shear strength for both slip systems is a special body-centered-tetragonal structure. This structure
is identical to the saddle-point structure identified on the orthorhombic deformation path under uniaxial ten-
sion. Hence also V and Nb will fail under uniaxial tension not by cleavage, but by shear.
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I. INTRODUCTION

The strength of any solid is limited by the ideal or theo-
retical strength defined by the stress required to yield or
break a perfect crystal. The ideal shear strength determines
the stress necessary for the nucleation of dislocations, while
for the formation of a cleavage crack the local stress must
exceed the ideal tensile strength.1 In real solids the maximum
attainable stress is strongly influenced by the formation of
mobile dislocations, by grain boundaries, cracks, and other
microstructural features, but it can never exceed the ideal
value. While no experimental determinations of the ideal
strength under tension have been possible to date, the ideal
shear strength can be estimated from nanoindentation
experiments.2–6 In nanoindentation experiments the indenter
is so small that the volume of the probe undergoing shear
deformation may be considered as defect free. In a typical
nanoindentation test force and displacement are recorded as
the indenter tip is pressed into the materials surface. The
yield stress is identified by the first point at which the ex-
perimental data deviate from the elastic curve. At this point
the indenter moves into the substrate without a measurable
increase of the load—this is usually interpreted as a homo-
geneous dislocation nucleation event.5,6 However, a detailed
analysis of the load/displacement curves and detailed mo-
lecular dynamics simulations suggest that the nominally
“elastic” part of the curve might contain some superimposed
plastic deformation too subtle to be detected. This would
mean that even nanoindentation experiments can seriously
underestimate the theoretical strength. For example, Biener
et al.4 derived for body-centered cubic Ta a maximal shear
stress of 7.5 GPa, considerably below the theoretical shear

strength of 11 GPa estimated from the shear modulus of
69 GPa.

In view of the difficulty to determine the ideal strength in
experiments, there is a continuing interest in its theoretical
calculations. The earliest attempts assumed a simple analytic
form of the stress-strain curve which allows to derive the
ideal strength from the elastic moduli.1,7 This allows to de-
fine a dimensionless shear and tensile strength, ��=�max /E
and ��=�max /G, where �max and �max are the maxima of
tensile and shear stress and E and G are the experimental
values of the Young’s modulus and the shear modulus for the
direction of loading. The reduced dimensionless shear and
tensile strengths are assumed to be essentially constant for a
specific class of materials. A significant step forward was
realized since the 1970s using atomistic models based on
empirical or semiempirical force fields which provided valu-
able information on the atomistic mechanisms of the defor-
mation under large strains.8–12 However, because the para-
meters of the force fields were necessarily fitted to the ma-
terials properties at small strains, the predictions cannot be
considered as quantitatively reliable. Finally since the 1990s
ab initio density functional calculations began to supercede
empirical methods for the determination of the response of
metals and intermetallic compounds to tensile and shear
loading.13–24 These methods are free from adjustable param-
eters, valid at all strains and permit in principle a quantitative
determination of the ideal strengths. However, because of the
relatively large computational effort required in such calcu-
lations, early studies were performed at fixed strains.13,14 In
this case the selected strain was stepwise increased by small
increments while the other five independent strains were
fixed at zero, i.e., all internal relaxations were suppressed.
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More meaningful results for the energy-strain and stress-
strain relations are achieved if the crystal is relaxed until
only the stress conjugate to the applied strain has a nonzero
value. A review of semiempirical and ab initio calculations
of ideal tensile and shear strengths has recently been com-
piled by Pokluda et al.25

Even to date, ab initio calculations of tensile and shear
strengths are available only for a few selected metals and for
a very few intermetallic compounds. The face-centered cubic
�fcc� metals Al �Refs. 18, 22–24, and 26–29� and Cu �Refs.
18, 22–24, 30, and 31� have been studied most extensively.
Among the body-centered cubic metals attention was fo-
cused on Fe �Refs. 32 and 33� and on the refractory metals
Mo and W.16,19,21

The studies of the fcc metals Al and Cu have emphasized
that estimates of the ideal strength based on the elastic be-

havior are of limited validity: for both �111��112̄� and

�111��1̄10� shear deformations, the shear constants of Cu are
much higher than those of Al, while from the position of the
maximum on the stress-strain curve a higher ideal shear
strength is predicted for Al.24,28 The investigations of the
loading behavior of the fcc metals have also demonstrated
that the theoretical strength may be limited by a shear-related
instability, by the softening of a phonon mode along a tensile
deformation path or by stacking-fault formation along a
shear deformation path, even before the maximum in the
stress-strain curve has been reached. For example, the ideal
tensile strength �ITS� of Cu under �100� loading is limited by
the occurrence of a shear instability30,34 at a strain of 10%.
The instability induces a bifurcation from a tetragonal to an
orthorhombic deformation path and limits the ITS to 9.5
GPa, compared a stress maximum of 23.8 GPa at a strain of
36.0%. For Al Clatterbuck et al.26 have reported phonon in-
stabilities under uniaxial �100� tension at strains of 17% and
18% limiting the ITS to 9.2 GPa compared to a peak value of
12.9 GPa, under �110� tension a soft phonon mode appears at
a strain of 11%. In all cases the soft phonon modes show
displacement patterns corresponding to periodic shear defor-

mations. For Al under both �111��112̄� and �111��1̄10� shear
deformations the ideal shear strength �ISS� is limited by �i�
stacking fault instabilities and �ii� soft phonon modes.24,26

