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The coupling to two particle-two hole configurations is at the basis of the calculations of the spreading width
of the collective excitations that in random phase approximation �RPA� are described as superpositions of one
particle-one hole elementary modes. Second RPA �SRPA� is just the extension of RPA including both kinds of
configurations. In SRPA use is made of the quasiboson approximation �QBA� as in RPA. It has been found that
this is at the origin of the fact that the coupling among them strongly lowers the RPA collective excitations,
both in metallic clusters and in nuclei. When the coupling of the two particle-two hole configurations among
themselves is also included, as it has to be done in order to be consistent, this effect is even enhanced. Thus the
reasonably good description of the collective vibrational states obtained at the RPA level �as expected on
physical grounds, for example, for the dipole modes� is completely spoiled in SRPA. In the present paper we
show quantitatively, for metallic clusters, that this disturbing behavior is eliminated when no use is made of
QBA and a better description of ground-state correlations is introduced.
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I. INTRODUCTION

The Hartree-Fock �HF� plus random phase approximation
�RPA� �Refs. 1 and 2� is a largely used microscopic approach
to study the properties of collective modes in many-body
systems. The HF method allows us to obtain the self-
consistent mean field in which the particles are assumed to
move independently, their energies and wave functions, and
thus the HF ground state. The solution of the RPA equations
gives the energies and the wave functions of the collective
excitations that are assumed to be superpositions of particle-
hole and hole-particle configurations built on top of a corre-
lated ground state whose explicit expression is unknown. It
is well known that, on one hand, this correlated ground state
is used in the formal derivation of the equations of the mo-
tion while, on the other hand, the HF state is used instead in
calculating the expectation values appearing in these equa-
tions. This inconsistency is also known as quasiboson ap-
proximation �QBA� and it is the main limit of RPA.2

In nuclei vibrational states, both low lying and high lying
�giant resonances, GR �Ref. 3�� are quite well described
within RPA. The same is true in metallic clusters that show
the dipole plasmon resonance4,5 which is the analog of the
nuclear dipole GR and is interpreted as due to the collective
vibration of the electrons against the positive ions. However,
some RPA limitations are well known. On one hand, RPA
predicts a perfectly harmonic spectrum with regularly spaced
multiphonon states. Anharmonicities are a well-established
phenomenon in nuclei, both experimentally and
theoretically.3,6–11 In metallic clusters no experimental evi-
dence has been found until now for the existence of states
corresponding to the double excitation of the dipole plasmon.
Theoretically such states have been predicted at energies de-
viating by about 10% from the double of the plasmon
energy.12,13

On the other hand, in several works6,10,14,15 it has been
underlined that the coupling of one particle-one hole con-
figurations with more complex states has to be taken into

account in order to describe some important effects, as, for
example, the spreading width of the excitations. In such a
direction, a natural extension of RPA is the so-called second
RPA �SRPA� �Refs. 16 and 17� where two particle-two hole
�2p-2h� excitations, in addition to the one particle-one hole
�1p-1h� ones, are introduced. The derivation of SRPA is also
based on QBA and it has been argued18–20 that in this case its
use is even more problematic than in RPA. This point has
been analyzed in Ref. 21 within a schematic model and more
recently in metallic clusters22 where a complete SRPA
scheme, including all kinds of coupling within the 1p-1h and
2p-2h configurations, is used. It has been found that within
SRPA one gets very strong modifications of the RPA excita-
tion spectrum. The coupling of 1p-1h configurations with the
2p-2h ones strongly pushes down the multipole strength dis-
tribution, also for the collective states whose description
within RPA is rather good, as, for example, the dipole plas-
mon. A similar feature has been found also in nuclei.23

Some possible origins of these results have been dis-
cussed in the literature.17–22 In particular, two aspects related
to the need for a better treatment of short-range correlations
have been discussed in a recent work.22 On one hand the
above cited use of QBA in calculating the expectation values
appearing in the equations of motion of SRPA. Furthermore,
the 2p-2h configurations included in SRPA introduce self-
energy corrections24–27 and their contributions are quite large
when the uncorrelated HF reference state is used in calculat-
ing the SRPA matrices. Indeed, in Ref. 22 it has been shown
in a qualitative, approximated way that they are appreciably
reduced when a better description of ground-state correla-
tions is used. In the present paper we confirm quantitatively
this result by means of more complete calculations and show
that this unpleasant behavior, which would spoil the quality
of the RPA description of the collective plasmon excitation,
is eliminated.

