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We study the impact of geometry on magnetostatically frustrated single-domain nanomagnet arrays. We
examine square and hexagonal lattice arrays, as well as a brickwork geometry that combines the anisotropy of
the square lattice and the topology of the hexagonal lattice. We find that the more highly frustrated hexagonal
lattice allows for the most thorough minimization of the magnetostatic energy, and that the pairwise correla-
tions between moments differ qualitatively between hexagonal and brickwork lattices, although they share the
same lattice topology. The results indicate that the symmetry of local interaction is more important than overall
lattice topology in the accommodation of frustrated interactions.
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I. INTRODUCTION

Geometrical frustration of the interactions between atomic
moments can lead to a wide range of intriguing low-
temperature collective spin states, such as spin liquids, spin
glasses, and spin ice.1,2 Such behavior is driven by the struc-
ture of the geometrically frustrated magnetic sublattice in the
materials, resulting in competition between spin-spin interac-
tions. A common thread among materials displaying exotic
spin states is frustration-inducing symmetry but a direct ex-
amination of the effect of lattice symmetry is very difficult;
different lattice geometries inevitably result from chemical
differences between different materials that also have impor-
tant implications for the spin-spin interactions.

Artificial frustrated magnets, consisting of lithographi-
cally defined two-dimensional ferromagnetic nanostructures
with single-domain elements, provide an alternative means
to study geometrically frustrated magnetism. Our group and
others3–8 have examined square arrays of nanometer-scale
ferromagnetic islands with perpendicular nearest neighbors
in which the moment orientation resembles the 2-in/2-out
spin-ice state of pyrochlore materials. Additional studies9–12

have focused upon a hexagonal geometry �equivalent to the
well-known kagome lattice13�, where the local quasi-ice ver-
tex rule �1-in/2-out or 2-in/1-out� is strictly followed in ar-
rays of nanowire links.9 Since the geometries of artificial
frustrated magnets are determined lithographically, lattice
symmetry and topology can be directly controlled. This al-
lows experimental investigation of a vast set of celebrated
theoretical models of statistical physics such as the square-
lattice Ising model and ice-type six-vertex models.14 It has
been shown that, although the moment configuration is ather-
mal, artificial spin ice can be described through an effective
thermodynamics formalism,5 thus partially reproducing the
statistical mechanics of well-known vertex models. More re-
cent work from our group demonstrated that the moment
correlations and thus the effective temperature of square ar-
tificial spin ice can be controlled by an external drive8 that
allows the system to access a wide class of microstates.
Taken together, these previous studies have demonstrated
that artificial frustrated magnets, while athermal, can still
provide insights into a broad range of microscopic and me-
soscopic statistical systems.

In the present work, we compare three lattices with inde-
pendent control of lattice topology and local symmetry while
avoiding a specific framework or theoretical model. We ex-
amine the pairwise correlations between the island moments
and the energetics of the island configurations. We find that
the symmetry of the local interactions is a driving force be-
hind the accommodation of frustration, irrespective of the
topology of the interisland connectivity.

II. SAMPLE PROPERTIES AND DEMAGNETIZATION
PROTOCOL

We studied lithographically fabricated frustrated arrays of
ferromagnetic permalloy islands �220 nm�80 nm lateral
and 25 nm thick�, following fabrication procedures published
previously.3 The island magnetic moments are constrained to
point along their long axes due to strong shape anisotropy,
mimicking Ising-type spins. The coercivity of islands with
these dimensions is �770 Oe, independent of lattice
spacing.4 This allowed us to probe the arrays in the limits of
both strong and weak interactions, i.e., small and large lattice
spacings. Each array contained between 33 750 and 80 000
islands, depending on lattice spacing.