Under �111��112̄� shear the unstable stacking fault configu-
ration is reached at a strain of 14.5%, at the same strain a
phonon instability has been reported. The displacement of

the soft phonon mode corresponds to �111��112̄� shear fail-
ure with a periodicity of two or three �111� planes, it is also
closely related to the failure mode induced by the soft pho-
non mode predicted for �110� tension �for a detailed discus-
sion we refer to Jahnátek et al.�24 For fcc Cu, no shear insta-
bilities occur under uniaxial �110� or �100� tensile loading.
Also, in contrast to Al the unstable stacking fault configura-

tions under �111��112̄� and �111��1̄10� shear deformations
are reached only at strains beyond the maximum on the
stress-strain curve.23,24,34

In comparison to this very complex scenario, the in-
vestigations of the bcc metals presented so far describe
a much simpler picture. Investigations of tensile loading
have concentrated on the �100� directions because symmetry

considerations,12 early ab initio calculations16 and empirical
tests have all identified the �100� directions as the weak di-
rections in tension and the �100� planes as cleavage planes.
The general theory of the response of cubic metals to
uniaxial loading along �100� has been developed in a series
of classical papers by Milstein et al.10,11 Starting from an
unstressed bcc structure all metals first adopt a primary de-
formation path with tetragonal guiding symmetry. Any devia-
tion from tetragonality implies the presence of a transverse
load. However, as already shown by Hill and Milstein8 at a
“special invariant state” where the elastic constants satisfy
the condition c22=c23, a bifurcation to a secondary ortho-
rhombic path may occur under dead load �note that the in-
variance condition implies a tetragonal shear instability�. For
the refractory bcc metals Mo and W �Refs. 19 and 21� and
for bcc Fe �Ref. 32� it has been shown that the tetragonal
symmetry is broken only after the point of maximum tensile
stress has been passed. Only for bcc Nb the bifurcation oc-
curs already at a lower strain and leads to an ITS which is
significantly lower �13.1 GPa� than that on the tetragonal
path �18.8 GPa�. Shear deformations along �111� may occur
in bcc crystals by slip on the �110�, �112�, and �123� planes.
All three shear systems have been studied by Roundy et al.19

for W, while for Mo, Nb, and Fe only the two first have been
investigated. The stress-strain curves are very similar for
�111� slip along all investigated glide planes, leading to simi-
lar values of the ISS. A remarkable result is that for all bcc
metals with the exception of Nb the reduced dimensionless
tensile and shear strengths are very close to the ideal values,
��=�max /E=0.08 and ��=�max /G=0.11, calculated under
the assumption of a sinusoidal stress-strain curve with a pe-
riod that is twice the strain required to reach the saddle-point
structure determining the ideal strength �i.e., the fcc phase in
tension and a body-centered tetragonal phase under shear�.
The stress-strain curve of Nb under shear shows a strong
deviation with a low initial slope caused by a low shear
modulus, the reduced ideal shear strength is ��=0.18, i.e.,
50% higher than for the other bcc metals. Together these
results show that among all investigated bcc metals Nb is the
only one that is predicted to fail by �211��111� shear rather
than by �100� tensile failure. In very recent work35 the effect
of a superposed transverse stress has been considered. As
observed for other metals, hydrostatic tension raises, while
hydrostatic compression lowers the ITS of Nb.

The exceptional behavior of Nb under tensile and shear
loading has been attributed to a very low G�111� /E�100� ratio
were the relaxed modulus for �100� tension is given by

E�100� =
�c11 − c12��c11 + 2c12�

c11 + c12
, �1�

and

G�111� =
3c44�c11 − c12�
4c44 + c11 − c12

, �2�

is the relaxed modulus for shear along �111� �note that be-
cause of the threefold rotational symmetry around the �111�
axes, any shear in this direction has the same modulus�. Us-
ing the experimental values of the elastic constants36–40 this
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ratio is G /E=0.34, 0.28, and 0.42 for V, Nb, and Ta, and
G /E=0.35 and 0.39 for Mo and W. This would suggest that
the anomalous behavior under tensile and shear loading
should be restricted to Nb, while V and Ta should be ex-
pected to behave similarly as Mo and W. However, it is well
known that Nb and V share some interesting anomalies in
their elastic, dynamic, and superconducting properties: �i�
low values of the trigonal and tetragonal shear constants
�c44=43, 29, and 83 GPa for V, Nb, and Ta; c�= �c11
−c12� /2=55.5, 57 and 53 GPa for V, Nb, and Ta�. �ii� Theo-
retical calculations41,42 predict a pronounced softening of the
trigonal shear modulus of V and Nb under compression,
driving a mechanical instability of bcc V while for Nb the
shear modulus softens for pressures around 50 GPa, but re-
mains positive. The occurrence of a structural phase transi-
tion of V from bcc to a rhombohedral phase at about 63–69
GPa has recently been confirmed by synchrotron x-ray
diffraction.44 In contrast the absence of pressure-induced
phase transitions in Nb up to 145 GPa has recently been
confirmed.45 �iii� The elastic anomalies of V and Nb are re-
flected in anomalies of their phonon dispersion relations.46–48

�iv� Phonon softening is thought to be responsible for the
high superconducting transition temperature Tc in Nb and for
the strong increase of Tc under compression in V.

The elastic and phonon anomalies have been discussed
extensively in relation to the electronic properties and shown
to be related to the nesting properties of the Fermi
surface.42,49 In particular, the downward dispersion of the
transverse phonon branch along �100� and therefore also the
unusual softness of c44 has been shown to arise from the
nesting properties of the Fermi surface around the N point
leading to a van Hove singularity in the electronic density of
states close to the Fermi energy.

Here we present an extended study of the response of all
three V-group metals to tensile and shear loading based on
ab initio density functional calculations. Our calculations al-
low for a bifurcation from a tetragonal to an orthorhombic
deformation path under uniaxial tensile strain. Shear defor-
mations have been studied for the �110��111� and �211��111�
shear systems.