Our main concern here is on the search for a suitable
approach to cure the above-mentioned limitations and to
show how it works when applied to the study of a realistic
many-body system. Therefore we have chosen the case of
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metallic clusters within the uniform jellium approximation,
thus neglecting, for the time being, the improvements over it
that can be found in the literature.28 We believe that the
relatively simple scheme we have considered is representa-
tive of a realistic many-body system and is certainly a good
laboratory for our analysis. On the other hand, our main pur-
pose is not to make a realistic study of a metallic cluster but
rather to compare different levels of approximations within
the same model. We have also decided to make no use of an
effective interaction, for example, derived from density en-
ergy functional, in order to avoid any possible source of
double countings due to the use of the correlation terms in
the energy functional. The interaction of the electrons among
themselves and with the jellium is just the bare Coulomb
one.29

The paper is organized as follows. In Sec. II we discuss
the main motivations of the present work and the link and the
differences with previous works are analyzed. In Sec. III the
SRPA framework is reviewed and the extended SRPA �ES-
RPA� approach is presented and discussed. In Sec. IV we
apply it to the study of the excitation spectrum of Na metallic
clusters and a comparison with RPA and SRPA results is
carried out. Finally, in Sec. V, we draw the main conclusions.

II. MOTIVATIONS AND LINK WITH
PREVIOUS WORKS

SRPA studies in realistic systems are indeed really few.
The number of 2p-2h configurations is usually very large
making the calculations extremely heavy, and sometimes
prohibitive, from a computational point of view. Current ver-
sions of SRPA are based on noninteracting 2p-2h configura-
tions and only the interactions between 2p-2h and 1p-1h are
explicitly taken into account. Such approximation allows us
to reduce the SRPA to an energy-dependent RPA problem,
overcoming thus the problem of the large dimensions of the
2p-2h configurations. The energy-dependent term is con-
nected to the self-energy of the 1p-1h excitations and to their
coupling with the 2p-2h configurations. It has been shown
that the real part of this self-energy gives a shift of the RPA
resonance energies while the imaginary part takes into ac-
count spreading width effects.24–26 Several SRPA calcula-
tions have been done by neglecting the real part of the
particle-hole self-energy �see, for example, Refs. 17 and 27�
and considering only the spreading width. The justification
of this choice is based on the fact that, when effective inter-
actions are used, self-energy contributions are already taken
into account in the single-particle energies. Thus, in order to
avoid double counting, the real part of the particle-hole self-
energy is omitted. However, since the real and imaginary
parts of the self-energy obey a dispersion relation,25 a con-
sistent treatment of both contributions should be necessary.
In Ref. 22, the real part of the self-energy acquired by the
RPA collective dipole plasmon through its coupling to 2p-2h
configurations has been calculated in two different cases:
when the HF state is used as reference state and when
ground-state correlations are included perturbatively. In the
latter case an appreciable reduction in the energy shift has
been found. This result suggests that the use of a correlated

ground state in SRPA, overcoming thus the QBA, could be
important. Indeed some SRPA calculations beyond QBA
have been done17,19,20 but including ground-state correlations
only in the 1p-1h channel, i.e., in the RPA matrices. On the
contrary, we believe that the effect of ground-state correla-
tions is particularly important in calculating the coupling of
1p-1h and 2p-2h configurations. For this reason we carry out
SRPA calculations including all kinds of coupling within the
1p-1h and 2p-2h configurations and where ground-state cor-
relations are taken into account in all the SRPA block matri-
ces. The effect of these correlations are studied in the case of
metallic clusters, within the uniform jellium
approximation4,30 with bare Coulomb interaction both for the
electrons with the jellium and for the electrons among
themselves.29

III. FORMALISM

The excited stated ��� of a system can be described by
means of a set of operators Q�

† whose action on the ground
state �0� is defined by

Q�
†�0� = ��� , �1�

Q��0� = 0. �2�

It can be shown2 that the following equations hold for an
arbitrary operator �Q:

�0�†�Q,�H,Q�
†�‡�0� = ���0���Q,Q�

†��0� , �3�

where �� is the excitation energy of the ��� state.
Let �HF� be the HF ground state of the system where the

hole states below the Fermi energy are filled and the particle
states above are empty. In the following, we use the indices
m ,n , p ,q and i , j ,k , l to indicate particle and hole states, re-
spectively.

