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We present a theoretical study of long-range surface plasmons propagating in a thin metallic film clad
between two identical uniaxial anisotropic dielectric crystals. We show that the proper orientation of the optical
axis of the crystal with respect to the metal surface enhances the propagation length of surface plasmons. Since
the proper orientation depends on surface plasmon frequency, we give the results for the propagation length in
a wide range of frequencies, including the telecommunication region. To increase the role of anisotropy, we
consider artificial substrates from photonic crystals, which possess an order of magnitude stronger anisotropy
than the natural optical crystals. We propose Kronig-Penney model for plasmonic crystal where the substrate is
a periodic sequence of dielectric delta peaks. In this model the dispersion relation for surface plasmon has a
band structure where the band width tends to zero when the frequency approaches the resonant frequency.
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I. INTRODUCTION

The efficiency of plasmonic devices is limited by finite
propagation length L��� of surface plasmon polaritons. The
main source of attenuation of propagating surface plasmon is
Joule losses in the metal. The Joule losses Q=�j ·EdV are
reduced if the electric field has a mode, enforced by symme-
try, somewhere inside the metal plate. Since in a bulk con-
ductor, the field decays at the skin depth �, the effect is
noticeable if the plate thickness d does not exceed �.1 Strong
reduction in dissipation occurs if the plasmonic structure is
symmetric, i.e., the dielectrics on both sides of the plate are
the same. Then, the electric field E vanishes exactly at the
plane of symmetry, minimizing the integral Q.2 This plas-
monic mode with antisymmetric distribution of parallel-to-
the-plate component of electric field is usually called long-
range surface plasmon.3 The propagation length of this mode
scales as L�1 /d2 and may be as long as few millimeters or
even centimeters in the near infrared4 for silver films of
thickness d�50 nm. If surface plasmon propagates along a
metal strip instead of an infinite plane, some increase in
propagation length can be reached for special choice of cross
section of the strip.5 Short propagation length limits the size
of photonic chip or component of optical circuit containing
plasmonic structure. In order to reduce dissipation in plas-
monic waveguides, it was proposed to groove V-shaped
channels in metal.6 These channels support propagation of
long-range surface plasmons and allow experimental realiza-
tion of interference, splitting, and switching of surface
waves.7

The most interesting features of surface plasmon polariton
are manifested at frequencies close to the limiting frequency
�s in the spectrum of surface plasmon �=��k�. For the case
of isotropic substrate, this frequency is given by �s

=�p /�1+�, where �p is plasma frequency of the metal and �
is the dielectric constant. Close to the resonant frequency, the
surface plasmon density of states dk /d� grows infinitely,
leading to the enhancement of light emission from quantum
semiconductor structures.8 Also the subwavelength reso-
lution of plasmonic devices is strongly enhanced near the

resonant frequency since the penetration depth into the di-
electric vanishes at �=�s.

9 Unfortunately, the propagation
length L��� quickly tends to zero near �s. Because of this
property, any plasmonic device cannot operate in the fre-
quency region close to surface-plasmonic resonance. It is
worthwhile to discuss here the physical reasons for such
strong decay.

Propagation length, being the distance at which the energy
of the wave decays by a factor of e, can be expressed through
the rate of dissipation Q and flux of energy S��� as follows:

L��� =
S���
Q���

. �1�

It is clear that the denominator Q, while grows smoothly
with �, remains finite at any frequency. Fast decay of surface
plasmon is due to vanishing of the energy flux S at �=�s.
The total flux S associated with propagating surface plasmon
is a sum of two terms, S=2Sd+Sm. Here Sd and Sm are Poyn-
ting vectors in one of the dielectrics and in the metal, respec-
tively. Since the dielectric constant of the metal film is nega-
tive, �m����0, the energy in the metal and in the dielectrics
flows in opposite directions, i.e., Sd�0 and Sm�0. While
the total flux S is positive �surface plasmon is a wave with
normal dispersion, d� /dk�0, if the metal �silver� film
thickness is not less than 30 nm�, the interior of the metal
gives negative contribution. It is easy to derive that
2Sd+Sm��m

2 ���−�2. The resonant frequency is obtained
from the equation �m��s�+�=0. Therefore, the net flux S���
vanishes linearly at �=�s. This simple calculation shows
that the main reason for strong decay of surface plasmon
near the resonant frequency is related to its dispersion but
not to dissipation. For frequencies near �s, the most efficient
way to increase the propagation length is detuning from the
resonance, which affects the numerator in Eq. �1�. Thus, the
most attractive for applications region of frequencies is un-
reachable because of very short propagation length.

