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Current dependence of the minimum length of a superconducting wire
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It is shown that superconductivity disappears in small current-carrying samples. The critical size of the
superconductor for which a superconducting instanton exists is calculated analytically as a function of the dc
bias current within the framework of the Ginzburg-Landau equations.
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Due to recent progress in nanotechnology, experiments
can be performed on very small superconducting rings and
wires (of the size of the penetration length \ or even of the
coherence length &), leading to new physical phenomena.
These experiments provide a clear demonstration of some
interesting properties of superconductors. Phenomena stud-
ied by susceptibility or inductive coupling experiments in-
clude flux quantization,' thermal decay of supercurrents in
rings containing weak links,” the current-phase relationship
for weak links,>3 and macroscopic quantum effects.* Trans-
port measurements on rings and cylinders have clarified the
Little-Parks 7. oscillations® and magnetoconductance oscil-
lations due to superconducting fluctuations.® Recently, trans-
port experiments involving mesoscopic superconducting
rings of 0.1 mm diameter have explored the influence of a
superconducting boundary on quantum transport.’

It is well known that the proximity effect leads to absence
of superconductivity in sufficiently small wires connected to
normal metal leads. A quantitative theory of this phenom-
enon was first developed by De Gennes® for a ring of small
radius R located in an external magnetic field H and con-
nected to normal electrodes. This theoretical analysis, of De
Gennes was based on the linearized Landau-Ginzburg equa-
tions, showed that superconductivity in the small rings with
R~ ¢ disappeared due to normal electrons from the leads.
This prediction has been confirmed by experiments in Al and
Aug5Ing 5 cylinders.’

Using a simple model of a dirty, gapless superconductor,
we present the theoretical analysis of the suppression of su-
perconductivity by an electric current in a short supercon-
ducting wire.

Consider the four-point experimental setup, where the
current is generated by an external battery. In this case, the
steady-state equations for the superconducting order param-
eter A=|Alexp(ix) and the electric potential @ can be written

in the following dimensionless form:'°
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Here @, is the unit magnetic flux, D is the electron diffusion
constant, o, is the normal conductivity, 7, is the inelastic
relaxation time of the quasiparticles, J,; is the depairing cur-
rent, and J is the total electric current density with VJ/=0 due
to electroneutrality.

Together with the boundary conditions at the wire edges

J=d, ==Vl WO)=W(@D)=0. (5

Equations (1) and (2) describe steady-state distribution both
of the superconducting order parameter and the current den-
sity across the wire.

Assuming the limit Ay7,<<1, (gapless superconductor),
we obtain from Eq. (2) that u(¢)=5.79 and the normal cur-
rent j,=—0,V® converges into the superconducting current
at a distance [p= &' Therefore over the distance x= ¢, far
from the wire edge, Eq. (1) can be written in the form

v
— - —=+V-P3=0 6
dx* w3 ©
subject to the boundary condition
W(0)=V(L)=0 (7

for different values of the electric current J.

The results used by many researchers'?>~'¢ is based on the
analogy between Eq. (6) and a particle moving in a central
force field.

Our primary objective is to find the inhomogeneous solu-
tions W (x) of Eq. (6) (“instantons”), which will describe non-
homogeneous superconductivity with ¥'=0 at some points.

112s(3) 327727-§T3 T\ , For a sufficiently small sample with periodic Dirichlet

= 8 2 75(3) 1- F v, (2) boundary conditions, the only solution is W=0 for all x, i.e.,

¢ there is no superconductivity for such small samples. The

where idea of this approach came from the series of articles by
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Stein and collaborators'” who studied the disappearance of
the instantons in small samples. Integration [Eq. (6)] over x

yields
lf‘l’z dz
X—Xg="TF
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== (8)
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where E is a constant of integration.