In the SRPA the Q�
† operators have the following expres-

sion:

Q�
† = �

pi

�Xpi
� ap

†ai − Ypi
� ai

†ap�

+ �
p�m,i�j

�Xpimj
� ap

†aiam
† aj − Ypimj

� ai
†apaj

†am� �4�

containing thus, besides the usual 1p-1h excitations consid-
ered in RPA, also the 2p-2h ones.

The X�’s and Y�’s are solutions of the equations

	 A B
− B� − A�
	X�

Y� 
 = ��	X�

Y� 
 , �5�

where

A = 	 Ami,pk Ami,pqkl

Apqkl,mi Amnij,pqkl

, B = 	 Bmi,pk Bmi,pqkl

Bpqkl,mi Bmnij,pqkl



and

X� = 	 Xmi
�

Xminj
� 
, Y� = 	 Ymi

�

Yminj
� 
 .

D. GAMBACURTA AND F. CATARA PHYSICAL REVIEW B 81, 085418 �2010�

085418-2



The explicit form of the matrix blocks is given by

Api,qj = �0�†ai
†ap,�H,aq

†aj�‡�0� , �6�

Ami,pqkl = �0�†ai
†am,�H,ap

†aq
†alak�‡�0� , �7�

Amnij,pqkl = �0�†ai
†aj

†anam,�H,ap
†aq

†alak�‡�0� , �8�

The B matrix elements are easily obtained from the corre-
sponding A elements, by substituting the first operator in
double commutator with its adjoint and by changing the sign.
For example, we have that

Bpi,qj = − �0�†ap
†ai,�H,aq

†aj�‡�0� . �9�

The matrix �Eq. �7�� describes the coupling of 1p-1h states to
2p-2h states while matrix �Eq. �8�� takes into account the
coupling between 2p-2h states themselves. The dimension of
these matrices, especially of the latter, can be very large.
Standard SRPA equations are obtained by resorting to QBA,
namely, by replacing in the evaluation of the previous matrix
elements the state �0� with the HF ground state �HF�.

In the present work we present an ESRPA approach where
no use of the QBA is made and the correlated state is used in
place of the HF one. First of all, the double commutators
appearing in Eqs. �6�–�8� and in the corresponding B matri-
ces are calculated without any kind of approximation. After
that, the two-body or higher terms coming out from the
double commutators are contracted with respect to the refer-
ence state �0�. In such a way, the A and B matrices are ex-
pressed in terms of the one-body density matrix �OBDM�

���,�� � �0�a�
†a��0� , �10�

which we assume to be diagonal

���,�� = ���n�, �11�

where n� is the occupation number of the � single-particle
state. The explicit expression of the matrices used in the
calculations is given in Appendix. For example, we have that
the matrix �Eq. �6�� acquires the following expression:

Api,qj = �ij�pq��p − �i��ni − np� + V̄pjiq�ni − np��nj − nq� ,

�12�

where the � quantities are the HF single-particle energies and

V̄ indicates the antisymmetrized residual interaction. Similar
expressions hold for the other matrix elements.

Standard SRPA equations can be derived by using the
above described procedure and the HF state as reference
state. This amounts to use as occupation numbers the HF
ones, i.e., 0 and 1 for particle and hole states, respectively.
For example, we note that, in this limit, the expression in Eq.
�12� becomes the one of the standard RPA A matrix.

The final step of our procedure deals with the evaluation
of the occupation numbers appearing in the ESRPA matrices.
In this work we present the results by using two different
choices.

In the first case we use as correlated ground state

�0� = N	1 +
1

2 �
minj

Cminjam
† aian

†aj
�HF� , �13�

where N is a normalization factor and the C coefficients are
evaluated in first-order Rayleigh-Schrödinger perturbation
theory, i.e.,

Cminj =
�HF�V̂am

† aian
†aj�HF�

Eminj
, �14�

Eminj being the unperturbed energies of the 2p-2h configura-
tion.

