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We propose a theory of trap-filling transitions in organic thin films in a planar field effect transistor geometry
containing an exponential trap distribution. We find that the thickness of the accumulation layer produced by
the gate voltage in those devices depends strongly on the degree of energetical disorder in the active layer. As
a consequence, the charge-carrier transport in systems with a high degree of energetical disorder can have two
regimes: �i� a bulklike regime �BL�, where the charge-carrier mobility decreases with the thickness of the
semiconductor film and �ii� a surface transport �ST� regime, where the charge-carrier mobility saturates and
does not depend on the thickness of the film. We derive approximate analytical expressions for the current-
voltage characteristics, the saturation current as a function of the gate voltage �saturation transfer curve�, and
the field-effect mobility for each regime of charge-carrier transport. We show that the BL/ST transition is
characterized by a variation of 2 in the power-law exponent followed by the mobility as a function of the gate
voltage after a critical value. By means of our simple model, we discuss the conditions for the observation of
the BL/ST transition in thin-film organic field effect transistors. We show that the mobility can have a maxi-
mum with increasing deposition of semiconductor material, depending on the nature of the percolative trans-
port in the submonolayer and monolayer scales and on the degree of energetic disorder in the film. Finally we
test our model using experimental data measured in �, �-dihexylquaterthiophene devices reported in the
literature.
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I. INTRODUCTION

The application of the simplified theory of space charge
limited conduction �SCLC� for bulk charge transport be-
tween two Ohmic electrodes is a powerful tool to study
charge-carrier transport in insulators. By means of the SCLC
theory, the magnitude of the current injected from Ohmic
metallic contacts as well as the shape of the current-voltage
characteristics �I-V� can give valuable information about
localized traps in the forbidden gap.1,2 For instance, in
the presence of a single trap level, the I-V characteristics
follows a “modified” Mott-Gurney’s square law with I�V2.1

However, when traps are distributed exponentially within
the forbidden energy gap, the SCLC theory predicts that
the continuous filling of the states at the “tail” of the distri-
bution leads to a power-law variation in the current with
increasing voltage given by I�V�+1, where the exponent
��1 and is related to the characteristic energetic depth of
the distribution.1–3

Although the simple SCLC theory gives a very good de-
scription of bulk conduction between two Ohmic electrodes,
the interaction of the injected charge carrier with traps �and
its consequences for the device’s electronic properties� is
poorly understood in injection-based surface field effect tran-
sistors �IFETs�.4–8 Such devices use a film of high-resistivity
semiconductor between source and drain metal electrodes.4

The IFET operation depends then on the injection of charge
carriers induced by a voltage applied between the source and
a gate electrode. Here we call semiconductor the film of
low-conductivity solid in the device’s active layer and insu-
lator the layer that separates the active layer from the gate
electrode. Once injected in the semiconductor, the carriers
are drifted toward the drain using a voltage applied between
the source and drain electrodes. Hence the presence of trap-

ping states in the active layer of an IFETs can immobilize a
considerable fraction of carriers injected by the gate voltage
�Vg�, significantly influencing the magnitude and the shape
of the current flowing between source and drain. For in-
stance, the interaction of the injected carrier with traps can
produce currents depending supralinearly on gate bias7,8 so
that the relation between the shape of those currents with
characteristic parameters of the traps remains unclear.7

We recently proposed a simple theory of trap-filling ef-
fects in IFETs applying a generalization of the surface-
charge formalism.8 The main advantage of this theory is that
every balance equation relating volumetric concentration of
free and trapped carriers at each point of the channel can be
easily written in terms of surface charges. The variation in
the carrier populations along the thickness of the semicon-
ductor is considered assuming a characteristic thickness of
the accumulation layer produced by Vg. This thickness is
derived from the solution of the trap-free drift-diffusion
equation in the direction perpendicular to the semiconductor/
insulator �I/S� interface. Using this procedure, the IFET’s
characteristic curves can be easily calculated numerically
and analytical approximations derived. One can then carry
out a straightforward analogy between the simple SCLC
theory for bulk conduction and the charge transport in an
IFET structure.

