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It is shown that superconductivity disappears in small current-carrying samples. The critical size of the
superconductor for which a superconducting instanton exists is calculated analytically as a function of the dc
bias current within the framework of the Ginzburg-Landau equations.
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Due to recent progress in nanotechnology, experiments
can be performed on very small superconducting rings and
wires �of the size of the penetration length � or even of the
coherence length ��, leading to new physical phenomena.
These experiments provide a clear demonstration of some
interesting properties of superconductors. Phenomena stud-
ied by susceptibility or inductive coupling experiments in-
clude flux quantization,1 thermal decay of supercurrents in
rings containing weak links,2 the current-phase relationship
for weak links,2,3 and macroscopic quantum effects.4 Trans-
port measurements on rings and cylinders have clarified the
Little-Parks Tc oscillations5 and magnetoconductance oscil-
lations due to superconducting fluctuations.6 Recently, trans-
port experiments involving mesoscopic superconducting
rings of 0.1 mm diameter have explored the influence of a
superconducting boundary on quantum transport.7

It is well known that the proximity effect leads to absence
of superconductivity in sufficiently small wires connected to
normal metal leads. A quantitative theory of this phenom-
enon was first developed by De Gennes8 for a ring of small
radius R located in an external magnetic field H and con-
nected to normal electrodes. This theoretical analysis, of De
Gennes was based on the linearized Landau-Ginzburg equa-
tions, showed that superconductivity in the small rings with
R�� disappeared due to normal electrons from the leads.
This prediction has been confirmed by experiments in Al and
Au0.7In0.3 cylinders.9

Using a simple model of a dirty, gapless superconductor,
we present the theoretical analysis of the suppression of su-
perconductivity by an electric current in a short supercon-
ducting wire.

Consider the four-point experimental setup, where the
current is generated by an external battery. In this case, the
steady-state equations for the superconducting order param-
eter �= ���exp�i�� and the electric potential � can be written
in the following dimensionless form:10
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Here �0 is the unit magnetic flux, D is the electron diffusion
constant, 
n is the normal conductivity, �� is the inelastic
relaxation time of the quasiparticles, Jd is the depairing cur-
rent, and J is the total electric current density with �J=0 due
to electroneutrality.

Together with the boundary conditions at the wire edges

J = Jn = − ���x=0,L; ��0� = ��L� = 0. �5�

Equations �1� and �2� describe steady-state distribution both
of the superconducting order parameter and the current den-
sity across the wire.

Assuming the limit �0���1, �gapless superconductor�,
we obtain from Eq. �2� that u���=5.79 and the normal cur-
rent jn=−
n�� converges into the superconducting current
at a distance lE��.11 Therefore over the distance x��, far
from the wire edge, Eq. �1� can be written in the form

d2�

dx2 −
J2

�3 + � − �3 = 0 �6�

subject to the boundary condition

��0� = ��L� = 0 �7�

for different values of the electric current J.
The results used by many researchers12–16 is based on the

analogy between Eq. �6� and a particle moving in a central
force field.

Our primary objective is to find the inhomogeneous solu-
tions ��x� of Eq. �6� �“instantons”�, which will describe non-
homogeneous superconductivity with �=0 at some points.
For a sufficiently small sample with periodic Dirichlet
boundary conditions, the only solution is �=0 for all x, i.e.,
there is no superconductivity for such small samples. The
idea of this approach came from the series of articles by

PHYSICAL REVIEW B 81, 092503 �2010�

1098-0121/2010/81�9�/092503�3� ©2010 The American Physical Society092503-1

http://dx.doi.org/10.1103/PhysRevB.81.092503


Stein and collaborators17 who studied the disappearance of
the instantons in small samples. Integration 	Eq. �6�
 over x
yields
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where E is a constant of integration.
Our aim is to find � as a function of x. Integrating Eq. �8�

yields an elliptic integral of the first kind F�� ,��, where the
arguments � and � depend on the following relation between
z1, z2, z3, and �2:
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where sn�k ,m� is the Jacoby elliptic function of the first type,
and we have chosen x0=0. Here z1�z2�z3 are the roots of
the cubic equation

z3 − 2z2 + 4Ez − 2J2 = 0. �10�

According to the theory of the Jacoby function, a nonzero
solution for ��x� of Eq. �9� with boundary conditions Eq.
�7�, exists when
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This yields18
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with 0�m�1 is the complete elliptic integral of the first
kind. The function K�m� is a monotonic function of m in-
creasing from 
 /2 at m=0 to � at m=1. We obtain Lmin,
from Eq. �12� with m=0 and K�0�=
 /2,
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�2
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The condition m=0, according to Eq. �11�, implies that z2
=z3.

