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We show that known or knowable information about the high-�rs→0� and low-density �rs→�� asymptotes
can be used to predict the correlation energy per electron, ec�rs ,��, of the three-dimensional uniform gas over
the whole range of the density parameter �0�rs��� and relative spin polarization �0� ����1�, without
quantum Monte Carlo or other input. For �=0, the high-density limit through order rs is known exactly from
many-body perturbation theory, and for all �, the low-density limit through order 1 /rs

2 is known accurately
from a simple, intuitive, and accurate model. We propose a single interpolation formula with the expected
analytic structure to all orders in both limits, and use it to predict ec�rs ,0� in excellent agreement with quantum
Monte Carlo data. For ����0, we derive the � dependence of the coefficient a1��� of the rs ln rs term, previ-
ously known only for ���=0 and 1. For b1���, the coefficient of the rs term �not yet derived for ��0�, we
approximately extend the known b1�0� by using a simplification of the available quantum Monte Carlo infor-
mation that replaces the second-order transition over 50�rs�100 by a sudden transition to full spin polariza-
tion at rs=75.

DOI: 10.1103/PhysRevB.81.085123 PACS number�s�: 71.10.Ca, 71.15.Mb, 31.15.E�

I. INTRODUCTION

The uniform electron gas1 has long been a paradigm for
condensed-matter physics. In the 1930s, Wigner2 proposed a
rough interpolation �−� / �rs+��� of its correlation energy per
electron ec, as a function of the density parameter or average
neighbor distance �rs� in bohr, between approximate high-
density �or weakly interacting� and low-density �or strongly
interacting� limits, and so was able to explain the cohesion of
the alkali metals. Because the uniform gas has no energy
gap, its correlation energy diverges in lowest order 	4 �where
−	 is the charge on the electron� or rs

0. In the 1950s, many-
body approaches including the random-phase approximation
�RPA� �Refs. 3 and 4� produced a finite ec by summing sub-
sets of perturbation-theory terms to all orders. Gell-Mann
and Brueckner5 showed that many-body theory could predict
exactly the leading terms �a0 ln rs+b0� of the high-density
expansion, where a0 comes from RPA alone and b0 includes
also second-order exchange. Approximate many-body theo-
ries also predicted ec�rs� over the range of physical densities,
and some of these6,7 were confirmed8,9 by the diffusion
quantum Monte Carlo �QMC� calculations of the 1980s and
later.10–15

The uniform electron gas assumed a new importance in
the 1960s and later, when the density-functional theory of
Kohn and Sham16 showed how to use an analytic parametri-
zation of ec�rs ,��, where � is the relative spin polarization, to
make useful but approximate calculations for real atoms,
molecules, and solids. It is not only the local spin-density
approximation but also most higher-level approximations,17

that need such a parametrization. There are three widely used
parametrizations �Perdew-Zunger �PZ�,18 Vosko-Wilk-Nusair
�VWN�,19 and Perdew-Wang �PW92� �Ref. 20��, all based on
the same QMC �Ref. 10� and all in close agreement21 over

the valence-electron range 1�rs�10. These parametriza-
tions are constrained to respect the leading order of the high-
density expansion but are still highly fitted to QMC. For
example, VWN and PW92 each have nine fit parameters.
There are also at least two other parametrizations based on
correlation-hole models.22,23

Further work has refined the expansion coefficients of the
leading order of the high-density limit24 or extended them to
the fully or partly spin-polarized case,18,19,25,26 or derived
coefficients in the next order.20,27–29 It is now possible to see
if a sophisticated generalization of the Wigner interpolation
can use this information to predict ec for all rs and �. This
possibility was proposed in Ref. 20, before all the needed
ingredients were available. As we will see, such an interpo-
lation between the high- and low-density limits �“density-
parameter interpolation” or DPI� can be accurate, even with-
out QMC or other input. It confirms the adequacy of the
widely used parametrizations and their underlying QMC cal-
culations while definitely improving them in the extreme
limits rs
1 and rs�50. Interpolations of a similar kind �“in-
teraction strength interpolations” or ISI �Refs. 30 and 31��
have also proven useful for inhomogeneous electronic
systems.30–33 While the QMC calculations for the uniform-
gas suffice for practical purposes, these calculations are nu-
merically challenging �relaxation of the fixed node approxi-
mation, extrapolation from finite supercells, practical
limitations on the number of rs and � values included, etc.�,
leading to some discrepancies among different QMC
calculations.10–15 In the more difficult case of the jellium
surface energy,8,34 the earlier QMC calculations35 were much
less accurate than standard density functional8,34 or later
QMC �Refs. 36 and 37� calculations.