We chose the square, brickwork, and hexagonal lattice
geometries for our arrays �Fig. 1� because they provide a
simple variation in topology, i.e., interisland connectivity.
The square lattice has fourfold symmetry with islands inter-
acting locally at fourfold vertices. The hexagonal lattice has
threefold symmetry with islands interacting at threefold ver-
tices. The brickwork lattice geometry is created by a
symmetry-breaking uniaxial deformation of the hexagonal
lattice to which it is topologically equivalent. Alternatively,
one can form the brickwork lattice from the square lattice by
removing every other island in horizontal rows. Nearest
neighbors in the brickwork lattice are thus parallel or perpen-
dicular as in the square lattice but with the topology of the
hexagonal lattice. In each of the three geometries, the mag-
netostatic interactions between neighboring islands at a ver-
tex are frustrated, i.e., not all the pairwise magnetostatic in-
teractions can be simultaneously satisfied. Considering only
the island-island interactions at each vertex �i.e., a vertex
model�, the hexagonal lattice has a macroscopically degen-
erate ground state, and the moment arrangement in Fig. 1 is
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a special case for which the vertex type is ordered as alter-
nating 2-in/1-out and 2-out/1-in on distinct sublattices, thus
lowering the further-neighbor interaction energies and pro-
viding a possible ground state for this geometry.15 By con-
trast, the square lattice has a twofold-degenerate ground state
with no net magnetization14 and the brickwork lattice has a
twofold-degenerate ground state with a net magnetization, as
depicted in Fig. 1.

Because the magnetostatic energy scales in these systems
are much higher than thermal energies,3 we probed the con-
sequences of frustration by examining the collective state of
the island moments after a process of ac demagnetization.
We followed our previously developed protocol for the ac
demagnetization, i.e., rotating the samples in-plane while
they were subjected to a stepwise deceasing in-plane external
field with field polarity within the laboratory frame reversed
at each step.3,4,8 Initially, the external field is large enough to
coerce all island moments into tracking the field. As the mag-
nitude of the external field decreases, the island moments
successively decouple from the external field, as governed by
their local magnetostatics. Since the external field is decreas-
ing in magnitude and a given island is most likely to de-
couple from the external field when interactions with nearby
islands reinforce its current magnetization direction, it is
likely that a given island moment remains static thereafter.
The specified rotational demagnetization protocol generates
a well-defined statistical exploration of spin-configuration
space wherein each island moment makes a distinct decision
on its configuration relative to nearby islands but it is not
ergodic in the traditional sense. For all of the data shown

below, we used the smallest accessible step size of 1.6 Oe,
although data with step sizes up to 16 Oe showed qualita-
tively similar behavior. After demagnetization, the island
magnetic moments were imaged via magnetic force micros-
copy �MFM� at several locations far from the edge of each
array, imaging typically 500 islands per image. Figures
1�d�–1�f� show MFM images of the three different lattice
geometries, with clear white and black contrast representing
the island magnetic poles. Such images confirm the single-
domain nature of the islands and enable us to resolve the
individual magnetic orientations of the islands. More than
3000 islands are imaged for each data point in Figs. 2–4,
where the uncertainty in derived quantities is calculated as
the standard deviation among at least five images. For all
three geometries, the array moment after demagnetization
was zero to within experimental uncertainty.8