In spite of this, the surface-charge theory in Ref. 8 was
applied only to describe the IFET’s properties in the simple
case of multiple discrete trap levels in the semiconductor.
This is a good approximation for single-crystal materials of
high structural order and chemical purity.1 Yet this can be a
poor description of IFETs formed by the evaporation of a
thin semiconductor layer without a well-defined crystallinity.
Due to differences in the environment from one trap site to
another, the large amount of structural disorder may result in
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a broad smearing out of the discrete energy levels and may
also give rise to many different sets of traps.1,3

In this contribution we extend the theory proposed in Ref.
8 to the situation when there is an exponential distribution of
traps in the semiconductor layer of the IFET. The exponen-
tial distribution is one simple and useful representation of
many different sets of traps �all smeared out in energy�
present in a disordered semiconductor. This is also a needful
improvement of the IFET’s theory since one possible appli-
cation of the model is to describe the properties of field ef-
fect transistors based on organic wide-band-gap semiconduc-
tors �OFETs�.9 Usually the deposition of the organic
semiconductor on the surface of the gate insulator create a
polycrystalline thin film with a high degree of structural dis-
order so that the theory developed in Ref. 8 is not appropri-
ate to fully model the carrier transport in those devices.

A deep understanding of the IFET’s properties is of great
interest because fundamental aspects of the charge-carrier
transport in OFETs remain unclear. For example, the depen-
dence of the OFET’s performance on the thickness of the
organic layer is still a matter of intense debate.10–17 Although
electrostatic models predict that the transport of free carriers
occurs in the first few molecular layers �MLs� of the semi-
conductor adjacent to the gate insulator interface,8,18 the
field-effect mobility ��� in some OFETs only saturates after
the deposition of several MLs. Other devices using different
organic semiconductors and different architectures �bottom-
contact or top-contact devices� have a maximum � at a cer-
tain thickness of the active layer.11,15,19,20 This behavior has
been observed in some devices even after contact resistance
correction11 and the physical origin of this effect is unclear
up to now. Using our IFET model, we provide here an ex-
planation to the origin of the maximum � in some OFETs.

In the following we review the IFET formalism to the
simple case of multiple discrete trap levels in the semicon-
ductor. We then show how to extend this analysis to a con-
tinuous exponential distribution of traps in the semiconduc-
tor. From the solution of the drift-diffusion equation in the
direction perpendicular to the I/S interface, we show that the
thickness of the accumulation layer produced by the gate
voltage increases with increasing characteristic energetic
depth of the exponential distribution. As a result, the charge-
carrier transport along the channel can have two different
regimes: a “bulklike” regime, where the carriers transport
near the source occurs along the whole thickness of the ac-
tive layer, and a “surface-transport” regime, where the cur-
rent flow is mainly confined within a thin layer near the I/S
surface. In the last section, we discuss the thickness depen-
dence of mobility in OFETs and the conditions for the ob-
servation of the bulklike regime in those devices. We find
that the observation of the maximum mobility comes from
the interplay between an improved connection among islands
of semiconductor material formed at low coverages and a
simultaneous reduction in the mobility within those islands
due to a higher number of traps induced by increasing depo-
sition of organic material. Finally, we compare the predic-
tions of our model with experimental data measured in de-
vices of �, �-dihexylquaterthiophene reported in the
literature.

II. THEORY

A. Discrete trap levels

Before discussing the charge-carrier transport in an IFET
with an exponential distribution of traps, we briefly review
the main points of the surface-charge model for discrete trap
levels developed in Ref. 8. Here we are going to highlight
the main aspects of the theory relevant to the discussion in
the next section. Details about the simplifications assumed in
the model can be found in Refs. 6 and 8.

The structure of an IFET is formed by a thin film of a
wide-band-gap semiconductor �the organic active layer in
OFETs� that connects the source and drain contacts, and a
high-resistivity gate insulator that separates the semiconduc-
tor from the gate electrode. Let us take the directions x and y
as being, respectively, parallel and perpendicular to the gate
insulator interface.