At low temperatures, the Joule losses are strongly reduced
due to the decrease in denominator in Eq. �1�, leading to
increase in the propagation length.10 At room temperatures,
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however, there are very limited options for variation in the
propagation length. One of them is to affect the level of
dissipation through the dielectric properties of the substrate.
The field in the substrate affects the field in the metal �and
thus the level of dissipation� through the boundary condi-
tions. Surface plasmons on anisotropic lossless substrate
were studied in Ref. 11. It was shown that the in-plane an-
isotropy gives rise to the splitting of surface plasmon by two
ordinarylike and extraordinarylike surface modes, if surface
plasmon propagates at an angle with respect to the optical
axis. The effects of anisotropy of the substrate were studied
for asymmetric plasmonic structures, i.e., for vacuum-metal-
dielectric structures. In Ref. 13, the proposed substrate was
two-dimensional �2D� photonic crystal �a periodic arrange-
ment of parallel cylinders� and in Ref. 12, the metallic film
was deposited on multilayered dielectric heterostructure
�one-dimensional �1D� photonic crystal�. In both cases an
essential increase in the propagation length has been re-
ported.

Here we consider a symmetric dielectric-metal-dielectric
plasmonic structure. The advantage of this configuration is
that it supports propagation of the long-range surface plas-
mon. The effects of anisotropy may lead to further increase
in the propagation length. Indeed, we report about 20-fold
increase in the propagation length of long-range surface plas-
mon in the symmetric configuration when compared to that
of the asymmetric �vacuum-metal-dielectric� one13 for the
same given parameters at �=1.57 	m. It is important to
mention at this point that an attempt to study the effects of
anisotropy on the propagation length was made in Ref. 14.
Unfortunately, the reported results are erroneous. The calcu-
lated propagation length turned out to be as short as
10−15 m, i.e., on the order of the classical electron radius.
Apart from this many-orders-of-magnitude error, the re-
ported tendency for the propagation length to grow toward
the resonant frequency is wrong. It is clear from the afore-
mentioned effect of vanishing of the total flux S in Eq. �1�
that even infinitesimally weak dissipation Q leads to zero
propagation length at �=�s. In addition, the authors of Ref.
14 report unreasonably strong sensitivity of the propagation
length to the level of anisotropy, taking into account rela-
tively weak anisotropy they used in their calculations.

II. CALCULATION OF THE PROPAGATION LENGTH

The symmetric configuration that we consider consists of
a metal film of thickness d clad with two identical semi-
infinite anisotropic dielectric substrates as shown in the inset
in Fig. 1. The metal film occupies the space between z=0
and z=d �region 1�. The dielectric on top of the metal film
occupies all space above z=d �region 2� and the dielectric
below the metal film occupies all space below z=0 �region
3�. The dielectrics are assumed to be isotropic in the x-y
plane, i.e., �x=�y. The dielectric constant in the perpendicu-
lar to the interface direction �along z axis� is, however, dif-
ferent, �z��x.

The surface plasmon propagating along the metal-
dielectric interface is a p-polarized wave with the compo-
nents of the electric field Ex and Ez and with the only com-

ponent of the magnetic field Hy =H�x ,z�. The field inside the
metallic film is a superposition of two exponents, H1�x ,z�
=A exp�ikx+
1z�+B exp�ikx−
1z�, with 
1=�k2−�m�2 /c2

being the inverse skin depth, 
1
−1=�. In the substrates, which

are two identical uniaxial dielectric crystals, the magnetic
field is obtained from the Helmholtz equation

1

�z

�2H

�x2 +
1

�x

�2H

�z2 +
�2

c2 H = 0. �2�

The evanescent solutions of this equation are H2�x ,z�
=C exp�ikx−
2�z−d�� and H3�x ,z�=C exp�ikx+
2z�, where


2=��x�
k2

�z
− �2

c2 � is the inverse decay length of the surface
plasmon field in dielectric, and �m���=1−�p

2 /�2. From the
continuity of the magnetic field H�x ,z� and electric field
Ex�x ,z�= �c / i��x��H /�z at the interfaces z=0 and z=d, we
obtain the following dispersion equation for the surface plas-
mon:


