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A self-consistent one-dimensional solution of the Poisson and Schrödinger equations is developed to de-
scribe the electronic properties of the hole gas confined below the hydrogen-terminated surface of surface
conducting diamond. The energy eigenstates of the confinement potential and the position of the Fermi level
are examined as a function of carrier sheet density and temperature. A comparison is made with experimental
studies of the hole sheet density for both atmosphere-induced and synthetic surface acceptors. For hole sheet
densities below 9�1012 cm−2 the Fermi level is within the band gap while for hole sheet densities greater than
9�1012 cm−2 the Fermi level resides below the valence-band maximum in the valence band. The dimension-
ality of the heavy-hole, light-hole, and split-off bands was examined for varying Fermi energy and temperature.
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I. INTRODUCTION

Surface transfer doping of the hydrogen-terminated dia-
mond surface is known to give rise to the formation of an
underlying p-type accumulation layer.1 The electronic prop-
erties of the surface hole gas have developed significant in-
terest motivated by the potential for the development of
quantum devices in carbon.2,3 Applications in nanoelectron-
ics will be dictated by the properties of the hole gas, specifi-
cally the achievable areal carrier density and their mobility,
and the dimensionality of the hole density of states �DOS�.
Atmosphere-induced surface conductivity is generally diffi-
cult to control; transport measurements indicate low carrier
concentrations, not exceeding 5�1013 cm−2, and evidence
of disorder.4 However, key device functions have been dem-
onstrated including gated transport2 and gated single hole
transport.3 The use of synthetic acceptors such as C60 and
C60F48 to induce subsurface hole accumulation has been
demonstrated,5,6 which may provide a more appropriate path-
way toward the development of devices on the nanoscale. To
this aim, the development of a complete understanding of the
surface electronic properties of hydrogen-terminated dia-
mond is required.

Of particular interest is the possibility that the surface
accumulation layer may be a two-dimensional system.7,8

This would imply the presence of a discrete set of hole en-
ergy subbands and a two-dimensional density of states �2D-
DOS�. Furthermore, patterning of a two-dimensional hole
layer in diamond may be a route to fabricating one and zero-
dimensional devices. Possible evidence for quantization of
the hole energy states in the direction perpendicular to the
surface has been provided by electron field emission
measurements,7 which shows steps in the electron emission
current for hydrogen-terminated diamond surfaces, and by
current-voltage tunneling spectroscopy performed using a
scanning tunneling microscopy in solution.9 The hole density
is dictated by the position of the Fermi level with respect to
the energies of hole eigenstates within the accumulation
layer. Experimental studies, based upon different techniques,
have given contrasting views that the Fermi energy for a
surface-doped hydrogen-terminated surface lies within the

band gap10 and aligned with the valence-band maximum
�VBM�6 and within the valence band.8 This conflicting data
calls for a re-examination of the electronic properties of the
hole gas.

Figure 1 illustrates schematically the electronic structure
of the hydrogen-terminated diamond surface with a hole ac-
cumulation layer due to surface transfer doping by a mol-
ecule such as C60 or C60F48 �Ref. 11� and the ensuing upward
band bending. This paper explores in detail a self-consistent
solution of the Schrödinger and Poisson equations for the
valence-band states in the subsurface accumulation using the
finite-difference method. A semiclassical potential profile
generated for the nondegenerate hole gas11,12 is employed as
a starting point for this one-dimensional �1D� solver. The 1D
valence-band potential profile is derived self-consistently as
a function of the hole density. The quantized hole energy
states and the corresponding hole occupation are examined
for a range of Fermi energy positions. All energies are given
with respect to the bulk valence-band edge, EV, extrapolated
to the diamond surface at z=0 by adding the potential u�z� as
explained in Fig. 2 with hole energies increasing downward.
We shall initially refer to the extrapolated EV as the VBM but
after quantization the true valence-band maximum is deter-
mined by the lowest hole subband minimum. The areal hole
sheet density is calculated as a function of Fermi energy and

FIG. 1. Schematic energy diagram of a diamond surface with a
molecular adsorbate: prior to �left� and after �right� surface charge
transfer.
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temperature. Solutions are first considered based on a full
subband treatment including the heavy-hole �hh�, light-hole
�lh�, and split-off �so� bands separately. This is compared to
an effective treatment of one fictitious, triply degenerate va-
lence band with appropriate quantization and 2D-DOS
masses as will be explained below. The temperature depen-
dence of the state occupation is examined in order to inves-
tigate the dimensionality of the system. The predictions of
the model will be compared with experimental data for at-
mospheric and synthetic surface acceptors.