II. COMPUTATIONAL METHODS

Our ab initio total-energy and force calculations are based
on density functional theory �DFT� as implemented in the
Vienna ab initio simulation package �VASP�.50,51 A gradient-
corrected functional has been used to describe electronic ex-
change and correlations.52 Electron-ion interactions are
treated within the projector-augmented wave �PAW�
method.53,54 For all elements we used the standard PAW
pseudopotentials �PP� distributed with VASP with reference
configurations np6nd4�n+1�s1 for the valence states with n
=3,4, and 5 for V, Nb, and Ta. The plane-wave basis set
contained components with kinetic energies up to 350 eV.

The response of the crystal to tensile or shear deforma-
tions was calculated by increasing the strain along the chosen
directions in small steps. Increasing/decreasing the strain by
very small increments leads to a reversible deformation pro-
cess at zero absolute temperature with negligible hysteresis.

The crystal structure was fully relaxed at each deformation
step until all lateral stresses vanished. This has been done by
the efficient external optimizer GADGET developed by
Bučko et al.55 GADGET performs a relaxation in terms of
generalized coordinates which allow a better control of lat-
eral stresses. The forces acting on the atoms were computed
via the Hellmann-Feynman theorem,56 the stress tensor act-
ing on the unit cell was computed via the generalized virial
theorem.57 The use of a high cut-off energy allows to achieve
a high accuracy of the components of the stress tensor. The
Brillouin zone �BZ� was sampled using various types of
meshes according to the size and symmetry of the computa-
tional cells. Because the elastic properties and the stresses at
small strains of V and Nb are strongly influenced by the
occurrence of van Hove anomalies close to the Fermi level,
very fine k-point meshes �up to 23�23�23 for calculations
based on a simple face-centered or body-centered tetragonal
cell and up to 22�14�8 for the larger supercells used for
simulating shear deformations� are required to calculate the
elastic shear constants and the stress-strain relations. All in-
tegration meshes were constructed according to the
Monkhorst-Pack scheme.58 The integration over the BZ used
the Methfessel-Paxton method59 with the smearing parameter
of 0.2 eV for calculation of the total energies and stresses,
and the tetrahedron method with Blöchl corrections60 for the
calculation of the density of states. The total energy was
calculated with high precision, converged to 10−8 eV /atom.
The structural relaxation was stopped when all forces acting
on the atoms where converged to within 10−3 eV /Å and all
components of the stress tensor except that conjugate to the
imposed strain where converged to within 0.05 GPa.

For the calculation of the elastic constants we used the
linear-interpolation method of the stress tensors. The cubic
cells were submitted to the ��1 and ��4 strains; the tetrag-
onal cells were submitted in addition to ��3 and ��6 strains;
for the orthorhombic cells two more strains, ��2 and �5;
were added. For each set of strains ��i two different mag-
nitudes of 0.2% and 0.5% were used. For the calculation of
the elastic constants the total energy was calculated with
even higher accuracy, converged to 10−9 eV /atom.

III. ELASTIC PROPERTIES

The elastic constants of the V-group metals, together with
the Young’s modulus E�100� for tension along �100� and the
relaxed shear modulus G�111� for shear along the �111� direc-
tion are compiled in Table I. It is well known that although
very good agreement for the bulk modulus �B= �c11
+2c12� /3� and the orthorhombic shear constant c�= �c11
−c12� /2 is achieved, all DFT calculations seriously underes-
timate the trigonal shear constant c44, irrespective of the
exchange-correlation functional �local or semilocal gradient-
corrected functional� and of the method used for solving the
Kohn-Sham equations �plane-wave based pseudopotential or
PAW calculations, muffin-tin orbital methods�.41–43 The low
value of the trigonal shear constant is related to an anoma-
lous dispersion of transverse acoustic phonons propagating
along the �100� direction. In the long-wavelength limit, shear
constant, and frequencies of transverse acoustic phonons are
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related through c44=�2�q�� /q2 where � is the density. Soft-
ening of acoustic phonons and the low value of the shear
constant are related to the nesting properties of the Fermi
surface which produce a van Hove singularity in the elec-
tronic density of states �DOS� close to the Fermi level, as
discussed in detail by Landa et al.41 As shown in Fig. 1, the
distance between the van-Hove peak in the DOS and the
Fermi energy increases from V to Nb and Ta, in correspon-
dence to an increasing value of the shear constant. Due to the
presence of the van-Hove singularity, an exact determination
of c44 requires a very fine mesh for Brillouin zone integra-
tions. With a 23�23�23 grid, full convergence is achieved,
but the shear constant is still too low by a factor of about
two. It is well known that crystalline imperfections tend to
smear out the Fermi surface and hence the singularity in the
DOS and that this results in a damping of the related anoma-

lies in the phonon dispersion relations and to a stiffening of
the elastic shear modes. In theoretical calculations this effect
may be modeled by applying a Gaussian smearing to the
eigenstates and we find that a broadening of the energy levels
leads to a larger value of the c44 shear constant. While this
might account for part of the discrepancy between theory and
experiment, more accurate experiments at low temperatures
and high-quality specimens would also be desirable. For the
moment we note that the very low values resulting from all
theoretical calculations should be treated with caution, al-
though the trends among the V-group metals are at least
semiquantitatively correct. We also note that for the relaxed
tensile and shear moduli relevant to the present study, agree-
ment between theory and experiment is better than for c44
alone. To assess the validity of our method for calculating the
elastic constants of bcc transition metals we include in Table
I our results for Mo and W, together with the experimental
values. For both metals we note very good agreement be-
tween theory and experiment.