In IFETs with a semiconductor layer free of intrinsic car-
rier from doping, the charge-carrier conduction between
source and drain is achieved by free carriers injected from
the electrodes. Without loss of generality, we assume that
only one type of charge carrier can be injected through
Ohmic contacts at the source and drain and that those charge
carriers are electrons. Using the surface-charge notation,6 the
current flow between source and drain is given by

Ids

W
= �Qf�x���

dV

dx
, �1�

where � the charge-carrier mobility, W the channel width,
Qf�x� the surface charge of free carriers injected from the
electrodes, and V�x� the potential at position x from the
source.

If L is the distance between source and drain, the integra-
tion of Eq. �1� from x=0 to x=L gives

Ids = �
W

L
�

0

Vds

�Qf�x��dV , �2�

where the limits of integration are V�0�=0 at the source and
V�L�=Vds at the drain.

We assume the presence of multiple trapping states in the
semiconductor. For each trap type j, the relation among the
total available trap density Nt,j, the density of occupied traps
nt,i, and the free-carrier density nf is given by the balance
equation �nt,j /�t=� jnf�Nt,j −nt,j�−	 jnt,j, where � j�	 j� is the
capture �emission� rate at jth trap level. Assuming steady
state between emission and capture at every coordinate x, we
find

nt,j�x� =
Nt,j

�1 + 
 j/nf�x��
, �3�

where 
 j =	 j /� j. 
 j has the units of a density and is charac-
teristic of a particular trap level. It decreases with the thermal
activation energy of the trap, i.e., its energetic “depth” in the
band gap.
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Assuming L�D, where D is the thickness of the semi-
conductor, the density of charge carriers injected by the field
Ex�nds� can be neglected compared to the density of charge
carriers injected by the field Ey�ng�. ng is then distributed
between the free and the trapped carriers, or

ng�x� = nf�x� + �
j

nt,j�x� , �4�

where the summation over j in Eq. �4� accounts for the pres-
ence in the semiconductor of traps with different trapping
properties.

The model in Ref. 8 is based on the assumption that the
charge-carrier density along the y direction is uniform and
represented by a characteristic thickness �. Using this ap-
proximation, we substitute Eq. �3� in Eq. �4� and rewrite the
resulting equation in terms of surface-charge densities, where
the surface charges are related to the respective volumetric
densities by Qi=eni�. Once the variation in � with V is de-
termined, a polynomial can be solved to find Qf�V�. Inserting
this Qf�V� in Eq. �1� gives then the characteristic curves of
the device.8

The variation in � with V�x� and Vg is approximated using
the trap-free equilibrium density of charge carriers resulting
from the balance between drift and diffusion currents in the y
direction. The current density along this direction is then

j = ��Ey − Dd�

dy
= 0, �5�

where D is the diffusion coefficient which is related to the
mobility of the charge carriers by the Eintein’s relation D
=�kT /e and � is the charge density of free carriers accumu-
lated at the I/S interface. Neglecting the trapped charge, the
Poisson equation in the y direction is dEy /dy=−�1 /
��. In-
troducing the Poisson equation in Eq. �5� and using the Ein-
stein relation, after some calculations one finds

� kT

e
	�d2Ey

dy2 	 − Ey
dEy

dy
= 0. �6�

The solution of Eq. �6� is Ey�x�=2kT /e�y+y0�x��,4 where
y0 represents a characteristic distance from the I/S interface
given by y0=2
kT /eCi�Vg−V�x��.8 The physical meaning of
y0 is that half of the charge induced by the field Ey is within
a distance y0 from the I/S interface. Hence one can assume
that �
2y0. Since y0 increases fast when V�x�→Vg, we can
also define a voltage V� so that �=D when V�x��V�. The
variation in the thickness of the accumulation layer with V�x�
is then

� = �4
kT/eCi�Vg − V�x�� for V�x� � V�

D for V�x� � V�,
� �7�

where V�=Vg−4
kT /eCiD. Following Eq. �7�, � is thinner at
the source and is given by �0=4
kT /eCiVg. This result is
useful to derive analytical expressions for Ids in the simple
case of a single trap level in the semiconductor.8

