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Lattice dynamical methods used to predict phase transformations in crystals typically evaluate the harmonic
phonon spectra and therefore do not work in frequent and important situations where the crystal structure is
unstable in the harmonic approximation, such as the � structure when it appears as a high-temperature phase
of the shape memory alloy Ni-Ti. Here it is shown by self-consistent ab initio lattice dynamical calculations
that the critical temperature for the premartensitic R-to-� phase transformation in Ni-Ti can be effectively
calculated with good accuracy, and that the � phase is a result primarily of the stabilizing interaction between
different lattice vibrations.
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I. INTRODUCTION

Shape memory alloys �SMA� are compounds that after a
mechanical deformation can, through heating, retain their
original shape.1 Due to their vast utilization in a broad spec-
trum of technologies, spanning areas such as medical appli-
cations to aerospace industry, there is an increased need for
effective theoretical tools in the development and under-
standing of these alloys. Lately several theoretical studies
have been made on one of the most commonly used SMA’s,
NiTi �nitinol�, focusing on the martensitic transformation
path2,3 and on the shape-memory behavior.4 Here the theo-
retical study of NiTi will be continued by applying the re-
cently developed self-consistent ab initio lattice dynamical
�SCAILD� method.5

The shape-memory effect in Ni-Ti is related to a revers-
ible martensitic phase transformation into a monoclinic
structure �P21 /m, space group 11, Pearson symbol mP4� also
known as B19� phase6 at around 273 K.7–9 This phase trans-
formation is preceded by a transformation at about 338 K
from the austenite cubic phase �also known as the B2 or �

phase, Pm3̄m, space group 221, Pearson symbol cP2� into
the R phase �P3, space group 143�.10 The mechanism behind
the R-to-� transformation has been ascribed to the suppres-
sion of Fermi-surface nesting, resulting in a hardening of the
T2A phonon mode at the wave vector �and also nesting vec-
tor� q= � 1

3 , 1
3 ,0�.11

Here, by means of first-principles calculations, an alterna-
tive picture of the mechanism behind this premartensitic
phase transition will be provided. We will demonstrate that it
is the interaction between different phonon modes that pro-
vides the main driving mechanism behind the stabilization of
the � phase relative to the R phase in Ni-Ti. Since the �
phase is dynamically unstable in the harmonic approximation
over a large range of frequencies, not only at the wave vector
q= � 1

3 , 1
3 ,0�,12,13 it is absolutely necessary to include anhar-

monic effects in any type of theoretical consideration when
trying to understand the �-to-R phase transformation in Ni-
Ti.

A straightforward calculation using first-principles mo-
lecular dynamics �MD� �Ref. 14� should, in principle, be able
to reproduce the stability of the � phase for Ni-Ti, since MD
implicitly include anharmonic effects. However, MD suffers
from that it is a computationally very demanding task to
obtain reliable free energies. Instead we will make use of the
second-order nature of the displacive �-to-R phase
transformation10 and take the T2A phonon mode displace-
ment at the wave vector q= � 1

3
1
30� as an order parameter. This

will enable us to use the temperature dependence of the pho-
non mode in order to determine the critical temperature for
phase transformation.

II. METHOD

In order to describe properly the phase transformation into
the cubic phase for Ni-Ti one must include the interaction
between phonons.15 As a result, phonon frequencies turn out
to be temperature dependent, which we explore numerically
in this study by means of the SCAILD method.5,16

The SCAILD method is based on the calculation of
Hellman-Feynman forces on atoms in a supercell. The
method can be viewed as an extension of the frozen phonon
method,17 in which all phonons with wave vectors q com-
mensurate with the supercell are excited together in the same
cell by displacing atoms situated at the undistorted positions
R+b�, according to R+b�→R+b�+UR�, where the dis-
placements are given by

UR� =
1

�N
�
q,s

Aqs
� �qs

� eiq�R+b��. �1�

Here R represents the N Bravais lattice sites of the supercell,
b� the position of atom � relative to this site, �qs

� are the
phonon eigenvectors corresponding to the phonon mode, s,
and the mode amplitude Aqs

� is calculated from the different
phonon frequencies �qs through
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Aqs
� = �� �

2M��ks
coth���qs

2kBT
� , �2�

where T is the temperature of the system. Here the phonon
frequencies

�qs = 	− �
�

�qs
� · Fq

�

Aqs
� M�


1/2

�3�

are obtained from the Fourier transform Fk
� of the forces

acting on the atoms in the supercell.
Due to the simultaneous presence of all the commensurate

phonons in the same force calculation, the interaction be-
tween different lattice vibrations is taken into account and
the phonon frequencies given by Eq. �3� are thus renormal-
ized by the very same interaction.

By alternating between calculating the forces on the dis-
placed atoms and calculating new phonon frequencies and
new displacements through Eqs. �1�–�3� the phonon frequen-
cies are calculated in a self-consistent manner. For more de-
tails on the SCAILD method we refer to Refs. 5, 16, and 18.