IV. RESPONSE TO UNIAXIAL [100] TENSILE LOADING

The general theory of the response of cubic metals to
uniaxial �100� loading has been formulated by Milstein et
al.8,9,11 On the primary tetragonal deformation path �the Bain
path� the structure can be considered as either body-centered
tetragonal �bct� or face-centered tetragonal �fct�. By symme-
try only three stress-free states are possible: bcc, fcc, and a
special bct �or equivalently fct� structure, but the order of
appearance of these states along the deformation path de-
pends on the details of interatomic binding. Owing to crystal
symmetry, the fcc state can be reached from the bcc state

TABLE I. Elastic constants, shear anisotropy A=2�c�−c44� /c44, relaxed tensile modulus E�100�, relaxed shear modulus G�111�, and ratio
G/E for the body-centered cubic metals of the V group �in GPa�.

Metal Reference c11 c12 c44 c�= �c11−c12� /2 A E�100� G�111� G/E

V This work 262 144 17 59 4.9 160 32 0.20

Theory, Ref. 42 260 135 17 63 5.4 168 33 0.20

Theory, Ref. 43 205 130 5 37.5 13.0 104 12 0.11

Exp., Ref. 37 231 120 43 55.5 0.56 149 50 0.33

Nb This work 247 138 17 54.5 4.4 148 31 0.21

Theory, Ref. 42 247 138 10 54.5 8.9 148 22 0.15

Theory, Ref. 43 267 147 27 60 2.4 163 43 0.26

Exp., Ref. 37 246 133 29 57 1.9 154 43 0.28

Ta This work 257 163 71 47 −0.68 132 53 0.40

Theory, Ref. 42 265 159 74 53 −0.57 146 59 0.40

Theory, Ref. 43 291 162 84 64.5 −0.46 175 70 0.40

Exp., Ref. 37 266 161 83 53 −0.72 145 60 0.41

Mo This work 470 161 105 154 0.93 386 133 0.34

Theory, Ref. 43 406 150 107 128 0.40 325 120 0.37

Exp., Ref. 37 465 162 109 152 0.78 381 134 0.35

W This work 500 205 130 148 0.27 382 142 0.37

Theory, Ref. 43 553 207 178 173 −0.06 440 175 0.40

Exp., Ref. 37 523 204 161 159 0.03 407 159 0.39
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FIG. 1. �Color online� Electronic density of states of bcc V, Nb,
and Ta. Note the van-Hove singularities close to the Fermi level.
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only by applying uniaxial tension, hence there are three pos-
sible orderings of the stress-free states: �1� bcc, bct, fcc �as
found for the alkali metals�,11 �2� bct, bcc, fcc, and �3� bcc,
fcc, bct. The centrally located stress-free state is necessarily
unstable because of a decreasing stress at increasing strain, it
represents a saddle point on the energy-strain curve. Scenario
�3� is realized along the tetragonal deformation path of
the bcc transition metals such as W.18–20 If the primary
tetragonal path �PTP� contains the “special invariant state”
where c22=c23, a bifurcation to a secondary orthorhombic
path �SOP� can occur under strict uniaxial load. Immediately
after bifurcation the system passes through a stress-free bct
state while at larger strain the original bcc structure is recov-
ered.

Figure 2�a� shows a sketch of the bcc lattice embedded
into a more general fct lattice. Tetragonal deformations can
be described by the variation of the lattice parameters a1 and
a2=a3 of a bct lattice with a1 increasing linearly as a func-
tion of strain. The deformations along an orthorhombic de-
formation path can be described in terms of a fct lattice with
b1=a1=a0 and b2=b3=	2a0 in the undeformed state. Along
the PTP relaxation minimizes the total energy with respect to
a2=a3 only, while along the SOP the total energy is mini-
mized independently with respect to both b2 and b3.

The energy-strain and stress-strain curves, as well as the
variation in the lattice parameters ai and bi as a function of
strain are shown for V, Nb, and Ta in Figs. 3–5. As a measure
of strain we use the engineering strain. The scenario is quali-
tatively the same for all three metals, albeit with some im-
portant quantitative differences. Along the PTP the maxi-
mum on the energy-strain curve is the fcc structure as shown
in Fig. 2�b�. Under a volume-conserving deformation the
strain at which the bct cell assumes the fcc structure is given
by the Bain strain of 	B=	32−1=0.26. For all three metals
the fcc structure is realized at a slightly larger strain varying
from 	=0.274 for V to 	=0.273 for Nb and 	=0.271 for Ta,

corresponding to a slight volume expansion. Upon further
increased tensile strain the total energy reaches a minimum
for a special bct structure at 	=0.494 for V, 	=0.479 for Nb
and at 	=0.438 for Ta. The ITS and the critical strains for all
three metals calculated along the PTP are compiled in Table
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FIG. 4. Variation in �a� the total energy, �b� the stress, and �c�
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deformation path. The bifurcation from the PTP to the SOP occurs
at a strain of 0.05.
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II. For Nb we note a very good agreement with the results of
Luo et al.21 The dimensionless ITSs ��=�max /E�100�

0.10–0.11 reached along the PTP are somewhat larger
than those calculated of bcc Mo and W, reflecting a modest
asymmetry of the stress-strain curve.

If the constraint of a tetragonal guiding symmetry is re-
laxed, a bifurcation to the SOP occurs at low values of the
critical strain, 	c=0.06 and 0.05 for V and Nb, but only at
	c=0.16 for Ta. For Ta this critical strain is almost identical
to the critical strain at which the stress maximum is reached
along the PTP, while for V and Nb the ITS is limited by the
bifurcation to the SOP.