Our aim is to find W as a function of x. Integrating Eq. (8)
yields an elliptic integral of the first kind F(¢, k), where the
arguments ¢ and « depend on the following relation between
21, 22, 23, and P2
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where sn(k,m) is the Jacoby elliptic function of the first type,
and we have chosen x,=0. Here 7, =z,=2z; are the roots of
the cubic equation

2 =22 +4E7-2J2=0. (10)

According to the theory of the Jacoby function, a nonzero
solution for W(x) of Eq. (9) with boundary conditions Eq.
(7), exists when

sn<\Z1_Z3L, \/Z2_Z3>=o. (11)
2 11— 33

This yields'®
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with 0<m <1 is the complete elliptic integral of the first
kind. The function K(m) is a monotonic function of m in-
creasing from /2 at m=0 to % at m=1. We obtain L,
from Eq. (12) with m=0 and K(0)=1/2,

27
Lin= — (14)
Vi1 — 233

The condition m=0, according to Eq. (11), implies that z,
=Z3.
The roots of the cubic Eq. (10) satisfy
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FIG. 1. Minimal size of a superconducting wire L,;,(J) as a
function of dc bias current in coherence length units. L;,(J) for-
mally diverges as J—J,, where J; is the depairing current density.
The theory is restricted to the current density J<J.=0.335. Above
this value, the phase slippage occurs (dash line).

213233 = 212
(15)

U+ +23=2; 212+ 2123 + 2223 =4F;

or, fOr =23,

Zl+2Z2=2; 221Z2+Z§=4E; Z]Z%:z-]z» (16)

The first two equations in Eq. (16) yield

2 P — 2 —
H=23= 5(1 -\V1=-3E); z;= 5(1 +2\V1-3E), (17)

which leads, according to Eq. (14), to

ko
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From the last equation in Egs. (16) and (17), one obtains
the constant of integration E as function of the current J,

27
2(1—3E)3/2—3(1—3E)+1=ZJ2. (19)

If there is no current, J=0, Eq. (19) yields (1-3E)=1,
and Eq. (18) yields L,,;,=. For a given current J, one has to
solve Eq. (19) for (1-3E), and insert the result into Eq. (18).
This yield, for each current J, the minimal length of wire,
L in» Which remains superconducting. The L;,-J phase dia-
gram is shown in Fig. 1. The value of the critical supercon-
ducting length L, diverges as the superconducting current
density reaches the depairing current density J,=2/ 3\3 [see
Eq. (19)]. There is no superconductivity in the wire when the
current density in the wire exceeds the depairing current den-
sity [in this case Eq. (6) has the trivial solution J=0 and ¥
=0).

The condition A7,<1/40 [see Eq. (2)] is a very severe
constraint for superconductors, which can be satisfied only
for so-called gapless superconductors. The latter corresponds
to a situation in which the energy gap in the spectrum disap-
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pears, but the order parameter and supercurrent still exist.
The mechanisms of gapless superconductivity might be ei-
ther interaction with magnetic impurities which act differ-
ently on the electrons with opposite spins in a Cooper pair
(in this case the parameter 7,A=€zA/ yrgx is usually small,
(where € is the Fermi energy, y is the concentration of para-
magnetic impurities, and I',, is the exchange interaction en-
ergy) or inelastic interactions with phonons (in this case
T A= wéA/ T3, where wp, is the Debye energy). In the latter
case, this parameter is usually large except in the narrow
region at the critical temperature where the energy gap ap-
proaches to zero. The conversation length in this case is less
than the coherence length only in the vicinity of the critical
temperature; otherwise the electric field penetrates deep in-
side the wire. In this latter case, a substantial fraction of the
nanowire is resistive even down to the lowest measured
temperature.'® Therefore, experiments to observe the current
dependence of the minimum length of a superconducting
wire must be performed under following conditions: (i) the
superconducting wire should contain a small concentration
of magnetic impurities (gapless superconductor) and (ii) the
normal leads should be constructed from a metal having a
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small Fermi velocity (to keep the boundary condition A=0 at
the wire edges).

For superconducting Al with parameters: y=0.01, ez=5
x10* K, T,,=10° K, A=1 K £=107 cm, and \
=107 cm, one obtains TA=5X 107*. In this case the cur-
rent density is measured in the units of J,=~10° A/cm?.

In conclusion, we have found that if the order parameter
is suppressed at the sample edges, then there is no supercon-
ductivity in a sample shorter than L,;,, the critical length of
a small, current-carrying superconducting wire. This length,
which was calculated analytically for arbitrary current den-
sity, depends crucially on the magnitude of the persistent
current in the circle (see Fig. 1). In particular, for a gapless
superconductor containing magnetic impurities, the critical
value L,;, is confined to the interval: w=L;, <5.54¢ (0
=J<0.335). Above current density J.=0.335, a phase slip-
page becomes important and nonstationary effects in the wire
dominate.'?
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