The three-dimensional �3D� uniform electron density � is
fixed by the dimensionless density parameter �Seitz radius�
rs,
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� = �4


3
�rsaB�3�−1

= �↑ + �↓ �1�

with the densities �↑ and �↓ of up- and down-spin electrons,
respectively. Here, aB=�2 / �me2� is the Bohr radius. The spin
polarization � is given by

� �
�↑ − �↓

�
⇔ �↑,↓ = �

1 � �

2
. �2�

Accounting for a neutralizing positive background, the total
energy per particle is

etot�rs,�� = ts�rs,�� + ex�rs,�� + ec�rs,�� . �3�

The first two terms on the right-hand side are, respectively,
the noninteracting kinetic and exchange energies,

ts�rs,�� =
cs���

rs
2 , ex�rs,�� =

cx���
rs

. �4�

�We are using atomic units where �=m=e2=1.� The exact
coefficients cs��� and cx��� are given in Tables I and II. Cor-
relation suppresses fluctuations of the electron density.38 The

correlation energy appears to have the small-rs �high-density�
asymptotic expansion,3,27,28,39

ec�rs,�� = 	
n=0

�

�an���ln�rs� + bn����rs
n �rs → 0� . �5�

The coefficients a0���, a1���, and b0���, which arise from
RPA �ring diagrams� and from second-order exchange, are
known or evaluated here exactly �Appendix A�. The coeffi-
cient b1���, which can have a more complicated many-body
origin �including ladder diagrams and higher-order ex-
change�, has been evaluated only for �=0.28

In the opposite low-density limit rs→� for the uniform
fluid phase, where the electronic behavior is similar30 to
zero-point oscillations of the electrons about equilibrium po-
sitions in a Wigner crystal, we expect the total energy �Eq.
�3�� to become strictly independent of �,20

etot�rs,�� = f0/rs + f1/rs
3/2 + f2/rs

2 + ¯ .

Therefore,

ec�rs,�� =
f0 − cx���

rs
+

f1

rs
3/2 +

f2 − cs���
rs

2

+ 	
n=3

�
fn

rs
1+n/2 + eexp�rs,�� �rs → �� �6�

with constant �� independent� coefficients fn. The contribu-
tion eexp�rs ,��
exp�−g���rs

1/2� arises40 from the exponential
overlap of localized one-electron states. Since the density
parameter rs is dimensionless, the coefficients in Eqs. �4�–�6�
all have units of hartree.

Figure 1 shows the idea behind and the result of our in-
terpolation. Note that the high-density limit is reasonably
accurate for rs�1, and the low-density limit for rs�50. The
ratio ec�rs ,1� /ec�rs ,0� grows slowly from 0.5 to 0.73 as rs
grows from 0 to �.

TABLE I. The coefficients �in hartree� of the high-density �rs

→0� and low-density �rs→�� expansions for the uniform-gas cor-
relation energy in the Perdew-Zunger �PZ� �Ref. 18�, Vosko-Wilk-
Nusair �VWN� �Ref. 19�, Perdew-Wang �PW92� �Ref. 20�, and
present DPI expressions, for the spin-unpolarized ��=0� and fully
polarized ��=1� cases. Asterisks denote coefficients constrained to
exact or near-exact values. The other coefficients are from analytic
fits to the quantum Monte Carlo results of Ref. 10. The low-density
coefficients f0, f1, and f2 in the present DPI expression are calcu-
lated within the accurate PC model �Refs. 30 and 41� while those in
parentheses are from the Wigner-crystal calculation of Ref. 42. The
coefficients cx��� and cs��� at �=0,1 are cx�0�=−0.458165, cx�1�
=−0.577252, cs�0�=1.104951, and cs�1�=1.754000, respectively.