Figure 6 shows the variation in the elastic constants of all
three metals under uniaxial strain along the �100� direction,
referred to a face-centered tetragonal lattice. The important

results are the following: �i� within a fct reference frame the
condition c22=c23 is fulfilled at strains of 0.06, 0.05, and 0.18
for V, Nb, and Ta, respectively. Within a bct reference frame,
the condition for a bifurcation is c44=0. �ii� At these strains
the symmetry will change from tetragonal to orthorhombic
under purely uniaxial loading.

The behavior of V and Nb at the bifurcation point differs
substantially from that of Ta. For V and Nb the energy-strain
curves of the PTP and SOP are tangent at the bifurcation
point, the difference between the lattice constants b2 and b3
changes continuously, the stress continues to increase after
the bifurcation. Hence for V and Nb the branching from the
PTP to the SOP is a continuous second order structural trans-
formation from the bct to a face-centered orthorhombic
structure induced by purely uniaxial loading which occurs
before the ideal tensile strength is reached. For Ta the con-
dition c22=c23 �within the fct reference frame� or c44=0
�within a bct description of the deformed structure� leads to a
shear instability at the stress maximum under uniaxial ten-
sion. This means that even under strict uniaxial load, Ta fails
not by cleavage but by shear.

The unstable saddle-point configuration reached along the
SOP is a “special” bct structure which is energetically degen-
erate with the metastable fct structure reached at large strains
on the PTP. In fact, both structures are related through a rigid
rotation about the b3 axis, the axial ratio of the fct structure is
just 1 /	2 times the axial ratio of the bct structure �a1 /a2
=1.81�. At a strain of about 0.41 the energy along the SOP
falls to an energy minimum. The configuration correspond-
ing to this minimum is a bcc structure rotated about the b2
axis relative to the original bcc structure. The restoring strain
of 	=0.41 is very close to the value of 	=	2−1=0.414 cal-
culated for a strictly volume-conserving deformation. The
bct saddle-point configuration reached on the SOP under
uniaxial �100� loading is identical to that reached under shear
along a �111� axis, as will be discussed in more detail below.
Hence also along the SOP the bcc metals are predicted to fail
not by cleavage, but by shearing.

Hence we find that along the PTP the sequence of the
stress-free structures is bcc, fcc, bct �corresponding to sce-
nario �3� discussed by Milstein et al.8,9,11� for V, Nb, and Ta,
as for the other bcc transition metals �Mo, W, Fe� investi-
gated so far. For Ta the criterion c22=c23 for a bifurcation to
an orthorhombic path is satisfied only for a large strain co-
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FIG. 5. Variation in �a� the total energy, �b� the stress, and �c�
the lattice constants of bcc Ta under �100� tension as a function of
the applied strain. Open symbols refer to the primary tetragonal
deformation path, closed symbols to the secondary orthorhombic
deformation path. The bifurcation from the PTP to the SOP �equiva-
lent to a shear instability of the bct lattice� occurs at a strain of 	
=0.16, i.e., it is almost coincident with the stress maximum along
the PTP.

TABLE II. Ideal tensile strengths �max, critical strain 	c, Young’s modulus E�100� of V, Nb and Ta under
uniaxial �100� loading, as determined by the stress maximum along the tetragonal and orthorhombic defor-
mation paths.

E�100�

Orthorhombic Tetragonal

�max 	c �max /E�100� �max 	c �max /E�100�

V This work 160 11.5 0.10 0.07 17.8 0.17 0.11

Nb This work 148 12.5 0.11 0.09 17.2 0.17 0.12

Ref. 21 165 13.1 0.12 0.08 18.8 0.18 0.11

Ta This work 146 13.6 0.16 0.09 13.4 0.16 0.10

Mo Ref. 21 370 28.8 0.13 0.08

W Ref. 19 407 29.5 0.13 0.07
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incident with the critical strain for tensile failure along the
PTP. Hence the situation is similar to that described before
for Mo �Ref. 21� and Fe.32 If the saddle-point structure on
the SOP is described within the bct reference frame used for
tetragonal deformation under �100� tension, the orthorhom-
bic instability corresponds to a shear instability with c44=0.
For V and Nb the bifurcation to the SOP occurs already at
much smaller strains, the failure mode is determined by the
fct saddle-point structure along the SOP. The ITS is reduced
from 17.8 GPa to 11.5 GPa for V, and from 17.2 to 12.5 GPa
for Nb. The value for Nb is in good agreement with the
earlier calculations of Luo it et al.21 For Ta the stress maxi-
mum is 13.4 GPa along the tetragonal and 13.6 GPa along
the orthorhombic deformation path, i.e the values agree
within the computational accuracy. For all three metals the
stress-strain curves along the PTP are too asymmetric to be
fitted by a sinusoidal curve, leading to a dimensionless ITS
of ��
0.10–0.12 which is larger than that calculated for the
other bcc transition metals. The stress-strain curve for the
SOP is more symmetric, the dimensionless ITS assumes val-
ues of 0.07 to 0.09 comparable with those derived for Mo,
W, and Fe.

V. RESPONSE TO SHEAR DEFORMATIONS ALONG THE
Š111‹ DIRECTION

Figure 7 shows the computational cells used for simulat-
ing shear deformations along a �111� direction on the �211�

and �110� planes. The undeformed cells are orthorhombic,
with lattice parameters aSC, bSC, and cSC as defined in the
figure. The shear deformation was applied uniformly to the
supercell �affine shear loading�. This means that in principle,
the calculations could also have been performed with a
primitive cell instead. The supercells have been used for
computational convenience. With current optimizer relax-
ation of all transverse stress components to zero values is
easier in the supercell geometry.