It should be mentioned that we do not consider here the
phonon-decay processes �see, e.g., Ref. 19 and references
therein�. Thus the question of how phonon linewidths ob-
tained within the SCAILD framework are related to experi-
mentally observed linewidths is still an open question. In the
present calculations thermal-expansion effects have not been
taken into account, and all calculations have been performed
at the constant experimental lattice constant of 3.01 Å.7,20

As regards the computational details of the force calcula-
tion we used the VASP package,21 within the generalized gra-
dient approximation. The projector augmented wave poten-
tials used required energy cutoffs of 300 eV. Methfessel-
Paxton smearing of 0.2 eV was used together with a 8�8
�8 Monkhorst-Pack k-point grid. The supercell used was
obtained by increasing the cubic primitive cell 3 times along
the three primitive lattice vectors, resulting in a 54 atom
supercell. Furthermore, the calculations were performed with
1�3�3 supercells utilizing 45�15�15 Monkhorst-Pack
k-point grids, whereas the Fermi surfaces and general sus-
ceptibilities were calculated using a 100�100�100
Monkhorst-Pack mesh.

III. RESULTS

Figure 1 shows the calculated phonon dispersions in cubic
Ni-Ti for the temperatures 0, 200, 220, 240, 260, 280, and
300 K. The phonon-dispersion relation at T=0 K is very
similar to the previous calculation done in Ref. 12, including
imaginary frequencies along both directions �i.e., �	 ,	 ,0�
and �	 ,	 ,	��. The finite-temperature calculations predict the
stability of the cubic phase of Ni-Ti by promoting the fre-
quencies of the phonons along the 
-to-R symmetry line and
around the M symmetry point from imaginary to real for
temperatures �238 K.

Furthermore, the calculated T=300 K phonon dispersion
is in good agreement with the experimental T=400 K data
�black circles�, with the exception of the lowest lying acous-
tic branch along the 
-to-R symmetry line.

Figure 2 shows the calculated squared T2A phonon fre-
quency at the wave vectors q= � 1

2 , 1
2 ,0� and � 1

3 , 1
3 ,0� at dif-

ferent temperatures together with experimental data. Here, as
a result of a fourth-order anharmonic interaction, the ex-
pected linear dependence �2�T,22 also suggested by experi-
ment, is reproduced by the calculation.

The sudden jump in the calculated squared T2A phonon
frequencies at T�227 K �Fig. 2� can be related to the lim-
ited size of the supercell, since it overestimates the different
phonon-mode contributions to the atomic displacements
� 1

�N�
, especially in the temperature range where � is close

to zero. Thus by increasing the size of the supercell, i.e.,
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FIG. 1. �Color online� The phonon dispersions of �-NiTi calcu-
lated at different temperatures together with experimental data mea-
sured at 400 K �black circles�, at 338 K �empty circles�, and at 423
K �crosses� �Ref. 10�. Solid, dashed, dotted, and dashed-dotted lines
are the first-principles self-consistent phonon calculations.
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FIG. 2. �Color online� The calculated temperature dependence
of the T2A phonon frequency at q= � 1

3
1
30� �red squares� and at q

= � 1
2

1
20� �black circles� in �-NiTi, here displayed together with ex-

perimental data for q= � 1
3 , 1

3 ,0� �empty blue circles� �Ref. 10�. The
width of the error bars are the square root of the mean-square de-
viation of the last 10 SCAILD iterations relative to the frequency of
the 150th SCAILD iteration.
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increasing the number of commensurate phonons, this over-
estimation can at least, in principle, be avoided. Furthermore,
in the calculated phonon dispersion �Fig. 1� the dip or singu-
larity in the T2A phonon frequency is shifted from the ex-
perimental position q= � 1

3 , 1
3 ,0� to q= � 1

2 , 1
2 ,0�. This shift

originates from the singularity being confined to a relatively
small region of q space, which also cannot be described ad-
equately by a small supercell.23 However, increasing the cur-
rently used 3�3�3 supercell to the smallest larger cell ac-
commodating the q= � 1

3 , 1
3 ,0� wave vector, would imply the

use of a 6�6�6 cell which was not pursued, due to com-
putational reasons.

By using the phonon frequency of the T2A mode at q
= � 1

3 , 1
3 ,0� as an order parameter for the �-to-R phase trans-

formation the critical temperature, Tc, corresponding to the
transformation can be estimated to �227 K. However, if
instead the T2A phonon frequency at q= � 1

2 , 1
2 ,0� is used as a

order parameter we have Tc�238 K. This should be com-
pared to the experimental value of 338 K. Since Tc depends
strongly on the alloy composition �a change from 50 to
51 at. % Ni lowers Tc with up to 100 K� �Ref. 24� and on
oxygen and carbon impurities,25 the agreement must be
viewed as good.