The roots of the cubic Eq. �10� satisfy
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or, for z2=z3,
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The first two equations in Eq. �16� yield
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which leads, according to Eq. �14�, to
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From the last equation in Eqs. �16� and �17�, one obtains
the constant of integration E as function of the current J,

2�1 − 3E�3/2 − 3�1 − 3E� + 1 =
27

4
J2. �19�

If there is no current, J=0, Eq. �19� yields �1−3E�=1,
and Eq. �18� yields Lmin=
. For a given current J, one has to
solve Eq. �19� for �1−3E�, and insert the result into Eq. �18�.
This yield, for each current J, the minimal length of wire,
Lmin, which remains superconducting. The Lmin-J phase dia-
gram is shown in Fig. 1. The value of the critical supercon-
ducting length Lmin diverges as the superconducting current
density reaches the depairing current density Jd=2 /3�3 	see
Eq. �19�
. There is no superconductivity in the wire when the
current density in the wire exceeds the depairing current den-
sity 	in this case Eq. �6� has the trivial solution J=0 and �
=0�.

The condition ����1 /40 	see Eq. �2�
 is a very severe
constraint for superconductors, which can be satisfied only
for so-called gapless superconductors. The latter corresponds
to a situation in which the energy gap in the spectrum disap-

FIG. 1. Minimal size of a superconducting wire Lmin�J� as a
function of dc bias current in coherence length units. Lmin�J� for-
mally diverges as J→Jd, where Jd is the depairing current density.
The theory is restricted to the current density J�Jc=0.335. Above
this value, the phase slippage occurs �dash line�.
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pears, but the order parameter and supercurrent still exist.
The mechanisms of gapless superconductivity might be ei-
ther interaction with magnetic impurities which act differ-
ently on the electrons with opposite spins in a Cooper pair
�in this case the parameter �����F� /y�ex

2 is usually small,
�where �F is the Fermi energy, y is the concentration of para-
magnetic impurities, and �ex is the exchange interaction en-
ergy� or inelastic interactions with phonons �in this case
�����D

2 � /T3, where �D is the Debye energy�. In the latter
case, this parameter is usually large except in the narrow
region at the critical temperature where the energy gap ap-
proaches to zero. The conversation length in this case is less
than the coherence length only in the vicinity of the critical
temperature; otherwise the electric field penetrates deep in-
side the wire. In this latter case, a substantial fraction of the
nanowire is resistive even down to the lowest measured
temperature.19 Therefore, experiments to observe the current
dependence of the minimum length of a superconducting
wire must be performed under following conditions: �i� the
superconducting wire should contain a small concentration
of magnetic impurities �gapless superconductor� and �ii� the
normal leads should be constructed from a metal having a

small Fermi velocity �to keep the boundary condition �=0 at
the wire edges�.

For superconducting Al with parameters: y=0.01, �F�5
�104 K, �ex�105 K, �
1 K ��10−5 cm, and �
�10−6 cm, one obtains ����5�10−4. In this case the cur-
rent density is measured in the units of Jd�109 A /cm2.

In conclusion, we have found that if the order parameter
is suppressed at the sample edges, then there is no supercon-
ductivity in a sample shorter than Lmin, the critical length of
a small, current-carrying superconducting wire. This length,
which was calculated analytically for arbitrary current den-
sity, depends crucially on the magnitude of the persistent
current in the circle �see Fig. 1�. In particular, for a gapless
superconductor containing magnetic impurities, the critical
value Lmin is confined to the interval: 
�Lmin�5.54� �0
�J�0.335�. Above current density Jc=0.335, a phase slip-
page becomes important and nonstationary effects in the wire
dominate.10
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