Because of the threefold rotational symmetry around the
�111� axis the relaxed shear modulus G�111� is the same for
all common bcc slip systems, �110��111�, �211��111�, and
�321��111� �here we discuss only the former two�. Earlier
work of Morris et al.19–21,61 on the response of W and Mo to
shear loading has demonstrated that the relaxed energy/
strain, stress/strain curves, and the ideal shear strengths are
very similar for all three slip systems. The changes in sym-
metry during shear deformation have been discussed in detail
by Roundy et al.19 and Krenn et al.,20 using slightly different
geometrical arguments. The �110��111� shear system is sym-
metric, while the �211��111� and �321��111� are not, i.e., slip
in the “easy” direction has a lower shear strength than in the
“hard” direction. Here we shall restrict our attention to slip in
the easy �weak� direction. Upon shearing the bcc lattice par-
allel to the �211� plane a mirrored bcc lattice is created at a
strain of 
=	2 /2
0.71 �the “twining” strain� if relaxation is
excluded. If only a single maximum in the total energy exists
for strains from 0 to 0.71, symmetry dictates that it must be
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FIG. 6. �Color online� Variation in the elastic constants c11, c12, c22, c23, c44, and c55 �related to a face-centered tetragonal lattice� of �a�
V, �c� Nb, and �d� Ta along the primary tetragonal deformation path as a function of uniaxial �100� strain. For V we show also the elastic
constants related to a bct reference frame �b�, in this case the elastic constants reduce to c11, c12, and c44 in the bcc limit. Note that the
condition for the bifurcation to an orthorhombic lattice is c22=c23 in the fct reference frame �contraction/expansion along the fct axes—cf.
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located at 

0.35, and the inflection point must fall around
0.17. Along this deformation path the symmetry changes
from cubic to monoclinic and further to orthorhombic at the
saddle point �see Fig. 7�. For W it has been found that relax-
ation has only a very small influence on the stress under
�211��111� strain along the easy direction. This has been at-
tributed to the elastic isotropy of W. Unrelaxed �110��111�
shear reduces the symmetry from cubic to triclinic, the first
energy maximum is found when the deformation path passes
through a configuration with monoclinic symmetry. For both
Mo and W a significantly stronger relaxation has been re-
ported for �110��111�—relaxation is necessary to recover the
bcc structure at a strain of 

0.6. For Mo, Luo et al.21 have
reported that due to relaxation, the saddle-point structure un-
der �110��111� shear is very similar to the bct saddle point
found for the �211��111� slip systems. Still, for both Mo and
W the stress-strain curves are almost identical for all three
slip systems, they have a symmetric sinusoidal shape leading

to a reduced shear strength of �max /G�111�
0.11. Luo et al.
have also calculated the shear strength of bcc Nb. In this case
the stress-strain curves for the �110��111� and �211��111�
shear systems are more distinctly different than for Mo and
more asymmetric, leading to a higher value of the reduced
shear strength of 
0.15–0.18, although the actual shear
strength is much lower.

The results for the three V-group metals compiled in Figs.
8–10 show that the response of V and Nb on one side and Ta
on the other side are significantly different, although the val-
ues of the ideal shear strengths are not. For all three metals
the ideal shear strength calculated for both slip systems
reaches only half the value found for Mo and W in the neigh-
boring column of the Periodic Table. For V and Nb the
stress-strain curves are strongly asymmetric—as we shall
show below, this is related to a low value of the shear modu-
lus G�111�, a strong anisotropy of the elastic shear constants
�which is, admittedly, strongly overestimated by the ab initio
calculations� and strong relaxations under shear loading. For
Ta the stress-strain curves are only weakly asymmetric, the
reduced shear strength comes close to that calculated for Mo
and W.

For V, slightly different saddle-point configurations lo-
cated at strains of 0.28 and 0.32 are found under �110��111�
and �211��111� shear deformations. These differences are re-
lated to different degrees of relaxation changing in both
cases significantly as a function of strain. Up to a strain of
about 0.08 both shears lead to an increase of the lattice con-
stant bSC, a decrease of cSC, while aSC remains almost con-
stant �see Figs. 8�c� and 8�d��. In this regime only the shear-
ing angle �SC increases linearly with strain, while the other
angles remain almost unchanged even under �110��111�
shear where the symmetry is reduced to triclinic. Up to this
point the deformation occurs at almost constant volume. At a
strain of 	=0.08 the lattice constant cSC reaches a minimum.
At larger strains the lattice expands strongly along the bSC
and cSC directions and contracts by a comparable amount
along aSC—together this results in a volume expansion
reaching about 1% at the saddle-point configurations and de-
creasing again at even larger strains. The volume expansion
is coupled to a strong increase in energy. Qualitatively, the
relaxation pattern is the same for both shear systems, but the
variation in the lattice constants is much larger under
�211��111� shear while the symmetry remains at least mono-
clinic at all strains. At the saddle points we find that both
lattice constants and angles agree with a bct structure, as
shown in Fig. 7. In the saddle-point configurations the mono-
clinic and triclinic lattices of the �211��111� and �110��111�
shear systems adopt tetragonal symmetry, the lattice con-
stants correspond exactly to those determined along the PTP
under uniaxial tension �which is just rotated with respect to
the bct saddle-point structure reached along the SOP�.