II. FORMULATION OF THE 1D SCHRÖDINGER-POISSON
SOLVER

A. Initial potential profile below the C:H surface

The Schrödinger-Poisson solver generates an electrostatic
potential profile u�z� and a hole concentration profile p�z� as
a function of depth, z into the diamond below the C:H sur-
face. As a starting potential a classical treatment of the prob-
lem was considered as given in Refs. 11 and 12. By consid-
ering diamond as an intrinsic, unipolar semiconductor the
space charge density is attributed exclusively to holes within
the valence band created by electron transfer into the surface
acceptors residing outside the semiconductor. Treating the
problem one dimensionally11 gives rise to a potential profile
of the form

u�z� = − 2kBT ln��NV/p0 − z/�� , �2.1�

where �=�2kBT��0 / �e2NV� is a semiconductor-specific
length scale and NV�T�=2�2�mV

�kBT /h2�3/2 represents the ef-
fective density of states in the valence band. p0 is the hole
density at the diamond surface �z=0� taken to be equal to Nv.
For diamond at room temperature �=8.5 Å, NV=2.25
�1019 cm−3. mv

� is the three-dimensional �3D� density-of-
states effective mass of the valence band, determined in Sec.
II C to be mv

� =0.946m0.
The potential profile �Eq. �2.1�� forms the starting point

for the 1D Schrödinger-Poisson solver considered here, with
the addition of a barrier of height 5.0 eV at the C�001�:H
surface �z=0�, preventing holes from tunneling into the sur-
face acceptor states. The potential extends into the vacuum to
z=−0.05 nm at which point it becomes effectively infinite.
When solved self-consistently for a sample of finite size the

computed electrostatic potential forms an unrealistic barrier
in the bulk with an associated set of eigenfunctions repre-
senting confinement of charge carriers at the end point in the
simulation. This problem was overcome by using a symme-
try point defined within the bulk to create a symmetric po-
tential profile, as illustrated in Fig. 3�a�, such that identical
surfaces are formed at either end of the z axis. The use of this
symmetry potential has been tested in detail and is condi-
tional on the potential wells at either end of the simulation
being sufficiently separated to avoid tunneling of the wave
function across the bulk of the sample. This establishes an
appropriate minimum depth scale of 12 nm representing the
whole system including “real” and “symmetric” regions
within the simulation, while maintaining a reasonable com-
putation time with a mesh spacing of 0.1 nm. At the symme-
try point in Fig. 3�a� there is a visible kink in the potential,
which would be expected to give rise to localized charge
accumulation. However, the hole sheet density at the sym-
metry point is orders of magnitude smaller than the level of
hole accumulation at the surface as illustrated by Fig. 3�b�
and the resulting error in the calculated total hole sheet den-
sity was found to be negligible.

FIG. 2. Schematic representation of the energy scale used in
describing the eigenstates and density of states in the valence band.

FIG. 3. �a� Plot of the input potential profile �broken line� and
the self-consistently derived output potential profile �solid line�.
Both contain a symmetry point within the bulk, at a depth of 6 nm.
�b� Calculated charge carrier density, illustrating the negligible im-
pact of the discontinuity at the symmetry point on the overall charge
sheet density. EF=0 eV, corresponding to a Fermi level residing
within the band gap, 88 meV above the VBM after quantization;
T=295 K.
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B. Schrödinger equation

For the calculation of the electronic structure in the hole
accumulation regime the formalism originally developed for
electrons in the inversion layer of silicon metal-oxide-
semiconductor �MOS� devices13 is adopted. An envelope
function ��x ,y ,z� is calculated in the effective-mass approxi-
mation under the assumption that the potential u�z� is a
slowly varying function of z, the coordinate perpendicular to
the surface: adu�z� /dz�u�z�, where a is the lattice constant
of diamond. The Schrödinger equation for the envelope func-
tion reads as

�−
�2

2 �
i,j

3
�

�xi
wij

�

�xj
− �ux3��� = E� 	x1,x2,x3
 = 	x,y,z
 .