B. Exponential trap distribution

In amorphous semiconductors, the large amount of disor-
der can create a broad smearing out of the trap’s energy

levels. To describe IFETs based on this kind of semiconduc-
tor, we consider a distribution of traps with a continuous
variation in thermal excitation energy. In this case the quan-
tities in Eq. �3� must be replaced with corresponding quanti-
ties belonging to this distribution.21 For instance, Nt,j is re-
placed by g�E�, the density of localized states per unit of
energy, and 
 j is replaced by 
�E�=N exp�−E /kT�, where
E=0 corresponds to the energy of the lowest unoccupied
conducting state and N is the density of the unoccupied con-
ducting states. The total density of trapped electrons nt�x�
=� jnt,j in Eq. �4� is then calculated by an integration

nt�x� = �
0

dEg�E�
1 + exp�− �E − EF�/kT�

, �8�

where EF�x� is determined by the density of free electrons
or EF�x�=kT ln�N /nf�x��.21 A useful approximation for the
distribution of trap levels in disordered semiconductors1,2,22

is to use a trap density that decreases exponentially for
decreasing thermal-excitation energies or, g�E�
= �Nt /kTc�exp�−E /kTc�, where Tc is a temperature that char-
acterizes the effective energetic depth of the trap distribution.
Introducing this expression in Eq. �8� and performing the
integration gives1

nt�x� = Nt
nf�x�
N �1/�

, �9�

where �=Tc /T. In writing Eq. �9� we approximate the Fermi-
Dirac occupation function in Eq. �8� by a step function of
value 0 for E�EF and 1 for E�EF, which is a good approxi-
mation when ��1.1

Substituting Eq. �9� in Eq. �4� gives the free charge den-
sity as a function of the injected and trapped charges. We
have then to rewrite the resulting equation in terms of the
surface-charge notation. Following the procedure described
in Ref. 8 this is straightforward once the characteristic thick-
ness of the accumulation layer ��� is determined. Using Eq.
�14� and assuming nt�x��nf�x�, Eq. �4� can be written

Qf�x� � QN�Ci�Vg − V�x��
QT

��

, �10�

where QN=eN�, QT=eNt�, and we use Qg=eng�=Ci�Vg
−V�x��. Equation �10� gives the variation in Qf�x� as a func-
tion of V�x�. Performing the numerical integration of Eq. �2�
using this function gives the Ids�Vds curve. The variation in
the saturation current Isat with Vg is calculated using the
same procedure but taking Vds=Vg as the upper limit of in-
tegration in Eq. �2�.

We proceed now to calculate � and its dependence on Vg
and V�x�. We assume again that the current flowing along the
y direction is zero so that Eq. �5� is valid. Considering again
nt�x��nf�x� and using Eq. �9�, the Poisson equation in the y
direction is

dEy

dy
= −

e



nt�x� = − a�1/�, �11�

where a= �1 /
��Nt /N1/��. Substituting � from Eq. �11� into
Eq. �5� and using the Einstein’s relation, we find
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kT

e

d

dy

�dEy

dy
	�� − �dEy

dy
	�

Ey = 0. �12�

The derivation of the first term on the right-hand side of Eq.
�12� gives

� kTc

e
	d2Ey

dy2 − Ey
dEy

dy
= 0. �13�

Comparing Eq. �13� with Eq. �6�, one can see that the two
equations are identical but the temperature T in Eq. �6� is
replaced by the characteristic temperature Tc in Eq. �13�.
Therefore, the solution of Eq. �13� is easily obtained from
the well-known solution of the trap free Eq. �6� by simply
substituting T for Tc. Hence, following Eq. �7�, the variation
in � with V�x� in the presence of an exponential trap distri-
bution can be approximate by