2�m


1�x
= − tanh�
1d

2
	 . �3�

This equation gives the dispersion for the mode with anti-
symmetric distribution of Ex with respect to the plane of
symmetry z=d /2, i.e., for the so-called long-range surface
plasmon. It is easy to see that interchanging the values of �x
and �z, two different dispersion equations are obtained. The
transformation �x↔�z means 90° rotation of the optical axis
of the dielectric crystal with respect to the metal surface. In
Fig. 1 the solid and dashed curves are the dispersion Eq. �3�
for two different orientations. Both the curves approach the
same resonant frequency
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FIG. 1. �Color online� Dispersion curves for different orienta-
tions of optical axis of the anisotropic dielectric crystals with metal
film of thickness d=50 nm. The dotted curve represents dispersion
curve for equivalent isotropic dielectric with dielectric constant
�is=��x�z.
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�s =
�p

�1 + ��x�z

�4�

at k→�. Since �s is symmetric with respect to �x and �z, the
equivalent isotropic dielectric constant may be defined as
�is=��x�z. The dispersion curve for the structure with
equivalent isotropic dielectrics �dotted line� lies in between
the solid and the dashed lines in Fig. 1. The dispersion
curves are plotted for silver film of thickness of d=50 nm.
The numerical values of the principal dielectric constants are
taken to be 2 and 7.5. These are the homogenized values
obtained in the low-frequency limit for photonic crystal of Si
cylinders arranged in a square lattice with Si filling of 57%.15

The larger value 7.5 corresponds to the dielectric constant
along the cylinders. In the plane of periodicity, the photonic
crystal is isotropic with dielectric constant equals 2.

The asymmetry of the dispersion Eq. �3� with respect to
the interchange �x↔�z gives rise to different propagation
lengths for two different orientations. Since only the case of
weak dissipation is of practical interest, we consider the re-
gion of frequencies where the imaginary part of the dielectric
function of the metal film �m���=�m� ���+ i�m� ��� is small,
i.e., �m� ��m� . For a typical metal this condition is valid in the
infrared and visible regions. In weakly dissipative medium,
the wave vector acquires small imaginary part, k=k�+ ik�.
Expanding the dispersion Eq. �3� over �m� and k� and keeping
the linear terms, the following result for the propagation
length L���=1 /2k� is obtained:

L��� =
k

2�m�

1


2
2
�x

�z
−


2
2


1
2 + d


2

2
� ��m�

�x


2
2


1
2 −

�x

��m�	�


 1

��m�
−

�2

2c2
1
2 +

�2

4c2

d


2
� ��m�

�x


2
2


1
2 −

�x

��m�	�−1

.

�5�

Apart from the factor 1 /�m� , all the quantities on the right-
hand side �rhs� are calculated for a lossless metal, �m� =0. The
propagation length L���→0 when �→�s. As it was men-
tioned in the introduction, this effect is due to surface plas-
mon dispersion �vanishing of the group velocity� but not due
to increase in dissipation. The dispersion equation Eq. �3�
and the propagation length Eq. �5� can be simplified in the
limiting case of thick film.

The limit d→� is readily obtained from Eqs. �3� and �5�.
In this limit the surface plasmons propagating along two
metal-dielectric interfaces do not interact with each other,
therefore the dispersion relation is reduced to the result ob-
tained in Ref. 3 for semi-infinite metal

k =
�

c
��z��m�� ��m� + �x

�m
2 − �x�z

	1/2

. �6�

Now, using Eq. �6�, we obtain from Eq. �5� the following
result for the propagation length:

L��� =
c

��m�

��z��m�
�x�z

��m
2 − �x�z�3/2���m� + �z�1/2

��m
2 + �x�z + 2�z��m��

. �7�

Of course, in the case of isotropic dielectrics, �x=�z, Eqs.
�3�–�8� are reduced to the well-known results.3,16–21

The calculation of propagation length in the limit when
d→� and in the limit when �→�s can both be considered
equivalent because at frequencies close to resonant fre-
quency �s, the decay length 
2

−1→0 �since the surface plas-
mon wave vector k→��. For the evanescent field of surface
plasmon, this has the same effect as having a semi-infinite
metal film. Consequently, the propagation length
L������s−��3/2 for a metal film of any given thickness
close to resonant frequency, as one obtains from Eq. �7�.