�2.2�

The wij are the elements of the inverse mass tensor of the
band from which the quantized states are derived. A Bloch-
like ansatz for the envelope function

��x,y,z� = v�z�e−i	zei�kxx+kyy� �2.3�

takes into account the undisturbed periodicity parallel to the
surface in the x and y directions. With the proper choice of 	
the first derivatives of � are eliminated and the Schrödinger
equation reduces to a second order differential equation in
v�z�:

�2

2
w33

�2v�z�
�z2 + �E0 − u�z��v�z� = 0. �2.4�

The energy eigenvalues of the original Schrödinger Eq. �2.2�
are

El�kx,ky� = El
0 +

1

2
�2��w11 −

w13
2

w33

kx

2 + 2�w21 −
w13w23

w33

kxky

+ �w22 −
w33

2

w33

ky

2� , �2.5�

where the index l labels the different solutions.
Hence, each solution of the Schrödinger equation corre-

sponds to a two-dimensional subband with parabolic disper-
sion parallel to the surface and a starting energy El

0 given by
the solution of Eq. �2.4�. The charge distribution for each
state in the subband is given by ��l�2=vl�z�2; i.e., it is con-
stant parallel to the surface and depends on z according to
vl�z�2. The formalism just sketched holds for electrons as
well as holes provided the sign of effective masses and en-
ergy is reversed for the latter as illustrated in Fig. 2.

The charge carrier density is related to the wave function,
�l�z�, according to

p�z� = �
l=1

n

�l
��z��l�z�pl, �2.6�

where n is the number of bound states and pl is the occupa-
tion of each subband, given in two dimensions by the Fermi
integral over the constant 2D density of states

pl =
m2D

��2�
El


 1

1 + e�E−EF�/kBTdE = D2D ln�1 + exp�EF − El
0

kBT

� ,

�2.7�

where m2D is the 2D-DOS effective mass, discussed and de-
rived in Sec. II C, EF is the Fermi level, El

0 is the minimum
energy of the lth subband, and D2D=m2DkBT /��2 is the ef-
fective density of states per subband including spin degen-
eracy.

C. Calculation of effective masses

The VBM of diamond is situated like that of all group IV
semiconductors at the center of the Brillouin zone at the �
point. In the nonrelativistic limit it comprises three bands
that are degenerate at � and disperse downward with wave
vector k away from �. Spin-orbit interaction partially lifts
the degeneracy and leads to the well-known canonical three-
band structure of group IV semiconductors with the still de-
generate �at �� hh and lh bands at the top and the so band
separated from the other two by �so. The spin-orbit splitting
�so in diamond is very small compared to Si and Ge and
amounts to a mere 5–7 meV.14,15 Nevertheless, its inclusion
in any theoretical treatment is necessary because it alters the
symmetry of the band states with consequences for the dis-
persion relations.16 The dispersion of the two topmost bands
varies with crystallographic directions in such a way that the
inverse effective-mass tensor wij can no longer be diagonal-
ized; in other words, the constant energy surfaces are highly
warped. In k ·p perturbation theory the dispersion relations
of the three topmost valence bands are given by17

Ehh,lh�k�� =
�2

2m0
	Ak2 
 �B2k4 + C2�kx

2ky
2 + ky

2kz
2 + kz

2kx
2��1/2
 ,

�2.8�

ESO = �SO +
�2

2m0
Ak2, �2.9�

with the plus and minus sign for the light and heavy-hole
band, respectively. The sign convention for the energy is that
appropriate for holes. In this approximation the dispersion
relations of the three valence bands are expressed through
the three constants A, B, and C which in turn are related to
the Luttinger parameters according to

A = �1, B = 2�2, C = �12��3
2 − �2

2� . �2.10�

From Eq. �2.8�, the effective masses are readily obtained for
different crystallographic directions and Dresselhaus, Kip,
and Kittel used them successfully to interpret cyclotron reso-
nance data for holes in Si and Ge and to derive the respective
set of constants.17

Clearly, the same detailed information is required for the
present case as well. With anisotropic effective masses, there
will be one kind of mass that enters the Schrödinger equation
for the calculation of the discrete quantum states which con-
stitute the bottom of each subband; for the geometry consid-
ered here it will be the effective mass along the direction
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perpendicular to the surface. Another set determines the dis-
persion in the direction parallel to the surface and hence the
2D-DOS associated with a particular subband. This will in
general be an appropriate average over the effective masses
along different directions in the surface plane.