Although this choice allows us to go over the QBA, this
procedure is not really self-consistent since the state �Eq.
�13�� does not satisfy the vacuum condition �Eq. �2��. In
order to go one step further in this direction we proceed as
follows. In Ref. 31, an extension of RPA �ERPA� based on a
more consistent treatment of correlations was presented and
applied to metallic clusters. By means of the method of lin-
earization of equations of motion, a set of RPA-like equa-
tions was derived, depending only on the OBDM that is ex-
pressed in terms of the ERPA X and Y amplitudes by using
the number operator method.32 This set of nonlinear equa-
tions is solved self-consistently via an iterative procedure
which allows to calculate the energies and the wave func-
tions of the excited states together with the occupation num-
bers entering in the equations of motion. The extension of
SRPA we propose is based on a similar procedure but using
the ERPA ground state as reference state. Therefore, we first
solve the ERPA procedure and then use the so obtained oc-
cupation numbers in the ESRPA equations. Of course, the
best would be the use of the vacuum of the SRPA operators
�Eq. �4�� as reference state. However, SRPA calculations are
much more time expensive than the RPA ones and thus an
iterative procedure involving SRPA matrices is not easily
affordable.

IV. RESULTS

Let us now show the results for two sodium clusters,
namely, the Na21

+ and Na20, within the RPA, SRPA, and the
ESRPA. The Hamiltonian of the system is

H = �
i

hi + �
i�j

vij �15�

with

hi = −
	2

2m
�i

2 + V�ri�; vij =
e2

4


1

�r�i − r� j�
�16�

and

V�r� =
Ne2

4

��1/2rc��r2/rc

2 − 3� for r � rc

− 1/r for r � rc,
 �17�

where rc is the radius of the jellium sphere, i.e., rc=rsN
1/3, rs

being the Wigner-Seitz radius and N the number of ions.
The single-particle basis in which all the subsequent cal-

culations are carried out is fixed by solving the HF equations.
The single-particle wave functions have been represented as
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linear superposition of harmonic-oscillator ones, with princi-
pal quantum number ranging from n=0 to 10 for each orbital
angular momentum l. The harmonic-oscillator parameter has
been fixed in order to minimize the HF ground-state energy.
The single-particle space in which we carry out our calcula-
tions has been truncated so that the Thouless theorem on the
energy weighted sum rule2 �EWSR� is satisfied in the RPA
calculations better than 1% for all the multipolarities consid-
ered. We will focus our attention only on natural-parity states
with multipolarity L=0–3 and spin S=0. In SRPA and ES-
RPA calculations we have included all the 2p-2h configura-
tions with unperturbed energy lower than Ecut=18 eV. An
accurate study of the stability of the results, in particular, of
the strength distributions, by increasing Ecut has been done
�see also Ref. 22�.

In Fig. 1 we plot, for the Na21
+ metallic cluster, the

strength distributions for the multipole operator

F���r� = �rY0 for  � 0

r2Y0 for  = 0.
 �18�

In order to make clearer the comparison, the discrete lines
of RPA, SRPA, and ESRPA spectra are folded with a Lorent-
zian function. In all cases an artificial width �=0.1 eV has
been used. In the upper and lower panels of the figure, we
show, respectively, the L=0, 1 and L=2, 3 multipole strength
distributions with spin S=0. Dashed �black� lines refer to
RPA calculations while the dotted �red� ones refer to SRPA
results. The dot-dashed �green� lines and the solid �blue�
lines show the ESRPA results where g.s. correlations are cal-
culated perturbatively �labeled by “ESRPA-�1�”� or within

the above discussed ERPA procedure �labeled by “ESRPA-
�2�”�, respectively.

We see that going from RPA to SRPA the strength distri-
butions are strongly shifted to lower energies and, at the
same time, the height of the main peaks is reduced. In par-
ticular, we see that, in the dipole case, the plasmon energy is
lowered from the RPA value of 2.90 eV to the full SRPA
result of 1.00 eV very far from the experimental peak at
about 2.65 eV.33 Moreover, very striking is the fact that the
fraction of EWSR exhausted by this state goes from 79% to
10% while the total one �0.54733�102 Å2 eV� is very close
to the RPA value �0.54167�102 Å2 eV�, thus indicating a
very strong fragmentation of the strength in SRPA. As far as
the shift is concerned, we recall that no effective interaction
is used in our calculations. Therefore, possible double count-
ings induced by considering all couplings among all elemen-
tary configurations are not present.