The most striking feature, however, is the strongly asym-
metric character of the stress-strain curve. Due to the low
value of the shear modulus, the stress increases very slowly,
the stress-strain curve shows upward curvature. The G�111�
shear modulus derived from the initial slope of the stress-
strain curve of V is G�111�=31.3�4 GPa, in reasonable
agreement with the value derived from the elastic constants.
As discussed above, energy and stress begin to increase at a

]111[:x ]101[:y

]211[:z
SCa SCb

SCc

ab

cβ

]111[:x

]011[:z

]211[:y

Saddle-point structureUnstrained structure

(a) Supercells used for {211}<111> shear

Saddle-point structureUnstrained structure

(b) Supercells used for {110}<111> shear

SCβ SCα

SCγ

SCa SCb

SCc

ab

c
βSCβ SCα

SCγ

SCa

SCb

SCc
SCβ

SCα

SCγ

a

b
c

β

α

γ

SCa

SCb

SCc a

b c

SCβ
SCα

SCγ

β

α

γ

FIG. 7. �Color online� Supercells used to simulate shear defor-
mations along the �111� direction. Part �a� shows the cell used for
�211��111� shear, the left part represents the undeformed cell with
bcc symmetry, the right part the bct structure at the saddle-point
configuration. The primitive cells inscribed in the supercells are
shown in red �black�. Part �b� shows the starting �bcc� and saddle-
point �bct� structures for �110��111� shear. At intermediate strains
the symmetry is reduced to monoclinic and triclinic under
�211��111� and �110��111� shears, respectively. The monoclinic
cells inscribed in the supercells which become the bct cells at the
saddle-point structure are indicated by the blue �gray� circles.

NAGASAKO et al. PHYSICAL REVIEW B 81, 094108 �2010�

094108-8



strain large enough such that a pure shear deformation is
insufficient to relax all lateral stresses and an expansion of
the volume takes place. For both shear systems, the stress
maximum is reached at a failure strain of about 0.2—this
value is much larger than half of the strain at which the
saddle point is located. The ideal tensile strength is 6.5 GPa
for shearing along the �110� and 5.5 GPa along the �211�
planes, the reduced shear strengths are 0.20 and 0.17, respec-
tively �see Table III�. This means that the reduced shear
strength is much higher than for Mo and W, although the
actual shear strength reaches not even half this value.

Nb shows a behavior under shear which is very similar to
that discussed above for V. From the initial slope of the
stress-strain curve we calculate a shear modulus of G�111�

22�4 GPa, in good agreement with the elastic constants.
A remarkable difference is that the initial contraction of the
lattice constant cSC at smaller strains has almost disappeared,
and that aSC begins to shrink already at smaller strains. But
again we observe a distinct change in the relaxation mode at
a strain of 

0.08, slightly below the inflection point on the
stress-strain curve. At larger strains, relaxation leads to a
substantial volume expansion reaching 2% at the saddle-
point configuration. The saddle-point structures assumed at


0.33 �for �211��111� shear� and 

0.29 �for �110��111�
shear� are bct and agree with those assumed on the SOP
under uniaxial �100� tension �cf. Figs. 9 and 4�. The maxi-
mum shear stress is 6.0 GPa �at a failure strain of 
c=0.2� for
shearing parallel to the �211� plane, and 7.8 GPa �at 
c

=0.2� for shearing along �110�. These values are in good
agreement with those of Luo et al.,21 although we find a
slightly larger difference between both shear systems. The
reduced value of the ideal shear strength is even larger than
for V.

For Ta the initial slope of the stress-strain curve yields
G�111�
58�1 GPa in excellent agreement with the elastic
constants. Only very modest relaxations are observed up to
strains of about 0.1. Beyond this point, the lattice constant
cSC increases strongly with increasing strain, while bSC and
aSC undergo only a more modest expansion and contraction,
respectively. These relaxations are also associated with an
increasing volume expansion reaching 2% at the saddle
point. The saddle-point configurations are reached at 

=0.29 �for �110��111� shear� and 
=0.32 �for �211��111�
shear�. The bct lattice constants of the saddle-point structures
are a=c=2.795 Å and b=4.769 Å �for �211��111� shear,
those for �110��111� shear agree within 0.01 Å�, to be com-
pared with a=4.781 Å, b=c=2.792 Å calculated along the
PTP under uniaxial tension. The values of the ideal shear
strength are 7.1 �6.5� GPa, at critical strains of 
c
=0.22�0.20� for shearing parallel to the �110� ��211� planes�,
respectively �see Table III�. Although they are much lower
than those for Mo and W, all three metals show the same
reduced shear strength. Hence for Ta the low value of the
ideal shear strength is exactly as expected from the soft elas-
tic shear modulus, while for V and Nb the extremely low
shear modulus is not reflected by a similarly low value of the
ideal shear strength.
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VI. DISCUSSION AND CONCLUSIONS

We have demonstrated using ab initio DFT calculations
that the response of body-centered cubic V and Nb to tensile
and shear loading differs substantially from that of other bcc
transition metals such as Mo, W, and Fe, but also from that
of the heaviest metal of the V group, Ta. For these metals the
stress-strain curves under tension or shear display a symmet-
ric sinusoidal shape, with a period determined by the nearest
extremum on the deformation path. Under uniaxial �100�
tension this is a maximum corresponding to a fcc structure
adopted under volume conservation at the Bain strain of 	
=	32−1
0.26. For all types of shear along the �111� this is a
bct structure formed under volume conservation at a shear
strain of 
=	2 /4
0.35, i.e., at half the “twinning” strain
recovering the bcc structure. As the initial slope of the stress-
strain curve is determined by the relaxed tensile and shear
modulus, respectively, the ideal tensile and shear strengths
obey the relations

�max =
0.26

�
E�100� = 0.08E�100�, �3�

�max =
0.35

�
G�111� = 0.11G�111�. �4�

For Mo and W the calculated moduli and ideal strength
obey these relations with good accuracy. For V and Nb we

find that under uniaxial �100� loading a bifurcation from the
primary tetragonal to a secondary orthorhombic deformation
path occurs before reaching the stress maximum, strongly
limiting the ideal tensile strength. Due to a shear instability,
an orthorhombic deformation can occur under purely
uniaxial load. It is interesting to correlate this shear instabil-
ity induced by uniaxial strain to the softening of c44 under
homogeneous compression. It has been shown that for V c44
vanishes at a pressure of about 60 GPa, leading to bcc
→ rhombohedral structural transition21,41,42,44 and that this
phase transition is associated with the nesting properties of
the Fermi surface and an electronic topological transition.
While the homogeneous compression of the bcc lattice
merely changes the nesting vector, a uniaxial strain changes
the symmetry and therefore the topology of the Fermi sur-
face.