In the opposite limit of thin film, d→0, Eq. �5� is simpli-
fied in the long-wavelength regime, i.e., when surface plas-
mon behaves like a transverse light wave

L��� =
2

�m� d2� c

�
	3 ��m�3

�x�z
3/2���m� + �z�

. �8�

In this approximation the dispersion relation �
kc /��z does
not contain characteristics of the metal but the propagation
length does. It follows from Eq. �8� that for fixed �, the
propagation length scales as d−2, which is a signature of the
long-range surface plasmon. Analysis of the long-wavelength
limit shows that the favorable orientation in the limit of thin
film �d→0� is not the same as the one in the case of a
semi-infinite film �d→��. In the limit of thin film �for a
given frequency�, �L����−1��x�z

3/2, while in the case of a
semi-infinite film, �L����−1��x�z

1/2. There is a certain critical
frequency �cr �for a given thickness d of metal film� at
which the favorable orientation reverses �see Fig. 2�. The
dependence of critical frequency on the thickness d of the
metal film is discussed in more detail later in this paper.

Further examination of asymptotes in the linear dispersion
regime ��
kc /��z� reveals some interesting details. The as-
ymptote in the limit of thin film �kd�1� is given by Eq. �8�,
and in the limit of thick film �kd�1�, we obtain from Eq. �5�

L��� 

��m�

�x�m� k

��m
2 − �x�z�

���m� + 2�z�
, kd � 1. �9�

The linear dispersion regime in the limit of very thin metal
film spans over a broad range of frequencies, while in the
case of very thick metal film, the linear dispersion regime is
limited only to low frequencies �see Fig. 3�. Although very
thin film favors a much longer propagation length �see Figs.
2 and 4�, it is relatively more difficult to reach the resonance
frequency �s �see Fig. 3�. In addition to this, the surface
plasmon density of states dk /d� for very thin films is rela-
tively very low �due to the greater slope d� /dk of the dis-
persion curve�, leading to the decrease in probability of light
emission. We note that in the limit of very thick metal, the
form of Eq. �9� is different from Eq. �7�, because, linear
dispersion does not span over a broad frequency range as
compared to linear dispersion in the limit of very thin metal.
However, at very low frequencies �in the long wavelength
regime�, both Eqs. �7� and �9� are reduced to
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L��� 

�m

2

�x�m� k
, kd � 1. �10�

The propagation length curves �obtained from Eq. �5�� for
the two orientations ��x��z and �z��x� and for the equiva-
lent isotropic case ��x=�z=�is� are shown in Fig. 4. It is clear
from Eq. �5� and Fig. 4 that the effect of anisotropy of the
dielectric may be used as an advantage to modulate the
propagation length by changing the orientation of the optical
axis of the dielectric crystal. The decreasing trend of L���
toward higher frequencies can be seen in Fig. 4, where �
=0.36�s corresponds to �=0.961 	m, and �=0.45�s corre-
sponds to �=0.768 	m. This range is much below the tele-
communications wavelength �1.3–1.6 	m�. Though the iso-
tropic case is more favorable for wavelengths between
�=0.768 	m and �=0.961 	m, it is obvious from Fig. 4
that the perpendicular orientation ��x��z� is most preferable
at wavelengths above �=0.961 	m. However, at frequen-
cies higher than �cr �critical frequency at which the favor-

able orientation reverses�, the parallel orientation is more
preferable.

For silver metal film of thickness d=50 nm, and for the
dielectrics having principal dielectric constants as 2 and 7.5,
this critical frequency �cr occurs at �
0.4�s, which corre-
sponds to �cr=0.865 	m, i.e., it is still much below the tele-
communications wavelength.