Let us now examine the effect of the ground-state corre-
lations in the ESRPA. When they are calculated perturba-
tively �dot-dashed green lines in the figure�, we observe that
the strength distributions are pushed toward higher energy,
going close to the RPA results. However, in the dipole case,
the strength distribution is still quite different from the RPA
one and from the experimental peak whose position is
roughly indicated by the arrow in the figure. Moreover, the
height of the peak is practically unchanged from the SRPA
case. When instead the ground-state correlations are taken
into account by means of the ERPA procedure �solid blue
lines�, we see that the position of the peak is roughly the
same as in RPA which is very close to the experimental
value. The height of the peak is greater than the one obtained
in SRPA and in the perturbatively ESRPA but still smaller
than the RPA one. This is however related to the fragmenta-
tion of the strength due to the coupling of the 1p-1h configu-
rations with the 2p-2h ones.

As shown in Fig. 2, qualitatively similar results have been
found for Na20. Also in this case we have a strong shift down
going from the RPA to the SRPA, especially in the dipole
case, where the two RPA peaks at about 2.5 and 3.0 eV are
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FIG. 1. �Color online� Natural parity L=0, 1 �upper panel� and
L=2, 3 �lower panel� spin=0 multipole strength distributions for
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strongly pushed down in SRPA to 0.5 and 1.2 eV, respec-
tively. In the dipole case the improvement within the ESRPA
when ground-state correlations are calculated perturbatively
is really poor while it is much better when the ERPA proce-
dure is used. In particular, the two peaks are at 2.4 and 2.8
eV, very close to the RPA ones and to the experimental val-
ues �the arrows in the figure�.

As discussed in Sec. II some SRPA calculations beyond
QBA have been done17,19,20 but including ground-state cor-
relations only in the 1p-1h channel, i.e., in the RPA matrices.
In Fig. 3 we compare, in the dipole case, this approximate
ESRPA scheme, whose results are indicated in the figure
with the label “ESRPA-�b�,” with the complete calculation,
i.e., when ground-state correlations are taken into account in
the evaluation of all the SRPA matrices �“ESRPA-�a�”�. In
both cases the occupation numbers obtained by means of the
ERPA procedure are used. Both for the Na20 and Na21

+,
shown in the upper and lower panels of the figure, respec-
tively, we see that the “ESRPA-�b�” results �green dot-dashed
lines� are still very far from the RPA ones and are not very
different from the ones obtained in standard SRPA �red dot-
ted lines�. These results clearly show that the effect of
ground-state correlations is particularly important in calcu-
lating the coupling of 1p-1h and 2p-2h configurations and, at

least in the metallic clusters, the approximate ESRPA is not
adequate.

The differences between the two ESRPA calculations are
related to the different description of the correlated ground
state and, in particular, to the occupation numbers entering in
the equations of motion. In Fig. 4, we show for the Na21

+

metallic cluster, the occupation numbers obtained when
ground-state correlations are calculated perturbatively �Eq.
�13�� or within the ERPA procedure, in dashed black lines
and solid red lines, respectively. We see that, the differences
from the HF values, namely, 0 �1� for particle �hole� states,
are larger in the ERPA case than in the perturbative one. The
same holds also for the Na20 metallic cluster, see Fig. 5. As
discussed in Secs. I and II the strong differences between the
RPA and SRPA results can be partially traced back to the use
of the QBA and thus to the use of the HF state as reference
state, which seems to be a more severe approximation in
SRPA. In the present case, i.e., metallic clusters, we can thus
suppose that the use of the state �Eq. �13�� is not adequate to
describe ground-state correlations while the ERPA procedure
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gives a better description �see also the end of Sec. IV of Ref.
31 for a more detailed discussion�. Moreover, as mentioned
before, the latter is of course a more consistent procedure in
the fulfillment of the vacuum condition �Eq. �2�� used in the
formal derivation of the equations of motion.