Unfortunately, the experimental situation concerning hole
effective masses in diamond is not as good as for Si and Ge.
Summaries of experimental effective hole masses for dia-
mond are given in the paper by Kono et al.18 and sets of
theoretically derived Luttinger parameters are reviewed in
Willatzen, Cardona, and Christensen.19 In either case, there is
a wide spread of values and both papers agree that experi-
mentally there is no consensus on either effective hole
masses nor Luttinger parameters for diamond as yet. Under
these circumstances it was deemed more appropriate to con-
sider the theoretical results as a basis for the work in this
paper. We therefore use the Luttinger parameters calculated
for diamond by Willatzen et al. in the framework of an ex-
tended 16�16 k ·p perturbation scheme using momentum
matrix elements obtained from a scalar-relativistic band
structure calculation in the local-density approximation
�LDA�. The necessary energy differences were not taken
from the calculation, however, but rather from experiment in
order to avoid the notorious failure of LDA in this respect.20

The parameters so obtained are

�1 = 2.539, �2 = − 0.0985, �3 = 0.6268

or

A = 2.539, B = − 0.197, C = 2.144.

Here the quantization of the hole gas in an accumulation
layer on the diamond �001� surface is calculated. Therefore,
the effective masses for the quantization are those in the
�001� direction perpendicular to the �001� surface for cubic
diamond.

The expressions for the dispersion relations along �001�
are

Ehh,lh�kz� =
�2

2m0
�A 
 B�kz

2, �2.11�

ESO�kz� = �SO +
�2

2m0
Akz

2, �2.12�

and the effective hole masses in units of the free-electron
mass m0 are

mhh
001 = �A − �B��−1 = 0.427,

mlh
001 = �A + �B��−1 = 0.366,

mso
001 = A−1 = 0.394.

In order to obtain values for the 2D-density-of-states effec-
tive masses, the definition of the 2D-DOS must be revisited
�in the following all densities-of-states are given without
spin degeneracy�:

D2D�E� =
�

�E
�� 1

F

Vk�E�
�k

�� . �2.13�

Here, F is the sample area, �k= �2��2 /F is the 2D unit vol-
ume in k space, and Vk�E� is the area enclosed by the contour
E=constant in the plane spanned by kx and ky, i.e., the plane
perpendicular to the quantization direction. In cylindrical co-
ordinates and for kz=0, constant energy contours for the
heavy- and light-hole bands are implicitly given by

E�k,�� =
�2k2

2m0
	A 
 �B2 + C2 cos2 � · sin2 ��1/2


�2.14�

and explicitly by

k = �E
2m0

�2 �1/2�A 
 �B2 + C21

4
sin2 2�
1/2�−1/2

.

�2.15�

With this the area in k space defined by the constant energy
contour is expressed as an integral over k and � to obtain

Vk�E� =
1

2
k2�

0

2� d�

f���

=
1

2
k2I���; with f��� = A 
 �B2 + C21

4
sin2 2�
1/2

�2.16�

and

D2D�E� =
�

�E
�Vk�E�

�2��2� =
1

�2��2

m0

�2 I��� . �2.17�

Comparison with the expression for the 2D-DOS in the case
of isotropic masses, finally yields for the density-of-states
masses

mj
2D-DOS =

1

2�
Ij���m0, j = hh, lh, so. �2.18�

The integral I��� was evaluated numerically and the corre-
sponding masses are listed in Table I. As expected, the 2D-
DOS effective masses are intermediate between those for the
�100� and �110� directions, the two directions spanning the
x-y plane parallel to the surface. For the split-off band the
constant energy surface is isotropic and we have

ISO��� =
2�

A
and hence mSO

2D-DOS =
m0

A
= mSO, as expected.

For many applications it may not be necessary to calculate
the subbands for each of the three valence bands separately
and it suffices to deal with one, triply degenerate ladder of
quantized energy levels with a quantization mass which is
the average of those for the hh, lh, and so bands. In this case
we use for the 2D-DOS effective mass the average of the
three individual 2D-DOS masses such that the total 2D-DOS
effective mass corresponds to the sum of the three individual
2D-DOS masses as listed in Table I. In this way the degen-
eracy is automatically taken care of.
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For completeness and further reference we have also cal-
culated the 3D-DOS effective masses for each valence band
following the approach outlined above for the 2D case. The
bottom line is

mj
3D-DOS = � Jj�	,��

4�

2/3

m0, �2.19�

with

J�	,�� =� � sin 	d	d�

A 
 �B2 + C2 sin4 	 cos2 � sin2 � + sin2 	 cos2 	�3/2 . �2.20�

Numerical integration yields the 3D-DOS effective masses
listed in Table I. Again, for a given band, they lie within the
mass range spanned by those for the different directions. A
3D-DOS effective mass for the three topmost valence bands
in diamond is, finally, obtained by adding the individual 3D-
DOS masses according to mVB

3D-DOS�mV
� = 	��mj

3D-DOS�3/2
2/3.
This result is also given in Table I and is utilized in generat-
ing the initial potential profile �Eq. �2.1��. Here we have
made the tacit assumption that the three individual densities
of states can just be added without taking energy differences
in the bands into account, a procedure that is justified by the
extremely small value of the spin-orbit splitting parameter
�SO in diamond.