PZ VWN PW92 DPI

a0�0� 0.0311� 0.03109� 0.03109� 0.03109�

b0�0� −0.048� −0.04665� −0.04664� −0.04692�

a1�0� 0.0020 0.0 0.00664 0.009229�

b1�0� −0.0116 −0.08775 −0.01043 −0.010�

f0�0� −0.8850 −1.03543 −0.8917 −0.9��−0.896�
f1�0� 1.3479 1.03045 1.4408 1.5��1.33�
f2�0� −1.8717 0.9039 −2.5565 0.0��−0.37�
a0�1� 0.01555� 0.01555� 0.01555� 0.01554�

b0�1� −0.0269� −0.02555� −0.02560� −0.02574�

a1�1� 0.0007 0.0 0.00319 0.003125�

b1�1� −0.0048 −0.01956 −0.00384 −0.006749

f0�1� −0.9001 −1.2736 −0.9060 −0.9�

f1�1� 1.7288 1.4969 1.7697 1.5�

f2�1� −6.2667 −3.3180 −6.1163 0.0�

TABLE II. The coefficients �in hartree�, as functions of the rela-
tive spin polarization �, in the high-density �rs→0� expansions for
the energy of the 3D uniform electron gas. cs��� and cx��� are exact
�Ref. 20�. Explicit exact expressions for a0��� and b0��� are avail-
able but rather complicated; see Eq. �32� of Ref. 26 and Eq. �20� of
Ref. 25. a1��� has only the integral expression given in Appendix A.
All these coefficients of the high-density limit are represented here
by accurate fits �see Fig. 2�. The exact a1��� has infinite slope at
���=1 �see Fig. 2�c��, and the corresponding basis functions
arcsin��2n�, with n=1 to 4, have been chosen to recover this feature.
The coefficients in this table are used consistently throughout this
work.

cs��� 3
10� 9


4 �2/3 1
2 ��1+��5/3+ �1−��5/3�

cx��� − 3
4
 � 9


4 �1/3 1
2 ��1+��4/3+ �1−��4/3�

a0��� �−35.57�8+50.44�6−24.76�4−5.66�2+31.09��10−3

b0��� �−21.36�8+36.43�6−13.58�4+19.69�2−46.92��10−3

a1��� �9.229+0.2263 arcsin��2�−17.61 arcsin��4�
+36.70 arcsin��6�−23.20 arcsin��8���10−3
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The leading coefficients in expressions �4�–�6� are listed
in Tables I and II. cs��� and cx��� have simple analytical
expressions. The DPI high-density coefficients starred in
Table I are exact. Note that these coefficients are all smaller
in magnitude �by a factor between 0.34 and 0.68� for �=1
than for �=0, as expected. Although a0��� and b0��� are
known analytically �Eq. �32� of Ref. 26 or Eqs. �4� and �20�
of Ref. 25�, they are represented in Table II only by accurate
fits since the explicit expressions are rather complicated. The
integral expression for a1��� �for which RPA is exact� is
given in Appendix A, integrated there numerically, and rep-
resented in Table II by an accurate fit, too. The performance
of these fits is illustrated in Figs. 2�a�–2�c�. Figure 2�d�
shows our estimate of the coefficient b1��� which is not rep-
resented in Table II; see Sec. III.

The coefficients f0,1 of Eq. �6� given in Table I are evalu-
ated in the simple point charge plus continuum �PC� model
of Refs. 30 and 41, and are close to accurately calculated
Wigner-crystal values.42 There is of course no reason to be-
lieve that the low-density coefficients f0, f1, and f2 are ex-
actly the same for the uniform fluid as for the Wigner-crystal
phase. In the PC model, the pure harmonicity of the electro-
static potential energy of the electron interacting with the
uniform sphere of positive charge leads to zero f2. �The
Wigner-crystal value42 f2�0 arises from anharmonicity.�

The text is organized as follows. Section II provides our
interpolation formula between the expansions �5� and �6�.
The only ingredient that is not known exactly, the coefficient
b1��� in Eq. �5�, is estimated in Sec. III. In Sec. IV, we
compare the correlation energies predicted by this simple
interpolation to numerical QMC results. Our conclusions are
summarized in Sec. V.

II. DENSITY-PARAMETER INTERPOLATION

Apparently, the high-density �rs→0� expansion �5� does
not have an infinite radius of convergence in rs. According to
Ref. 28, it is an asymptotic expansion with zero radius of
convergence. Moreover, its higher-order coefficients �other
than the ones listed in Tables I and II� are not fully known.
While the situation at medium densities �rs�5� is only ac-
cessible by approximate numerical methods �such as QMC
calculations�, the extreme opposite low-density limit �rs
→�� is mathematically simple again, see Eq. �6�.