� = �4
kTc/eCi�Vg − V�x�� for V�x� � V�

D for V�x� � V�,
� �14�

where V� is now V�=Vg−4
kTc /eCiD. Since Tc�T, the � at
a fixed Vg obtained from Eq. �14� is always thicker compared
to the value obtained from Eq. �7�. Hence, there is a consid-
erable range of gate voltages where the thickness of the ac-
cumulation layer is approximately the thickness of the active
layer D. This range increases with increasing energetic dis-
order represented by the parameter Tc. Thus, if the gate volt-
age is lower than a characteristic voltage given by Vtr
=4
kTc /eCiD, the accumulation layer spreads along the
whole thickness of the semiconductor and the charge trans-
port is similar to the bulk conduction between two Ohmic
electrodes described by the SCLC theory. We call this trans-
port regime “bulklike” �BL� regime. On the other hand, in
the range Vg�Vtr, ��D in the vicinities of the source and
the flow of carrier is constrained in the y direction by the
field Ey. In this region the transport occurs mainly near the
I/S interface. We call this regime a “surface transport” �ST�
regime. Compared to the BL transport, the variation in the
accumulation layer along the channel introduces further de-
pendences of the current on Vg in the ST regime. Finally, the
thickness of the accumulation layer at the source in the ST
regime is �c=4
kTc /eCiVg=��0.

C. Analytical approximation for traps exponentially
distributed in energy

Approximate analytical expressions for Ids in the case of
an exponential distribution of traps can be derived from Eq.
�10� by considering a constant thickness of the accumulation
layer given by the value of � at the source. The surface-
charge densities in Eq. �10� are then given by multiplying the
respective volumetric densities to the factor eD if Vg�Vtr or
to the factor e�c if Vg�Vtr. Inserting Eq. �10� in Eq. �2� and
performing the integration yields

Ids = �
W

L
�

N
Nt

f�Vds,Vg�
 CiVg

eDNt
��−1

for Vg � Vtr

W

L
�

N
Nt

f�Vds,Vg�
 �CiVg�2

�4
kTcNt�
��−1

for Vg � Vtr,�
�15�

where f�Vds ,Vg��CiVg
2��+1�−1�1− �1− �Vds /Vg���+1�.

In the limit Vds�Vg, Eq. �15� yields a linear dependence
of the source-drain current on Vds or

Ids = �
W

L
�

N
Nt

CiVg
 CiVg

eDNt
��−1

Vds for Vg � Vtr

W

L
�

N
Nt

CiVg
 �CiVg�2

�4
kTcNt�
��−1

Vds for Vg � Vtr,�
�16�

where we apply the relation �1+x���1+�x for x�1.
Finally, the saturation current is obtained doing Vds=Vg in

Eq. �15�

Isat = �
W

L

�

�� + 1�
N
Nt

CiVg
2
 CiVg

eDNt
��−1

for Vg � Vtr

W

L

�

�� + 1�
N
Nt

CiVg
2
 �CiVg�2

�4
kTcNt�
��−1

for Vg � Vtr.�
�17�

A valuable quantity to characterize charge transport is the
charge-carrier mobility. In the linear region of the I-V char-
acteristics, the effective-field-effect mobility can be obtained
from the IFET’s transconductance

�ef f =
L

CiWVds

�Ids

�Vg
. �18�

Using Eqs. �16� and �18�, the field-effect mobility in the
BL regime �Vg�Vtr� is

�ef f = ��
N
Nt

 CiVg

eDNt
��−1

. �19�

Similarly, using again Eqs. �16� and �18�, the field-effect
mobility in the ST regime �Vg�Vtr� is

�ef f = �2� − 1��
N
Nt

 �CiVg�2

4
kTcNt
��−1

. �20�

From Eqs. �19� and �20� one sees that it is expected a
factor-of-2 variation in the exponent of the power law fol-
lowed by �ef f with Vg when the gate voltage rises above Vtr
�BL/ST transition�. It is also important to point out that Eq.
�19� is very similar to the expression for the field-effect mo-
bility in OFETs derived using the multiple trapping and re-
lease �MTR� model.18 In both pictures �our model and the
MTR model�, the increase in the field-effect mobility with
increasing gate voltage is due to the filling of the low-lying
trapping states of the exponential distribution. On the other
hand, the �ef f in Eq. �20� has the same dependence on the
gate voltage obtained in Ref. 23 using a variable-range hop-
ping �VRH� transport between energy levels from an expo-
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nential density of localized states �DOS�. The fact that our
model reproduces the same �ef f dependence on Vg derived
from the VRH theory23 is a consequence of the great popu-
lation of available states for hopping conduction at high en-
ergies in an exponential DOS. Those levels can have the role
of a transport level whereas the low population of available
states for hopping at low energies can have the role of traps.
In this sense the model for the charge transport proposed
here is equivalent to the hopping model in an exponential
DOS since the latter can be effectively described in terms of
thermal activation from the Fermi energy to a specific trans-
port energy.24 Moreover, from the definition of EF above and
using Eq. �10�, one can write EF=kTc ln�eNtD / �CiVg�� �BL
regime� or EF=kTc ln�4
kTcNt / �CiVg�2� �ST regime�. Intro-
ducing those equations in Eqs. �19� and �20�, respectively,
yields �ef f �exp�−�EF /k��T−1−Tc