D. Finite-difference method of the Schrödinger and Poisson
equations

The conventional approach to the numerical solution of
the Schrödinger equation is the finite-difference method.21

Here, the z axis is divided into a discrete mesh of points with
uniform spacing, d. Expressing the second derivative in Eq.
�2.4� in terms of finite differences yields a matrix equation
for the �n=��zn�:

�
m

Hnmvm = vn, �2.21�

with

Hn,m = �un + 2t0��n,m − t0�n,m+1 − t0�n,m−1 �2.22�

the elements of a tridiagonal matrix where t0=�2 /2mj
001d2,

d=0.1 nm, and un=u�zn� is the potential values at the mesh
points zn. Strictly speaking, the Hamiltonian is infinitely

large; however, in practice it is truncated to a finite number
of points, N. An eigenvector form for the wave function is
evaluated within each discrete space, with the boundary con-
ditions �0 and �N+1 equal to zero. This implies an imposed
infinite potential at the end points of the simulation.22

The Poisson equation is solved using the same mesh of
discrete z values and is expressed as a finite difference equa-
tion as well:

un =
q2

�r�0
D2Dd2�D2�−1�P� , �2.23�

where �D2� represents the matrix operator for the second
derivative with respect to z and �P� is a diagonalized matrix
representing p�z�.

An iterative loop solves the Schrödinger and Poisson
equations self-consistently starting with the potential profile
u�z� of Eq. �2.1�. A set of eigenstates is computed and used to
evaluate the hole density profile p�z� using Eqs. �2.6� and
�2.7�. A solution, un, of the Poisson Eq. �2.23� was then de-
termined from the generated value for p�z�. The iterative
process is completed when the difference between two con-
secutive self-consistent potential profiles is less than
10−10 eV. The hole sheet density for each subband was cal-
culated from the hole occupation in Eq. �2.7� as a summation
over the entire range of discrete mesh points. As shown in
Sec. III the overwhelming majority of holes occupy the three
lowest subbands for each valence band. The hole sheet den-
sity was therefore considered as a summation over the three
lowest subbands, l=1 to l=3, and the total hole sheet density
is the summation of densities over the hh, lh, and so valence
bands.

TABLE I. Effective masses for diamond in units of the free-electron mass.

Quantization effective mass along �001� 2D-DOS effective mass for kz=0 3D-DOS effective mass

mj
001 mj

2D mj
3D

Heavy hole, j=hh 0.427 0.566 0.645

Light hole, j= lh 0.366 0.309 0.289

Split-off, j=so 0.394 0.394 0.394

Top three valence bands mVB
3D-DOS=0.946

One band model mav.
001=0.396 msum

2D-DOS=1.269
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III. RESULTS

The Schrödinger-Poisson solver has been applied to a se-
ries of simulations to compute the energy subbands and the
hole sheet density of the subsurface hole gas, using the Fermi
energy and temperature as variable parameters. Results for
the full band treatment will be presented in Sec. III A; this
will be followed by results relating to the triply degenerate
single-band effective treatment. Key to analyzing the surface
electronic properties is the determination of the position of
the Fermi energy with respect to the valence-band maximum.
The initial input potential is represented by a band profile, as
illustrated in Fig. 3�a�, with the bulk extrapolated VBM at
the surface �z=0� defined as zero energy. The self-consistent
solution of the Poisson-Schrödinger equations gives rise to
quantization of the hole states at the surface and the intro-
duction of a new ground state. The original VBM therefore
no longer exists, with the true position of the VBM after
quantization at the first subband minimum. In this case the
first eigenstate of the light-hole band is the true VBM which,
as we shall show, varies with hole sheet density and tempera-
ture.

A. Full three band treatment

In this first set of simulations the valence bands �heavy-
hole, light-hole, and split-off bands� are considered indepen-
dently. Referring to Table I, the solution of the Schrödinger
equation for each band utilizes the quantization effective
mass along �001�; the corresponding single-band 2D-DOS
effective mass determines the density of states associated
with the subbands arising from that particular valence band.