To avoid difficulties with the divergent truncated high-
density asymptotic expansion �5�, we suggest to use only its
two leading terms �n=0,1� and extrapolate them directly to
the leading terms �n=0,1 ,2� of the low-density limit
�Eq. �6��,
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FIG. 1. ec�rs ,�=0,1� vs rs using the high-density expansion of
Eq. �5� truncated at n=1, the low-density expansion of Eq. �6�
truncated at n=2, and the DPI model.
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FIG. 2. The � dependence of a0���, b0���, a1���, and b1��� co-
efficients. The solid lines in �a�, �b�, and �c� represent the exact
dependence of a0���, b0���, and a1��� while the dashed lines repre-
sent the corresponding accurate fits. The exact expressions for
a0���, b0���, and a1��� are given by Eq. �32� of Ref. 26 and Eq. �20�
of Ref. 25, and in Appendix A, respectively. b1��� is given by Eq.
�B10� and shown in �d�.
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ec
DPI�rs,�� =

�a0��� + a1���rs�ln
rs

1 + rs
+ b0��� + 2a0����1 − �1 + rs�−1/2� + b1���

rs

1 + rs

1 + D�1 − �1 + rs
2�−1/4� + E��1 + rs

2�1/4 − �1 + rs
2�−1/2� + F��1 + rs

2�1/2 − �1 + rs
2�−1/2�

. �7�

Here,

F =
b0��� − a1��� + 2a0��� + b1���

f0 − cx���
, �8�

E =
− f1

f0 − cx���
F −

2a0���
f0 − cx���

, �9�

D =
− f1

f0 − cx���
E −

f2 − cs���
f0 − cx���

F +

1

2
a1��� − a0��� − b1���

f0 − cx���
− 1.

�10�

This DPI between the high- and low-density limits rs→0
and rs→� is a smooth analytical function of rs and �. The
numerator of Eq. �7� recovers the high-density analytic ex-
pansion of Eq. �5� with the correct leading coefficients up to
order rs as rs→0 while it tends to the rs-independent value
b0���−a1���+2a0���+b1��� as rs→�. In order to recover the
rs

−1/2 expansion of Eq. �6� in the low-density limit with the
correct leading coefficients up to order rs

−2, and to guarantee
that the constraints for the high-density limit fulfilled by the
numerator are not violated, the denominator is chosen to be a
linear combination of �1+rs

2�m/4, with m=0, �1, �2. There-
fore, unlike previously used formulas, such as Eq. �10� in
Ref. 20, Eq. �7� has the right analytic expansions in the two
asymptotic limits with the correct coefficients of the leading
terms in each of them.

Provided that the exact coefficient b1��� is available, Eq.
�7� uses only exact information on the extreme high- and
low-density limits but no �numerical� information at finite
values of rs. Currently, the exact function b1��� has not been
evaluated yet, except for the value b1�0�=−0.010.28 There-
fore, we estimate the function b1��� in Sec. III.

Figure 1 shows the correlation energy of the unpolarized
and fully polarized uniform electron gas. Using the exact
information b1�0�=−0.010, the DPI matches the high-density
limit expansion for small rs and is regulated smoothly to the
low-density limit expansion for large rs. For the unpolarized
case, no information other than the two limits is used. The
exact information b1�0�=−0.010 also enables us to test the
DPI model, Eq. �7�. Fitting the function ec

DPI�rs ,0�, with
b1�0� as the fitting parameter, to the numerical QMC data of
Ref. 10 yields the value b1

fit�0�=−0.00757564, close to the
exact one and thus corroborating our DPI model.

III. ESTIMATED COEFFICIENT b1(�)

To estimate the full � dependence of b1���, we can employ
our realistic functional form �Eq. �7�� for a prediction. First

we choose the unknown value b1��=1� such that the ferro-
magnetic phase transition of the uniform electron gas occurs
at rs=75, as predicted in Ref. 10. This is the only place
where numerical information concerning finite values of rs
enters our present DPI model. �In the future, b1�1� might be
evaluated rigorously from perturbation theory.� Furthermore,
we choose b1��� such that etot

DPI�rs=75,�� becomes strictly
independent of �. This is a reasonable constraint since it
places the divergence of the spin susceptibility at rs=75,
somewhat as in the construction of PW92. It is however a
simplification of the QMC data of Refs. 13 and 15, which
find a continuous magnetic transition with increasing partial
spin polarization over the range15 50�rs�100. With one
more parameter, we could fit this more complex behavior.