III. RESULTS AND DISCUSSION

We first examine the magnetostatic energy of the demag-
netized arrays, as quantified by summing the calculated pair-
wise magnetostatic energies16 associated with the measured
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FIG. 1. �Color online� The three geometries under study. �a�–�c�
Island arrays of square, brickwork, and hexagonal geometries. The
white arrows show one of the ground-state configurations with
neighboring pairs annotated �Sn for square and brickwork, and Hn
for hexagon�. Double arrows under each of the arrays indicate the
defined lattice spacing. Because of the broken fourfold symmetry,
S4, S5, S6, and S7 pairs of brickwork lattice split into two inequiva-
lent subgroups, respectively, denoted as a and b. �d�–�f� MFM im-
ages of the square array �400 nm�, brickwork array �400 nm�, and
hexagonal array �370 nm�.
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FIG. 2. �Color online� Normalized array energy as a function of
lattice spacing for square, brickwork, and hexagonal geometries.
The dashed line corresponds to the low-energy states shown in Figs.
1�a�–1�c�; array energies of three geometries are normalized, re-
spectively, to these low-energy states.
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FIG. 3. �Color online� Lattice-spacing dependence of correlation
value between neighboring pairs referenced to their energy-
minimized alignment. �a� The correlation of square �open square�
and brickwork �open triangle� for S1, S2, and S3 neighbors; �b� the
correlation of hexagonal �open diamond� for H1 and H2.
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moment orientations up to the seventh nearest neighbor.8 A
careful convergence study shows that truncating the summa-
tion at the seventh neighbor should introduce an error of less
than 1% for macroscopically demagnetized states. Figure 2
shows this magnetostatic energy as a function of lattice spac-
ing for all three geometries, normalized in each case to the
energy of the respective low-energy states shown in Fig. 1.
Since the energies are negative, the normalization is to −1.
All three curves of magnetostatic energy demonstrate the
same monotonic decrease with decreasing lattice spacing,
corresponding to the increasing influence of the magneto-
static interactions. In the normalized units, the energy of the
hexagonal lattice appears to saturate at approximately −0.90
while the square and the brickwork lattices appear to ap-
proach −0.73 and −0.80, respectively. This saturation in the
limit of small interisland separation suggests that island-
island interactions in this regime dominate over the other
energy scales in the system. Importantly, these asymptotic
energies are still well above the theoretical minimum in the
limit of small lattice spacing, and the dependence on demag-
netization step size does not extrapolate to the ideal ground-
state energy in the limit of vanishing step size, indicating that
the ground state is inaccessible, particularly for the brick-
work and the square lattices.8 The differences between the
lowest attainable energies for the three geometries are well
outside the range of uncertainty of the data, indicating a fun-
damental physical difference between the lattices, i.e., the
greater difficulty of kinetically accessing a ground state of
lower degeneracy.

To understand this difference in energies, we next exam-
ine the correlations between neighbor moment pairs. For the
purposes of analyzing the correlations, neighboring pairs are

labeled in the order of their magnetostatic pair energy as S1
�square and brickwork� and H1 �hexagon� for the nearest
neighbors, S2 and H2 for the next-nearest neighbors, and out
to the seventh nearest neighbors, as illustrated in Figs.
1�a�–1�c� �S4, S5, S6, and S7 pairs of brickwork lattice split
into two subgroups, respectively, a and b due to broken four-
fold symmetry�. We define a correlation value for each of the
pairs as +1 �or −1� when the pair minimizes �maximizes� the
magnetostatic interactions of the pair, and then average the
correlation values over an entire MFM image for each geo-
metrically distinct pair type. Figure 3 shows the experimental
values of the correlations for the first few neighbor pairs as a
function of lattice spacing. As for the variation in magneto-
static energy with lattice constant, the near-neighbor correla-
tions for the square and the brickwork lattices are surpris-
ingly similar to each other, although the lattices differ
fundamentally in lattice connectivity. The large correlations
for S1 and H1 at small lattice spacing is a clear reflection of
the dominance of nearest-neighbor interactions, consistent
with previous measurements.8 Since the brickwork lattice is
a symmetry-broken variant of the hexagonal system, in the
interaction-dominated saturated state at low lattice constant,
the linear combination of correlations �2S1+S2� /3 for the
brickwork lattice closely matches the value of H1�1 /3.
This congruence reflects the fact that both systems suppress
the formation of maximally divergent vertices, wherein the
three constituent islands point all inward or outward, i.e.,
they both obey the 1-in/2-out or 2-in/1-out two-dimensional
ice-rule. The second-nearest-neighbor pairs, S2 and H2 are
much smaller than H1, S1, and even S3, and the S2 correla-
tion is actually slightly negative for the square lattice at
small lattice spacing. This difference is not due to weaker
interactions but instead reflects the frustration in this system
since the direct pairwise interaction for the second neighbors
is incompatible with the nearest-neighbor S1 pair interac-
tions. The correlations for the S3 neighbors are positive and
much larger than the S2 correlations for both the brickwork
and the square lattice, as was previous observed for the
square lattice3 and attributed to the compatibility of the S1
and S3 neighbor interactions.