−1��. Therefore, since E=0
corresponds to the energy of the lowest conducting state, one
can see that field-effect mobilities in Eqs. �19� and �20� fol-
low a simple Arrhenius behavior on temperature and also
obey the Meyer-Neldel rule �MNR� for both regimes of
charge-carrier conduction. The simple Arrhenius behavior
of the field-effect mobility and the MNR for �ef f has been
observed in OFETs using a variety of organic
semiconductor.7,23,25 However, the activation energies and
their dependences on Vg for the BL and ST regimes are dif-
ferent: at a constant gate voltage in the interval Vg�Vtr, the
activation energy for the BL conduction is a factor D /�c
higher than the activation energy in ST conduction.

Another important point is the dependence of the field-
effect mobilities in Eqs. �19� and �20� with the thickness of
the active layer D. At constant Vg, �ef f decreases with in-
creasing film thickness �BL transport� following a power law
described in Eq. �19� till a critical thickness ��c� is reached.
For thicker films in the range D��c, �ef f does not depend on
D �ST regime� and the mobility saturates in values given by
Eq. �20� for measurements in the linear region. Figure 1
shows the variation in the critical thickness ��c� as a function
of the characteristic temperature Tc. The parameters used are
characteristic of OFETs. One can see that the energetic dis-
order strongly influences the transition between the BL and
the ST conduction regimes. At high Tc and low Vg the field-

effect mobility may not depend on D only for films thicker
than 
10 nm.

III. DISCUSSION: THICKNESS-DEPENDENT
MOBILITY IN OFETS

The main purpose of the IFET model is to provide a
simple �yet realist� description of the charge-carrier transport
in OFETs. In the equations above, �ef f decreases with in-
creasing film thickness and then saturates after a critical
value �c is reached. However, the field-effect mobility mea-
sured in different OFETs shows a step increase in �ef f with
increasing D in the submonolayer and single-monolayer re-
gimes. This behavior is attributed to a percolation
transition10,16 where island of the semiconductor material
come into contact with increasing coverage of the gate insu-
lator area. At coverages just above the percolation threshold,
the number of semiconductor’s islands clusters increases and
eventually a two-dimensional �2D� semiconductor layer is
formed.16 The improved connections between the semicon-
ductor islands explain the increase in the mobility with D.
When a second molecular layer is beginning to grow on top
of the first layer, the field-effect mobility can still increase
since islands of the second layer can provide additional con-
ducting paths bridging isolated islands of the first
layer.10,14,16 We will call those transport regimes at low cov-
erages as percolativelike �PL� transport regimes.

The description of the mobility in the PL transport re-
gimes is challenging since the formation of three-
dimensional �3D� islands at low coverages complicates the
geometric description of the percolation transition.16 One re-
cent example of complex behavior derived from charge-
carrier transport in the PL regime is observed in the field-
effect mobility of transistors made from self-assembled
monolayers of liquid-crystal molecules.26 Due to charge per-
colation in two dimensions, � in those devices depends on
channel length only when the monolayer coverage is
incomplete.26 Moreover, the growth of the second layer on
the top of the first layer can induce traps in the semiconduc-
tor film which adds further complexity to the problem.15

Hence, we are not going to discuss PL transport regimes
here. This would require a microscopic theory linking aspect
of film morphology to transport properties that goes far be-
yond the simple continuous electrostatic formalism devel-
oped in the last section. Nevertheless, some insights on the
mobility variation �and charge-carrier-transport transitions�
with increasing thickness can be obtained from our model.