The saddle-point structure along the SOP is a special bct
structure which can be made to coincide with the fct local
energy minimum along the PTP by a rigid rotation and which
is also identical to the saddle-point structure under shear de-
formation. For Ta the bifurcation to the SOP coincides with
the stress-maximum along the PTP �as has also been found
for Mo�. Because the ideal tensile strength is reached at a
shear-unstable configuration, Ta fails under uniaxial loading
not by cleavage, but by shear. The stress/tensile-strain curves
of all three metals are strongly asymmetric along the PTP,
but less so along the SOP. This means that the reduced ten-
sile shear strength ��=�max /E�100� is about 0.07 to 0.09, only
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FIG. 9. Variation in �a� the total energy, �b� the stress, �c�–�d� the lattice constants and angles of the computational super-cell and �e� of
the distorted body-centered cell for Nb as a function of the applied strain under �110��111� and �211��111� shear deformations.

NAGASAKO et al. PHYSICAL REVIEW B 81, 094108 �2010�

094108-10



slightly larger than for Mo and W, although the ITS is deter-
mined by a different saddle-point configuration. Ta is a spe-
cial case where the bifurcation point coincides with the in-
flection point on the PTP energy-strain curve. Hence the
tetragonal stress maximum is reached at a shear-unstable
configuration.

Shearing bcc V or Nb in the �111� direction parallel to a
�110� or �211� planes leads to strongly asymmetric stress-
strain curves. A volume conserving unrelaxed �211��111�
shear recovers the bcc structure at a strain of 
=	2 /2, hence
by symmetry the saddle-point configuration should fall at 


0.35 and the inflection point or stress maximum at 
c


0.175. However, due to a very low relaxed shear modulus
G�111�, the initial slope of the stress-strain curve is very low.
The stress begins to increase strongly at 

0.08 were the
relaxation pattern changes qualitatively, accompanied by an
incipient volume expansion. The saddle-point structure for
both glide systems has bct symmetry, it is reached at strains
between 0.28 and 0.32 depending on the glide plane. For
�110��111� shear a strong relaxation is required to reach this
configuration. This bct saddle-point structure is the same as
that reached on the SOP under uniaxial �100� tension. For V
the failure strain is 
c=0.20, the ideal shear strength is 6.5
and 5.5 GPa for the �110� and �211� glide planes, respec-
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FIG. 10. Variation in �a� the total energy, �b� the stress, �c�–�d� the lattice constants and angles of the computational super-cell, and �e�
of the distorted body-centered cell for Ta as a function of the applied strain under �110��111� and �211��111� shear deformations.

TABLE III. Ideal shear strengths �max, critical strain 
c, shear modulus G�111� of V, Nb, and Ta under
uniaxial �100� loading, as determined by the stress maximum along the tetragonal and orthorhombic defor-
mation paths.

G�111�

�110��111� �211��111�

�max 
c �max /G�111� �max 
c �max /G�111�

V This work 33 6.54 0.21 0.20 5.5 0.21 0.17

Nb This work 31 7.8 0.20 0.25 6.0 0.20 0.19

Ref. 21 7.6 0.22 6.4 0.20

Ta This work 53 7.1 0.22 0.13 6.5 0.201 0.12

Mo Ref. 21 134 16.1 0.17 0.12 15.8 0.17 0.12

W Ref. 19 163 18.2 0.17 0.11 18.1 0.17 0.11
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tively. The reduced shear strengths are ��=0.20 and 0.17—
i.e., nearly twice as high as expected for a symmetric stress-
strain curve and as calculated for Mo and W. Nb follows the
same pattern, with an even slightly larger reduced shear
strength.

In summary: �i� For both V and Nb the ideal tensile
strength under �111� loading is limited by a bifurcation to an
orthorhombic deformation path, but it is still about twice as
large as the ideal shear strength for shearing in the �111�. �ii�
The stress-strain curves for V and Nb under shear deforma-
tion are strongly asymmetric, the ideal shear strength is
much higher than expected on the basis of a very low shear
modulus. This reflects an increasing stiffness of the lattice
under increasing shear strain, as shown by the relaxation
behavior. �iii� The saddle-point configurations reached under
tensile and shear loading have the same special bct structure.
For this reason and because the ideal shear strength is much
lower than the tensile strength, both metals will fail by shear
and not by cleavage. �iv� The response of Ta to tensile and
shear loading is more similar to that of Mo or W. However,
because the stress maximum under tension is reached at a
shear-unstable configuration, Ta will also fail by shear and
not by cleavage.

For Ta the ideal shear strength found in our calculations
��max=7.1�6.5� GPa for �110��111� and �211��111� shear� is
in excellent agreement with experimental estimates based on
nanoindentation measurements4 yielding an ideal shear
strength of about 7.5 GPa. From the nanoindentation experi-
ments and experimental observations of plastic flow response
to large strain impact testing62 it was also suggested the
�110��111� slip system is preferred over the �211��111� slip
system, but we find only very small differences in the limit-
ing shear strengths and in the critical strains. However, it is
certainly encouraging to see that experimental and theoreti-
cal determinations of the ideal strength of metals begin to
converge.
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