In Fig. 5, the critical frequency is plotted as a function of
thickness d of the metal film. The ratio �cr /�s gradually
increases with d until it saturates at �
0.62�s, which cor-
responds to thickness d=200 nm. The saturation of curve in
Fig. 5 indicates that for a given anisotropy of dielectric, the
metal thickness of d=200 nm can be safely considered as
semi-infinite. This fact is clearly demonstrated in the inset of
Fig. 5, where the difference between propagation lengths
�calculated from the “exact” Eq. �5� and it’s asymptote
�L���� ,d=�� Eq. �7�� as a function of frequency is plotted.
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FIG. 2. �Color online� The top figure shows propagation length
for parallel ��x��z� and perpendicular ��x��z� orientations for
metal thickness d=20 nm. The bottom figure shows the same
curves between �=0.21�s and �=0.24�s.
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FIG. 3. �Color online� Dispersion curves and light lines �ll� for
different orientations for metal thicknesses d=5 nm and
d=200 nm. Light lines for equivalent isotropic case ��x=�z� are not
included in the figure. The anomalous dispersion curves correspond
to metal thickness d=5 nm �top figure�.
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It is to be noted that for the given orientation ��x��z�, the
propagation length at �=0.2�s is about 700 	m, as com-
pared to the difference L���−L���� of 18 	m only. The plot
in the inset shows the strong agreement between Eqs. �5� and
�7�. It is also obvious from Fig. 5 that the critical frequency
�cr shifts toward lower frequencies as the metal thickness d
decreases. This behavior strongly influences the favorability
of one orientation over the other. In particular, within the
telecommunication bandwidth �between �
0.22�s� and
�
0.25�s, having �z��x is more preferable for very thin
metal, whereas having �x��z is more preferable for a thick
metal �compare Figs. 2 and 6�.

In Fig. 6, the propagation length for �x��z, �x=�z, and
�z��x is plotted. The frequency range from �=0.22�s

��=1.57 	m� to �=0.25�s ��=1.384 	m� contains the
telecommunications bandwidth. Clearly, the propagation
length is enhanced by more than 50% when the optical axis
of uniaxial dielectric substrate is aligned in the direction per-
pendicular to the interface. In particular, if the substrates are
2D photonic crystals, the preferable orientation of cylinders
is perpendicular to the metal film.

Interestingly, the propagation length of surface plasmons
for symmetric configuration is one order of magnitude higher
than the propagation length of surface plasmons for asym-
metric configuration.13 For instance, L���
2.3 mm at
�=1.57 	m for perpendicular orientation in the case of
symmetric configuration compared to L���
100 	m at
�=1.57 	m for the same orientation for asymmetric con-
figuration. That is an enhancement of propagation length by
more than 20 times. It means that the propagation length �in
the case of symmetric configuration that we considered in
this paper� is on the order of a few millimeters within the
telecommunications bandwidth �see Fig. 6�.

Another important characteristic of plasmonic structure is
penetration depth �
2

−1�. As the penetration depth determines
the coupling strength of the surface plasmons with other el-
ements of integrated photonic circuitry, an enhancement in
penetration depth is desirable. Indeed in Fig. 7, the penetra-
tion depth for perpendicular orientation is enhanced by more
than 300% compared to the penetration depth for parallel
orientation, reasserting the requirement that the perpendicu-
lar orientation is more preferable for bandwidths correspond-
ing to the telecommunications wavelength.

III. KRONIG-PENNEY MODEL FOR
PLASMONIC CRYSTAL

Homogenization of photonic crystals, which we propose
to use as anisotropic substrate, has been developed for the
bulk modes. Currently there are several approaches, apart
from the one proposed in Ref. 15 to the problem of homog-
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dicular orientations, and for the equivalent isotropic case with metal
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enization of metamaterials. Being technically different, how-
ever, they lead to the equivalent results for the effective di-
electric constants in the low-frequency region away from
internal resonances, see, e.g.22 It is not clear, however,
whether the “bulk” effective dielectric constants can be used
in the case of surface modes which are strongly inhomoge-
neous in the direction perpendicular to the interface. This
inhomogeneity may also enhance the contribution of higher
harmonics to the dissipation and, thus, reduce the propaga-
tion length in Eq. �5�. The latter was calculated assuming that
the substrate is a homogeneous anisotropic dielectric, i.e., all
the spacial harmonics of the electromagnetic field of surface
plasmon have been ignored. To clarify the possibility of ho-
mogenization of plasmonic crystal and evaluate the contribu-
tion of higher harmonics, we consider here a simple Kronig-
Penney model. Usually, a periodic structure in a plasmonic
crystal is associated with a periodic dielectric pattern on the
surface of a metal film.23 Here we consider a periodic ar-
rangement of infinitesimally thin dielectric sheets parallel to
axis y and oriented perpendicular to semi-infinite metal, see
Fig. 8. The dielectric constant of this structure can be repre-
sented as a series of delta peaks