The most striking difference between the geometries is in
the nature of correlations between successively further
neighbor pairs. Since there is no one-to-one correspondence
between the different neighbor types in the different lattices,
in Fig. 4 we plot the correlations for neighbor pairs up to
seventh nearest neighbor as a function of the magnetostatic
energy of the pair, e.g., the strength of the interaction be-
tween the island moments. As seen in the figure, for both
square and brickwork arrays, the data show a sawtooth be-
havior, with the strength of the correlation oscillating as a
function of the interaction energy between strongly positive
and near-zero values. By contrast, the correlation values of
hexagonal arrays show a monotonic decrease with decreas-
ing pair energy. The qualitative difference between the hex-
agonal lattice and the other two geometries is consistently
observed for each of the lattice spacings tested.

We attribute the difference in the decay of correlation
with pair energy to the fundamental response to frustration in
the different lattice geometries. Since the brickwork lattice
breaks the symmetry between the three pairwise nearest-
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FIG. 4. �Color online� Correlation value of neighboring pairs as
a function of dipolar pair energy obtained from micromagnetic
simulation for �a� small spacing �square and brickwork geometries
of 400 nm and hexagonal of 300 nm�, and �b� larger spacing �square
and brickwork geometries of 680 nm and hexagonal of 491 nm�.
The S4, S5, S6, and S7 pairs of brickwork geometry consist of a
and b subgroups, respectively, where subgroup a of S5 and S6 �b of
S4 and S7� shows a positive correlation and subgroup b of S5 and
S6 �a of S7� shows negative correlation with S4a near zero.
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neighbor interactions of the hexagonal parent lattice, it can
support more highly structured pairwise island-island corre-
lations. The hexagonal lattice, with its higher symmetry, can
access a state in which the nearest-neighbor interactions are
satisfied to the greatest extent possible and the further neigh-
bor correlations decay smoothly with distance. The lower
complexity of spin configuration space in this high-
symmetry system facilitates this accommodation of frustra-
tion, similar to the smooth variations in spatial correlations
in a spin liquid.17 In contrast, the brickwork lattice, which
has the same topology as the hexagonal lattice but breaks
the point-group symmetry, has a more structured distance
dependence to the pairwise correlations with many highly
unfavorable pairings. This more complex spin configuration
space raises additional kinetic impediments against the ac-
tion of the rotational demagnetization, sustaining a saturated,
jammed final state even in the absence of macroscopic
ground-state degeneracy. The more clearly structured spin-
spin correlation function for the moments on the brickwork
and square-lattices is more closely analogous to the pyro-
chlore spin-ice materials.18 A further point of reference is
provided by the highly anisotropic triangular lattice in which
the
lower level of symmetry apparently leads to locally ordered
domains, analogous to antiferromagnetically ordered
materials.19 Somewhat ironically, although the hexagonal
system is more frustrated in the sense of having a more
highly degenerate state with a vertex model, it is the most
successful in approaching the ideal ground-state magneto-
static energy. Apparently, the more highly degenerate ground
state provides a larger target for the rotational demagnetiza-
tion.

IV. CONCLUSION AND FUTURE STUDIES

Our results demonstrate that the more frustrated hexago-
nal lattice is the most successful in approaching the ideal
ground-state magnetostatic energy. This finding leads to an
important conclusion: the local symmetry of interactions in
these frustrated magnets is more important than the topology
of the interacting moments in determining how the system
accommodates frustration. The tuning of symmetry in our
experiments realizes one of the early promises of the artifi-
cial frustrated systems, in that we can perform a direct com-
parison between different lattices to probe how geometry im-
pacts the resulting physics. The insight into the role of
symmetry is accessible only due to the designability of arti-
ficial frustrated magnets combined with our ability to locally
probe individual moments—both of these qualities are inac-
cessible in atomic-scale frustrated magnets. Future studies
along these lines could include a more continuous variation
in lattice types �e.g., a series of samples in which the angles
in a hexagonal lattice are changed gradually to approach the
brickwork lattice�. A great deal of insight about the process
of accommodating frustration could also be gained through
Lorentz microscopy of artificial frustrated magnets9 as the
applied magnetic field is changed, or through time-resolved
studies of colloidal systems20 or optical trap systems21 in
which the dynamics can be probed more directly.
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