To investigate the relative importance between two of the
possible processes involved in stabilizing the T2A mode at
q= � 1

3 , 1
3 ,0�: �1� destruction of Fermi-surface nesting through

the thermal smearing related to electronic excitations �used
by Zhao and Harmon11 to illustrate the effect of nesting sup-
pression� or �2� phonon-phonon interactions, a series of ad-
ditional first-principles electronic-structure calculations were
performed. First, the frequency of the T2A mode was calcu-
lated at different thermal smearings of the electronic sub-
system, through a series of frozen phonon calculations.17 The
results of these calculations revealed that temperatures above
1000 K, i.e., much higher than the observed transition tem-
perature, were required if thermal smearing was to be the
only effect responsible for the stabilization of the T2A pho-
non mode.

In the second step a series of Fermi-surface calculations
were performed for the �-NiTi phase for different phonon-
excited geometries. In Fig. 3�a� the Fermi surface of �-NiTi
with no phonon-induced atomic disorder is shown. In Fig.
3�b� a cut, in the plane kz=0, through the same Fermi surface
as in Fig. 3�a� is shown, illustrating the nesting features. The
Fermi Surface of the undistorted � structure was also calcu-
lated within a 3�3�3 supercell, the result is displayed in
Fig. 3�c�. In Fig. 3�d� a cut through the Fermi surface is
shown that has been calculated from four of the atomic con-
figurations produced by the SCAILD scheme at T=300 K.
This cut was taken through the surface �E�k�= �EF, where
�E�k� and �EF are the arithmetical mean values of the
Kohn-Sham eigenvalues, E�k�, and Fermi levels, EF, calcu-
lated from the atomic configurations produced by the
SCAILD scheme at T=300 K. Here k denotes a point in the
space of k points.

Due to the down folding of the bands in Figs. 3�c� and
3�d�, the nesting vector qn= � 1

3 , 1
3 ,0� is shifted to q

= �0.177,0.177,0�. Figures 3�c� and 3�d� show an apparent
change in the Fermi-surface topology as the phonon-induced

atomic disorder is introduced. However, to properly gauge
the effect of atomic disorder upon the nesting features of
�-NiTi, the susceptibility23

��q� = �
k

�
n,m

f�En�k + q�� − f�Em�k��
En�k + q� − Em�k�

�4�

was also calculated for the same atomic configurations as
was used in the Fermi-surface calculations. Here f�E� is the
Fermi-Dirac distribution function given by f�E�

FIG. 3. �Color online� Fermi surface of the �-NiTi. In �a� the
Fermi surface in the T=0 case �i.e., no phonon-induced disorder�.
In �b� we show the cut through the Fermi surface displayed in �a�.
The leftmost panel in �b� shows a cut through the red bowl-shaped
surface sheets in �a�. The rightmost panel in �b� shows a cut through
the turquoise sheets in �a�. In �b� the nesting vector qn= � 1

3 , 1
3 ,0�

interconnecting the nested parts of the Fermi surface is also shown.
In �c� we show a cut through of the Fermi surface in �a� down
folded to the first Brillouin zone of the undistorted 3�3�3 super
cell. In �d� we show a cut through the Fermi surface calculated from
four of the T=300 K atomic configurations produced by the
SCAILD scheme.
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=1 / �eE−EF/kBT+1�. In Fig. 4 the results of these calculations
are displayed, showing the suppression of the susceptibility
peak as the phonon-induced atomic disorder is introduced. It
should be noted that the suppression of the peak in x�q� is
quite pronounced. This demonstrates that the basic electronic

structure of Ni-Ti is drastically different when the finite tem-
perature excites collective lattice vibrations, compared to a
T=0 calculation. Hence, it is this change in the electronic
structure and the accompanying modification of the force-
constant matrix, which is primarily responsible for the stabi-
lization of the � phase. This explanation is hence somewhat
more intricate and complex than the conventional model, of
a smearing of a rigid electronic structure due to temperature
effects of the Fermi-Dirac distribution function.

IV. CONCLUSION

To summarize, by first-principles SCAILD calculations,
the cubic � phase in Ni-Ti has been shown to be stabilized
by phonon-phonon interactions. Also, in the case of the un-
stable T2A phonon mode at q= � 1

3 , 1
3 ,0� this interaction has

been shown to be mediated through thermal-disorder-
induced suppression of Fermi-surface nesting.

Furthermore, the SCAILD method has been proven an
accurate and effective theoretical tool by predicting the criti-
cal temperature between 227Tc238 K for the �-to-R
premartensitic phase transformation, which is comparable
with the experimental value of Tc�338 K.10
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FIG. 4. �Color online� The calculated susceptibility as a function
of q= �	 ,	 ,0� in �-NiTi. The full black curve is the susceptibility
for the T=0 K case �i.e., no phonon-induced disorder�. The dashed
red curve is the mean-susceptibility calculated from four of the T
=300 K atomic configurations produced by the SCAILD scheme.
Here the width of the error bars correspond to the standard devia-
tion of the T=300 K susceptibility distribution. The susceptibilities
are calculated within a 3�3�3 supercell, resulting in a shift of the
susceptibility peaks from 	= 1

3 to 	�0.177, due to the down folding
of the bands into the first Brillouin zone of the 3�3�3 cell.
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