��x� = 1 + �0a�
n

��x − na�, z � 0. �11�

In the long-wavelength limit this substrate behaves as a
uniaxial optical crystal with effective dielectric constants

�z = �y =
1

a
�

−a/2

a/2

��x�dx = 1 + �0, �12�

1

�x
=

1

a
�

−a/2

a/2 1

��x�
dx = 1. �13�

The magnetic component H�x ,z� of surface plasmon field
decays exponentially away from the interface: in the metal
�z�0�, H�x ,z�=exp�
1z− i�t�h�x� and in the substrate
�z�0�, H�x ,z�=exp�−
2z− i�t�h�x�. The continuity of
H�x ,z� at z=0 is satisfied and within the interval
−a /2�x�a /2 the function h�x� is a superposition of two
plane waves

h�x� = Aeiqx + Be−iqx, �14�

where

q2 = 
1
2 − ��/c�2��m���� = 
2

2 + ��/c�2. �15�

The values of h�x� on the whole axis x are obtained from the
Bloch theorem, h�x+a�=exp�ikx�h�x�. h�x� is a continuous
function at x=0 but its derivative has a discontinuous jump

h��+ 0� − h��− 0� = − �0a
�2

c2 h�0� . �16�

The continuity of h�x� at x=0 together with Eq. �16� form a
set of homogeneous equations for A and B. Equating its de-
terminant to zero, the following dispersion equation is ob-
tained:

cos ka = cos qa −
�0a2

2

�2

c2

sin qa

qa
. �17�

In this equation the wave vector q is a function of frequency
�. The dependence q��� is obtained from the continuity of
the tangential electric field Ex=−�ic /����H /�z at z=0. This
condition gives


1 = ��m����
2. �18�

Equations �15� and �18� determine the frequency dependen-
cies 
1���, 
2���, and q���


1
2 =

�2

c2

�m
2 ���

��m���� − 1
, �19�


2
2 =

�2

c2

1

��m���� − 1
, �20�

q2 =
�2

c2

��m����
��m���� − 1

. �21�

Since ��m�����1, the following inequality holds,

2�q�
1. When �→�p /�2 all three parameters 
1, 
2,
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FIG. 7. �Color online� Penetration depth of surface plasmons for
different orientations of dielectric crystal with metal film of thick-
ness d=50 nm.
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and q diverge. As one can see from Eq. �17� the Bloch vector
k also formally diverges. The frequency �s=�p /�2 is the
limiting frequency in the dispersion Eq. �17�. It is the reso-
nant frequency of the plasmonic crystal. The resonant fre-
quency is independent on the details of the substrate since in
the Kronig-Penney model the filling fraction of the dielectric
component is exactly zero. Near the resonance the wave-
length 2� /k vanishes, therefore the field of the surface plas-
mon is insensitive to the presence of the dielectric sheets,
which are separated by a finite distance a, i.e., by infinite
number of wavelength. In the case of nonzero filling fraction
of the dielectric component the resonant frequency depends
on the properties of the substrate.24

The structure of the low-frequency bands of Eq. �17� is
similar to that of any periodic system. Few first bands are
shown in Fig. 9. Unlike standard Kronig-Penney model, the
width of the allowed bands decreases with frequency. Near
the resonant frequency the spectrum becomes pointlike.
Zero-width frequency bands are accumulated toward �p /�2.
Here the spectrum becomes dense and asymptotically it co-
incides with the spectrum of surface plasmon near its reso-
nant frequency. This tendency is clearly seen in Fig. 10.

Long wavelength limit. In the limit ka ,qa�1 Eq. �17� is
simplified

k2 =
�2

c2 
 ��m����
��m���� − 1

+ �0� . �22�

Dispersion of surface plasmon with anisotropic homoge-
neous substrate is given by Eq. �6�. Substituting in Eq. �6�
the effective dielectric constants of the substrate given by
Eqs. �12� and �13� the following dispersion equation is ob-
tained:

k2 =
�2

c2

�1 + �0���m�����1 + ��m�����
�m

2 − �1 + �0�
. �23�

In the limit �→0 Eqs. �22� and �23� have the same linear
asymptotic, k= �� /c��1+�0. This means that in the low-
frequency limit the Kronig-Penney plasmonic crystal ho-
mogenizes and the effective dielectric constants coincide
with those obtained for 1D photonic crystal. Two dispersion
curves corresponding to Eqs. �22� and �23� are shown in Fig.