At low coverages, let us assume that the mobility scales
such as the conductivity versus coverage in a percolative
problem10 and that D is proportional to the coverage. �ef f
follows then a power law of the kind �ef f � �D−Dc�� �Ref.
27� in the range D�Dc, where Dc is average thickness of the
film at the percolation threshold. The critical exponent is �
=1–1.4 for percolation in 2D and �=1.5–2 for percolation
in 3D.10 By the other hand, following the equations for the
BL regime derived above, the mobility in the islands de-
creases with increasing film thickness following also a power
law of the kind �ef f �D−��−1�. Hence, the mobility rise due to
improved island contacts with increasing D can be compen-

FIG. 1. Variation in the critical thickness ��c� as a function of Tc

for different gate voltages. The simulation parameters are Ci=1.2
�10−4 F /m2, 
=3
0, L=25 �m, W=1.5�10−3 m, �
=10−4 m2 /V.s, D=20 nm, Nc=1027 m−3, and Nt=1026 m−3.
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sated by poor conduction within the islands produced by a
higher number of traps. The interplay between those two
effects can give rise to a maximum effective mobility at a
thickness

D0 

� − 1

�� − 1� − �
Dc �21�

if ���+1. The relation between the exponents � and �
determines then different transitions among the PL, BL, and
ST regimes in an IFET as a function of the semiconductor
thickness. For values of � and � satisfying ���+1, the
mobility can have two different behaviors that are schemati-
cally illustrated in Fig. 2: �i� if D0��c, �ef f raises and then
saturate at D=�c with increasing D �curve �i��. Hence there
is a direct transition from the PL transport regime to the ST
regime or �ii� if D0��c, the mobility rises till a maximum
value is reached and then starts to decrease at D0 �transition
from the PL to the BL transport regimes�. The mobility keeps
decreasing in the range D0�D��c and then saturates at D

�c=��0 �transition from the BL regime to the ST regime�
�curve �ii��. Finally, for values of � and � in the range �
��+1, the BL transport regime is never present and �ef f
rises till the critical thickness D
�c=��0. Thereafter the
mobility becomes independent on D �ST regime�.

It is clear from the discussion above that the mobility
variation with the film thickness can have different profiles
after the percolation threshold depending on the nature of the
percolative transport in the PL regime �scaling in 2D or 3D�
and on the degree of energetic disorder within the semicon-
ductor. This can explain the variety of results measured in
devices using different combinations of organic semiconduc-
tors films and gate insulator surfaces.10,11,14,15,17 Moreover, if
the PL regime scales such as the percolation in 2D,10 the
necessary �but not sufficient� condition for the observation of
BL/ST transition is ��2. Again this means that the BL/ST
transition may be observed only in semiconductor films with
a high degree of energetical disorder or when the variation in
the mobility on D is measured at temperatures lower than
T�Tc /2 �assuming that � does not depend on T�. Since the
range of values of Tc is usually around 400 K,22,23 the BL/ST
transition in the �ef f �D curve would be observed when T

�200 K, provided that the condition D0��c is simulta-
neously satisfied. From Eq. �21� and the definition of �c, this
happens for every T if �c�Dc or, equivalently, Vg
�4
kTc /eCiDc. Hence, measurements of �ef f as a function
of temperature in the range Vg�4
kTc /eCiDc may show a
variation by a factor 2 in the power law followed by the
mobility as a function of Vg �see Eqs. �19� and �20�� when
the temperature rises above T
200 K.