In order to have more informations about the limits and
the merits of our extended SRPA approach, we have calcu-
lated the dipole strength of the Na40, whose experimental
distribution5 exhibits two broad peaks at about 2.4 and 2.65
eV and the first one is higher than the second one. RPA
predicts the first peak at an energy of about 2.45 eV, very
close to the experimental value, and the second one much
higher, at about 2.97 eV. Furthermore, the height of the sec-
ond peak is about twice that of the first one. It is thus inter-
esting to see whether in this case, in particular, as far as the
issue of the relative intensities of the excitation peaks is con-
cerned, the ESRPA approach gives a better description of the
experimental results with respect to standard RPA. In Fig. 6,
we plot the dipole strength distributions obtained in RPA,
SRPA, and in the ESRPA approach.

We see that, going from RPA to SRPA, �black� dashed and
�red� dotted lines, respectively, the height of the first peak is
slightly increased while the second one is strongly reduced.
However, as in the previous cases, the strength distribution is
strongly shifted to lower energies and the quite good position
of the energy peaks obtained in RPA is completely spoiled.
When ground-state correlations are included perturbatively,
dot-dashed �green� lines in the figure, the strength distribu-
tion is pushed toward higher energy but the change in the
relative intensities is not in the right direction. When the
ground-state correlations are taken into account by means of
the ERPA procedure solid �blue� lines, we observe that: �i�
the strength distribution is shifted toward higher energy with
respect to the SRPA results and gets closer to the RPA one;
�ii� the lower peak, that in RPA is slightly higher than the
experimental value, is shifted toward lower energy, thus in
the right direction; �iii� the second peak, that in RPA lies at
2.97 eV, is found now at 2.57 eV in a much better agreement

with the experimental peak �2.65 eV�; �iv� very stricking is
also the fact that the relative intensities of the two peaks is
now inverted with respect to the RPA description and it is
very close to the experimental distribution.5

We can thus say that, the inclusion of the 2p-2h configu-
rations in SRPA produces a fragmentation of the dipole
strength distribution giving a better description of the rela-
tive intensities of the two experimental peaks. At the same
time, the inclusion of the ground-state correlations is very
important in order to have a good position of the two peaks.
It is also confirmed that the procedure based on ERPA pro-
duces better results with respect to the perturbative one.

V. CONCLUSIONS

In this work we present an extended SRPA approach in
which no use is made of QBA and ground-state correlations
are taken into account. It is general and can be applied to the
study of collective excitations of any realistic many-body
system. In order to test how well the proposed approach
works, we have applied it to the study of collective excita-
tions in metallic clusters within the uniform jellium model.
Different levels of approximation are compared. In particu-
lar, ground-state correlations are taken into account either in
a perturbative way or by means of a more consistent proce-
dure that allows us to obtain better results, especially in the
dipole case. In SRPA and extended SRPA calculations all
kinds of coupling within the 1p-1h and 2p-2h configurations
are considered and ground-state correlations are taken into
account in all the SRPA block matrices, differently from
other works where they were included only in the RPA ma-
trices. It has also been shown that the inclusion of ground-
state correlations only at level of the 1p-1h channel, i.e.,
only in the RPA matrices, is not enough in order to describe
dipole plasmon in an appropriate way.
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APPENDIX: EXTENDED SRPA MATRICES

In this appendix we give the explicit expression of the
matrices appearing in the extended SRPA approach. We ex-
press these matrices in terms of the symmetrized double
commutators defined as

�A,B,C� =
1

2
�†A,�B,C�‡ + †�A,B�,C‡� �A1�

in order to preserve hermiticity.34 As discussed in Sec. III all
the double commutators are calculated without any kind of
approximation and then the coming out two-body or higher
terms are contracted with respect to the reference state �0�. In
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FIG. 6. �Color online� Dipole strength distribution for the Na40.
Dashed �black� lines refer to RPA calculations while the dotted �red�
ones refer to SRPA results. The dot-dashed �green� lines and the
solid �blue� lines show the ESRPA results where g.s. correlations
are calculated perturbatively or within the ERPA procedure, respec-
tively �see the text for more detail�. The arrows roughly indicate the
positions of the experimental dipole plasmon peaks �Ref. 5�.
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such a way, the A and B matrices are expressed in terms of
the one body density matrix

���,�� � �0�a�
†a��0� , �A2�

which is assumed to be diagonal

���,�� = ���n�, �A3�

where n� is the occupation number of the � single-particle
state.