11. In fact, the dispersion curves in Fig. 11 are very close to
each other not only in the low-frequency limit but within a
wide range of frequencies. This means that the substrate can
be considered as an effective homogeneous medium once the
conditions qa ,ka�1 are satisfied. Two dispersion curves ex-
hibit essential difference only near the resonant frequencies
�p /�2 and �s=�p /�1+�0=�p /2. Here q ,k→� and the dis-
persion Eq. �22� is not valid since the conditions qa ,ka�1
cannot be satisfied.

Contribution of higher harmonics. The contribution of
higher harmonics is evaluated from the Fourier expansion of
magnetic field

h�x� = exp�ikx�fk�x� = exp�ikx��
n

fk�n�exp�2�inx/a� .

�24�

The distribution of the field h�x� within a period
−a /2�x�a /2 is obtained from Eq. �14�, where the ratio

0 2 4 6 8 10
0
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aω/c

FIG. 9. The first four allowed bands for a plasmonic crystal of
Si semispace and periodic substrate with �0=3.
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FIG. 11. �Color online� Dispersion curves for plasmonic crystal
with �0=3 in the limit ka ,qa�1 �Eq. �22�, solid line� and for
plasmonic structure with a homogeneous dielectric substrate with
�x=1 and �z=1+�0 �Eq. �23�, dashed line�. The inset shows the
region of low frequencies. The frequency is normalized to
�s=�p /�1+�0=�p /2.
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B

A
= −

eiqa − eika

e−iqa − eika . �25�

Normalizing the magnetic field by the condition h�0�=1, we
obtain the following result:

h�x� = �eika sin qx + sin q�a − x��/sin qa, − a/2 � x � a/2.

�26�

The Fourier harmonics are easily calculated from Eqs. �24�
and �26�

fk�n� =
�− 1�n

ia sin qa

�eika − e−iqa�

sin�a�q − k�/2�
q − k − 2�n/a

+ �eiqa

− eika�
sin�a�q + k�/2�
q + k + 2�n/a � . �27�

In the long wavelength limit ka�1 all the harmonics vanish
but the one with n=0

fk�n� 
 �− 1�n+1
a�q − k�
2�n

�2

, n � 0. �28�

Thus, the contribution of higher harmonics to the electro-
magnetic field of surface plasmon decays as a2�k−q�2. This
justifies the approximation of the effective medium theory in
calculation of the propagation length of surface plasmon Eq.
�7� propagating along a photonic crystal substrate.

IV. CONCLUSIONS

We have studied the propagation of long-range surface
plasmons in a dielectric-metal-dielectric structure with
highly anisotropic substrates. We have derived the formula
for propagation length valid in a wide range of frequencies,
including the telecommunication region, and have shown
that the proper orientation of optical axis of uniaxial dielec-

tric substrates with respect to the metal surface enhances the
propagation length as well as the penetration depth of surface
plasmons. The frequency �cr �at which L��� is independent
of the orientation of optical axis� shifts toward lower fre-
quencies for thinner metal films indicating that the parallel
orientation ��z��x� becomes increasingly favorable as thick-
ness d of the metal film is reduced. We demonstrated an
important general property of long-range surface plasmons
that the propagation length tends to zero close to resonance
frequency �s not because of increase in dissipation but due
to the compensation of electromagnetic energy fluxes in the
metal and in the dielectrics. This is a direct consequence of
dispersion resulting from the negative value of the dielectric
constant of metal. We have also shown that the propagation
length for symmetric configuration is one order of magnitude
greater than the propagation length for asymmetric configu-
ration. This enhancement in propagation length can cut the
limitation on the size of photonic chip or component of op-
tical circuit containing plasmonic structure. We proposed a
simple, analytically solvable Kronig-Penney model for plas-
monic crystal. The obtained dispersion equation has a band
structure. In the long-wavelength limit this equation is re-
duced to the equation obtained for surface plasmon propa-
gating along a homogeneous anisotropic substrate. This re-
sult justifies application of the homogenization procedure for
surface plasmon. We show that in the case of 1D periodic
substrate the contribution of higher harmonics to electromag-
netic fields vanishes in the long-wavelength limit. A specific
feature of the Kronig-Penney model for plasmonic crystal is
independence of the resonant frequency of surface plasmon
of dielectric properties of the substrate. This is due to zero
filling fraction of the dielectric component.
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