The Poisson-Schrödinger solver generates for each band a
set of energy eigenstates each of which constitutes the bot-
tom of a subband and the corresponding hole sheet density
profile. This is illustrated for the heavy-hole band in Fig.
4�a�, which shows the three lowest eigenstates and Fermi
energy as a function of the total hole sheet density. The total
hole sheet density is the summation of the hole sheet densi-
ties for each valence band, calculated for a given Fermi en-
ergy, and represents the total density of holes across all oc-
cupied subbands. It is evident in Fig. 3�a� that compared to
the classical potential the self consistent potential falls off
much steeper away from the surface and consequently the
charge density as shown in Fig. 3�b� is confined to a depth of
only about 0.2 nm below the surface.

The positions of the lowest three hole states �i.e., the bot-
tom of the lowest three hole subbands� El

0, l=1,2 ,3 and the
Fermi level at room temperature are shown in Figs.
4�a�–4�c�, for the hh, lh, and so bands respectively. The state
energies are given in the representation shown in Fig. 2, such
that increasing energy corresponds to lower energy in a con-
ventional band diagram. All energies are given with respect
to E=0 eV, which is the position of the initial potential pro-
file at z=0. In each case the eigenstate energies, including
the VBM �the lowest-energy eigenstate for the lh band� in-
crease as a function of hole sheet density. The Fermi level
also increases with hole sheet density, however more rapidly,
and crosses the VBM at a total hole sheet density of 8.5
�1012 cm−2, illustrated in Fig. 4�b�. Simulations have been

carried out for hole sheet densities that correspond to Fermi
energies up to 2 eV. Over this range, the Fermi level remains
below the second subband minimum, E2

0, for the heavy-hole
and split-off bands. However, for the light-hole band we find
that the Fermi energy crosses E2

0 at 1.2�1014 cm−2.
The effect of temperature on the occupancy of the three

lowest eigenstates for each band is illustrated in Figs. 5–7.
These calculations have been performed for three represen-
tative Fermi levels of EF=0, 0.5, and 1.0 eV. The inset of
Figs. 5–7 illustrates the variation in temperature of the E1

0 in
each case. The true VBM corresponds to E1

0 of the light-hole

FIG. 4. Variation in the three lowest bound energy eigenstates
�solid lines� and the Fermi level �broken line� with total hole sheet
density for �a� heavy-hole, �b� light-hole, and �c� split-off bands;
T=295 K. The insets detail the crossover of the Fermi level with
E1

0 in each case. For the light-hole band, E1
0=VBM.
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band derived states and the insets in Fig. 6 illustrate the
temperature variation in VBM. A Fermi level of 0 eV re-
mains within the band gap over the temperature range con-
sidered, while Fermi levels of 0.5 and 1.0 eV reside in the
valence band. For each valence band, the majority of holes
occupy the lowest energy subband �p1�, as expected. When
the Fermi level is within the valence band the occupation of
the excited hole states is at least an order of magnitude lower
than that of the ground state, as shown for example in Figs.
5–7 and 7�c� where the total hole sheet density is to a very
good approximation equal to the sheet density in the subband

l=1. The occupancy of each subband is affected by the po-
sition of the Fermi level with respect to the corresponding
subband minimum, which is strongly dependent on tempera-
ture, and by the temperature dependent width of the Fermi
distribution. The effect of temperature in broadening the
Fermi distribution is observed for EF=0 eV, where the hole
sheet density increases slowly with increasing temperature
even though EF is moving further into the band gap. It is
evident that when EF is well within the valence band the total
hole sheet density is independent of temperature as illus-
trated by Figs. 5–7 and 7�c�. That, of course, is expected for

FIG. 5. Temperature dependence of the hole sheet density for
the three lowest heavy-hole subbands �solid lines�. The broken line
represents the sum of the three subbands. �a� EF=0 eV, �b� EF

=0.5 eV, and �c� EF=1.0 eV. The inset shows the variation in E1
0

with temperature, relative to the corresponding Fermi level; �a� is
within the band gap, �b� the valence band, and �c� within the va-
lence band.

FIG. 6. Temperature dependence of the hole sheet density for
the three lowest light-hole subbands �solid lines�. The broken line
represents the sum of the three subbands. �a� EF=0 eV, �b� EF

=0.5 eV, and �c� EF=1.0 eV. The inset shows the variation in the
VBM with temperature, relative to the corresponding Fermi level;
�a� is within the band gap, �b� the valence band, and �c� within the
valence band.
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the constant 2D-DOS as long as EF is several kBT away from
the bottom of the subband.