In the 1p-1h channel we obtain

Aph,p�h� = �0��ah
†ap,H,ap�

† ah���0�

= �hh��pp���p − �h��nh − np�

+ V̄ph�hp��nh − np��nh� − np�� ,

Bph,p�h� = − �0��ap
†ah,H,ap�

† ah���0�

= V̄pp�hh��nh − np��nh� − np�� , �A4�

where the �’s are the HF single-particle energies and V̂ is the
residual interaction. The coupling among the 1p-1h and
2p-2h configurations is given by the matrix

Aph,p1p2h1h2
= �0��ah

†ap,H,ap1

† ap2

† ah2
ah1

��0�

= U�h1,h2�V̄h1pp1p2
�hh2

��3p1h�

− U�p1,p2�V̄h1h1p1h�pp2
��3h1p�, �A5�

where U�ij� is the antisymmetrizer for the indices i and j,
and the two factors � are

��3p1h� =
1

2
�nh1hn̄p1p2

+ np1p2
n̄h1h + �nh − np��nh1

n̄p1p2
+ np1p2

�� ,

��3h1p� =
1

2
�nh1h2

n̄p1p + np1pn̄h1h2
+ �nh − np��np1

n̄h1h2
+ nh1h2

��

�A6�

with the definition

n�� = n�n�, n̄�� = 1 − n� − n�. �A7�

In the 2p-2h channel we have

Ap1h1p2h2,p1�h1�p2�h2�
= �0��ah1

† ah2

† ap1
ap2

,H,ap2�
† ap1�

† ah2�
ah1�

��0�

= ��p1
+ �p2

− �h1
− �h2

�U�p1,p2�U�h1,h2�

��h1h1�
�p1p1�

�h2h2�
�p2p2�

��0� + U�h1,h2�

�V̄p1p2p1�p2�
�h1h1�

�h2h2�
��4p� + U�p1,p2�

�V̄h1h2h1�h2�
�p1p1�

�p2p2�
��4h�

+ U�p1,p2�U�h1,h2�U�p1�,p2��U�h1�,h2��

�V̄p1h1�h1p1�
�h2h2�

�p2p2�
��2p2h�, �A8�

where

��0� = nh1h2
n̄p1p2 − np1p2

n̄h1h2,

��4p� =
1

2
��0��n̄p1p2 + n̄p1�p�2� ,

��4h� = −
1

2
��0��n̄h1h2 + n̄h1�h�2� ,

��2p2h� =
1

2
��0��nh1

+ nh1�
− np1

− np1�
� . �A9�

Also the norm matrices acquire a new expression,

Gph,p�h� = �0��ah
†ap,ap�

† ah���0� = �hh��pp��nh − np�

and

Gp1h1p2h2,p1�h1�p2�h2�
= �0��ah1

† ah2

† ap1
ap2

,ap2�
† ap1�

† ah2�
ah1�

��0�

= U�p1,p2�U�h1,h2��h1h1�
�p1p1�

�h2h2�
�p22p2�

��nh1h2
n̄p1p2 − np1p2

n̄h1h2� .

The B matrices

Bph,p1p2h1h2
= �0��ap

†ah,H,ap1

† ap2

† ah2
ah1

��0� ,

Bp1h1p2h2,p1�h1�p2�h2�
= �0��ap1

† ap2

† ah1
ah2

,H,ap2�
† ap1�

† ah2�
ah1�

��0�

�A10�

are found to be zero also in the extended SRPA. This is
mainly related to the fact that we approximate two-body and
higher density matrices in terms of the one-body density ma-
trix, which is then assumed diagonal. For example, we have
for the two-body density,

�0�a�
†a�

†a��a���0� = ���,������,��� − ���,������,���

= n�n�����,������,��� − ���,������,���� .

Finally we stress that the standard SRPA matrices are eas-
ily obtained by using the HF occupation numbers, i.e., 0 and
1 for particle and hole states, respectively, in the above
expressions.
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