A strong experimental evidence of the BL/ST transition
can be found in OFETs with �, �-dihexylquaterthiophene
�DH4T� as active layer.15 In Ref. 15, �ef f was obtained in the
linear regime as a function of the thickness of the active
layer. In the submonolayer region of the DH4T OFET, a step
increase in the mobility is observed after D
1.5 nm, fol-
lowing approximately a quadratic power law. This quadrati-
cally increasing mobility continues until D=2.15 nm �0.77
ML�. With further increasing coverage, a first peak of mobil-
ity is reached at D=2.5 nm �0.9 ML�. After the beginning of
the second ML, a reduction in �ef f is observed due to dis-
turbing effects on the morphology of the first ML created by
the growth of the second monolyer.15 Thereafter, a second
lower peak on �ef f is observed at D
4.5 nm, corresponding
to the completion of the second monolayer. For higher co-
vareges the mobility decreases and saturates for D beyond 7
nm. Figure 3 shows the variation in �ef f measured at �Vds�
=0.2 V in the DH4T devices of Ref. 15 for D�4.5 nm.
One can see that the field-effect mobility decreases with in-
creasing thickness following a power law with exponent
−2.36 until D
6.5 nm. This behavior corresponds to �
=3.36 in Eq. �19� and �Vtr�
5 V for a Ci corresponding to a
100 nm silicon oxide layer as gate insulator.15 Since �ef f
observes a quadratically power-law rise in the submonolayer
region,15 the geometry-corrected percolation exponent is �
=1,10 consistent with a percolation scaling in 2D. Thus the
values of � and � above satisfy the necessary condition for
the observation of a maximum �, ���+1. Moreover, using
again those values of � and � in Eq. �21� and taking Dc
=1.5 nm, one gets D0=2.6 nm for the thickness of the
maximum mobility. This result is in excellent agreement
with the experimental maximum at 2.5 nm.

IV. CONCLUSION

We develop a model for charge-carrier transport in IFETs
with an exponential distribution of traps in the active layer.

FIG. 2. Schematic behavior of the field-effect mobility as a
function of the film thickness after the percolation threshold when
���+1. The nonconstant ranges of the curves are calculated from
�� �D−Dc��D−��−1� with Dc=1 nm, �=3, �=1.5 �curve �i��, and
�=1 �curve �ii��. We assume �c=4 nm.

FIG. 3. Variation in the field-effect mobility with the thickness
of the active layer measured in DH4T devices in the range D
�4.5 nm �Ref. 15� �circles�. The straight line is a power-law fit of
the experimental data with exponent −2.36.
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The major implication of the model is that the energetical
disorder greatly influences the thickness of the accumulation
layer created by the gate voltage in the vicinities of the gate
insulator interface. This accumulation layer gets thicker with
increasing Tc, the parameter that determines the energetic
“depth” of the exponential distribution. As a consequence,
the charge-carrier transport in IFETs can have two regimes:
�i� when the accumulation layer spreads along the whole D
near the source, a bulklike transport between source and
drain is established. The BL transport in IFETs is similar to
the bulk transport in an insulator with an exponential distri-
bution of traps and sandwiched between two Ohmic contacts.
In this regime the mobility decreases with increasing film
thickness due to the higher number of traps within the active
layer and �ii� when the thickness of the accumulation layer is
thinner compared to the thickness of the semiconductor, the
charge-carrier conduction between source and drain mainly
occurs in a thin layer near the I/S interface. This is the ST
regime, characterized by a field-effect mobility that does not
depend on D. We show that the BL/ST transition produces
a variation of 2 in the power-law exponent followed by
the mobility as a function of Vg after a critical gate voltage
�Vtr�.

Assuming that the mobility scales such as the conductiv-
ity in a percolation problem for submonolayer and mono-
layer coverages of the gate insulator area, we apply our
theory to discuss the thickness-dependent mobility in OFETs.
We derive the conditions for the observation of the BL and
ST conduction regimes in those devices. We find that the
necessary conditions for the observation of a maximum mo-
bility in OFETs are related to the exponents � and �, where
� is the parameter that quantifies the energetic disorder in the
semiconductor and � the critical exponent that characterizes
the dimension of the percolative transport at low coverages.
Finally, we test our model using experimental data measured
in DH4T OFETs. We find good agreement between the thick-
ness of the maximum mobility measured in those devices
and the thickness of the maximum � calculated from our
analysis. The observation of the maximum mobility and
BL/ST transition in those devices is a consequence of a per-
colation transport scaling in 2D in the submonolayer region
together with a high degree of energetical disorder of the
DH4T films in the OFETs under consideration.15
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