B. Effective single-band treatment

An effective single-band treatment was based on a triply
degenerate set of quantized energy levels obtained from a
solution of the Schrödinger equation with an average quan-
tization mass of 0.396m0. The hole sheet density was calcu-
lated using a 2D-DOS effective mass of 1.269m0, which is
the sum of the single-band masses �compare Table I�. In this

way the calculated hole sheet density represents the density
of all holes within the triply degenerate valence band. The
effective one band treatment provides access to the electronic
properties of the hole gas in a more simplified manner with-
out having to identify and consider a set of three hole eigen-
states and the corresponding subbands. This is particularly
useful when examining in detail the dependence of the elec-
tronic properties on temperature and carrier sheet density or
comparing simulations with experimental data.

The energy of the lowest three quantized hole states and
the Fermi level at room temperature are shown in Fig. 8 as a
function of hole sheet density for the effective single-band
treatment. The eigenstate energies and the VBM increase as
a function of hole sheet density because the potential well
narrows. The Fermi level also increases with hole sheet den-
sity, however more rapidly, and crosses the VBM at a hole
sheet density of 9.0�1012 cm−2, consistent with the corre-
sponding value for the full three band treatment. At this
point, the Fermi level is at 0.54 eV, i.e., at a position of 0.54
eV below what would have been the valence-band edge
without quantization in the conventional energy scheme ap-
propriate for electrons. The effect of temperature on the oc-
cupancy of the three lowest subbands for the single band
treatment reflects the behavior of the corresponding sub-
bands computed for the case of three independent bands. The
total areal hole densities are closely matched between the
single and full band treatments. The areal hole density, cal-
culated in the single-band case, is illustrated in the inset of
Fig. 9 for a range of temperature close to room temperature
with the Fermi level position as a parameter.

Figure 9 illustrates the hole sheet density as a function of
temperature for the case that the Fermi level coincides with
the VBM. This data has been compiled by calculating the
first energy eigenstate �the VBM� and comparing its value to
that of the Fermi level over a large number of calculations
for different hole sheet densities and temperature. The points
in the figure represent the value of hole sheet density and
temperature for which EF=EVBM. For hole sheet densities
above the crossover point the Fermi level resides in the va-
lence band and for hole sheet densities below the crossover
point the Fermi level resides within the band gap.

FIG. 7. Temperature dependence of the hole sheet density for
the three lowest split-off subbands �solid lines�. The broken line
represents the sum of the three subbands. �a� EF=0 eV, �b� EF

=0.5 eV, and �c� EF=1.0 eV. The inset shows the variation in E1
0

with temperature, relative to the corresponding Fermi level; �a� is
within the band gap, �b� the valence band, and �c� within the va-
lence band.

FIG. 8. Variation in the three lowest bound energy eigenstates
�solid lines� and the Fermi level �broken line� with hole sheet den-
sity calculated for the single-band model. The inset details the
crossover of the Fermi level with the VBM. T=295 K.
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IV. DISCUSSION

As expected, the Fermi level position is closely related to
the hole sheet density. Figure 8 illustrates the dependence of
the Fermi energy on total hole sheet density. At room tem-
perature, for a surface with hole sheet density less than 9
�1012 cm−2 the Fermi level resides within the band gap,
otherwise the Fermi level position is within the valence
band. The Fermi level of hydrogenated and surface conduct-
ing diamond has been obtained experimentally from mea-
surements of the work function using scanning Kelvin-probe
microscopy �SKM� �Refs. 23 and 24� and assuming a
vacuum level 1.3 eV below the conduction band minimum as
measured by Cui et al. albeit under ultrahigh vacuum
conditions.25 The result is that EF lies 0.7 eV within the
valence band at the diamond surface. This value must be
considered an upper limit because the electron affinity could
be less than −1.3 eV under atmospheric conditions because
of an adsorbed water layer.26 For a hydrogenated diamond
�100� surface in contact with water, Ristein et al.27 deter-
mined the electron affinity to be −0.5 eV; that would place
the Fermi level in the work of Rezek et al.8,23,24 0.1 eV above
�for the conventional electron energy scale� the VBM �within
the band gap� at the surface. Hole sheet densities of up to
5�1012 cm−2 at room temperature have been demonstrated
for these kinds of samples.8,23 According to Fig. 8 this hole
sheet density corresponds to a Fermi level 20 meV above
�for the conventional electron energy scale� the VBM �within
the band gap�. Considering the appreciable experimental un-
certainties in the Fermi level position the agreement must be
considered reasonable. For surfaces doped with synthetic,
fullerene-based acceptors hole sheet densities of 1012 and
1013 cm−2 have been demonstrated for C60 and C60F48
loaded surfaces, respectively.6 From Fig. 8 this corresponds
to a Fermi level within the band gap, 70 meV above the
VBM for a surface with a hole sheet density 1012 cm−2;
while for a surface with a hole sheet density of 1013 cm−2

the Fermi level is aligned with the VBM.
The highest areal hole density reported experimentally is

�5�1013 cm−2 �Ref. 11�; our calculations show that this

corresponds to a Fermi level of 1.95 eV, which is within the
valence band, 94 meV below the VBM. It is believed that
hole sheet densities exceeding this level create at the surface
an electric field of 0.4–2�107 V cm−1, the range of the
breakdown field reported for diamond,28 and may present a
limit to achieving higher hole sheet densities. For a hole
sheet density of 5�1013 cm−2 the electric field at the sur-
face, according to Gauss’ law is equal to 1.55
�107 V cm−1, which is sufficient to give rise to electrostatic
breakdown at the surface.

As discussed in Sec. I, the question of whether the hole
gas at the diamond surface is 2D is of fundamental impor-
tance. The position of the Fermi level with respect to the
energy eigenstates in the simulation can provide insight into
the range of temperature and hole sheet density over which
2D properties are anticipated. In related studies of 2D elec-
tronic systems in conventional semiconductor materials,29 a

FIG. 9. Loci of points representing the condition EF=EVBM as a
function of hole sheet density and of temperature for the single-
band model. The broken line is a guide to the eye. The inset shows
the corresponding temperature dependence of the total hole sheet
density calculated for the single-band treatment for EF=0, 0.5, and
1.0 eV.

FIG. 10. Temperature dependence of E2-EF �solid lines�, calcu-
lated for EF=0, 0.5, and 1.0 eV, and of kBT �broken line�. �a� heavy-
hole band, �b� light-hole band, and �c� split off band.
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gas of charge carriers is considered two dimensional if �E
=E2−EF�kBT, where E2 represents the second energy
eigenstate, implying that occupation of the second energy
level is significantly lower than that of the ground state. Fig-
ure 10 compares kBT with �E, computed for EF=0, 0.5, and
1.0 eV for the hh, lh, and so bands. For the hh band, over this
range of Fermi energy, �E is found to always exceed kBT,
suggesting that the heavy-hole band will be two dimensional.
In contrast, kBT exceeds �E at low temperature for the light-
hole and split-off bands at high Fermi level energies. For the
light-hole case this can be seen also in Fig. 4�b� where at
high Fermi level the EF crosses the second energy eigenstate.
The light-hole and split-off bands will not remain two di-
mensional at high Fermi energy, and corresponding high hole
sheet density, particularly if a sample is cooled in order to
investigate its quantum transport properties. Figure 10�b�
shows for the light-hole band that �E crosses kBT at low
temperature for a Fermi energy of 0.5 eV, which corresponds
to a hole sheet density of approximately 8�1012 cm−2. Hole
gases with a density exceeding this limit will certainly not
remain two dimensional at low temperature and would not be
expected to exhibit Shubnikov–de Haas and quantum Hall
properties. Observation of these effects necessitates both a
2D-DOS and a high hole mobility in the 2D layer. For hole
sheet densities less than 8�1012 cm−2 the system will be

two dimensional and gases of lower hole sheet density will
correspond to a smaller number of surface acceptors, giving
rise to higher hole mobility. However, diamond surfaces ex-
hibiting sufficiently high mobility to observe 2D quantum
transport29 have not been demonstrated experimentally.

In summary, a detailed study of the 2D hole gas underly-
ing the C�001�:H surface has been presented based on a 1D
self-consistent Poisson-Schrödinger model. Surface transfer
doping gives rise to a potential which confines a sheet of
holes within a depth of �0.2 nm of the C:H interface. The
occupation of these states has been computed to allow a de-
termination of the Fermi level as a function of temperature
and hole sheet density. For hole sheet densities below 9
�1012 cm−2 the Fermi level is within the band gap while for
hole sheet densities greater than 9�1012 cm−2 the Fermi
level resides below the VBM in the valence band.
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