To this end, note that the explicit expression for etot
DPI�rs ,��

is easily solved for b1��� since Eq. �7� has the form

ec
DPI�rs,�� =

I0�rs,�� + I1�rs�b1���
J0�rs,�� + J1�rs,��b1���

�11�

with functions I0, I1, J0, and J1 that are completely specified
by the coefficients in Tables I and II. The detailed expression
for b1��� is given in Appendix B. It is not strictly monotonic
but otherwise reasonably smooth. Figure 2�d� shows b1���
constructed with the accurate fits from Table I for a0���,
a1���, and b0���.

IV. COMPARISON WITH MONTE CARLO ENERGIES

The DPI correlation energies for �=0 and �=1 are plotted
in Fig. 3�a�. Our results are in good agreement with the QMC
data of Ref. 10 and comparable to the ones of Ref. 20, from
which they differ by less than 0.5 mHa.

In terms of the function,

�etot�rs,�� = etot�rs,�� − etot�rs,0� , �12�

the total-energy difference between the fully polarized ��
=1� and the unpolarized ��=0� phases is given by the func-
tion �etot�rs ,1�, which is plotted versus rs in Fig. 3�c�. This
difference is positive for rs�75, indicating that the unpolar-
ized phase with �=0 is stable in this case. For rs�75, in
contrast, the uniform electron gas is predicted to become
ferromagnetic since now the polarized phase with �=1 has
lower energy than the unpolarized one. To make this phase
transition more evident, the behavior around rs=75 is shown
in Fig. 3�d� on an expanded scale. �etot

DPI�rs ,1� is in good
agreement with the corresponding QMC data of Refs. 10 and
15, for the full range of rs values. This is quite remarkable
since we are using no more information on finite rs values
than the value rs=75 of the phase transition itself. By con-
struction, �etot

DPI�rs ,1� stays close to �and asymptotically ap-
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proaches� the value zero as rs→� while the corresponding
function �etot

PW92�rs ,1� from Ref. 20 does not have the correct
low-density �rs→�� behavior �nor do the PZ and VWN
forms�. It appears from Fig. 3�d� that the QMC of Ref. 10 put
the energy of the fully spin-polarized phase too low com-
pared to that of the fully unpolarized phase for rs�75, as
corrected in the QMC of Ref. 15. This may have biased all

the standard parametrizations that relied on Ref. 10, produc-
ing values of f2�1� in Table I that are much too negative.

As a function of �, �etot
DPI�rs ,�� is compared in Fig. 4 to

�etot
PW92�rs ,�� for selected values of rs. For small rs�20 �Fig.

4�a��, there is no big difference between the two models. For
large rs�65, in contrast �Fig. 4�b��, where DPI still predicts
a monotonic � dependence, the corresponding curves using
Ref. 20 become somewhat irregular.

For ���
1, let B�rs ,��� �
��rs�

be the magnetic field that
holds a given weak “magnetization” �. The work �etot�rs ,��
required to build up this magnetization is �0

�B�rs ,���d��
� 1

2
�2

��rs�
. Consequently, the rs-dependent spin susceptibility

��rs� is given by

1

��rs�
=

d2

d�2etot�rs,����=0. �13�

For noninteracting electrons, with etot�rs ,��= ts�rs ,��, this
quantity would be �0�rs�=3� 4

9
 �2/3rs
2. As a function of rs, the

spin susceptibility enhancement, ��rs� /�0�rs�, due to ex-
change and correlation is plotted in Fig. 5. Indicating the
phase transition, it has a pole at rs=75 where expression �13�
is zero by design.

V. SUMMARY

Extending the early work of Wigner,2 we have constructed
the correlation energy per electron of the uniform electron
gas as a pure DPI between exact or nearly exact high- and
low-density asymptotes. The high-density information has
been found entirely from many-body calculations for the
spin-unpolarized case �and could be so found more gener-
ally�. The low-density information comes from a simple, in-
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tuitive, and accurate model for the total energy, one that is
properly independent of relative spin polarization. Our
model ec

DPI�rs ,��, Eq. �7�, is accurate for the full ranges of its
variables rs and �, comparable to the model ec

PW92�rs ,�� of
Ref. 20. In contrast to the latter, however, the DPI model
uses, at least, in principle, �exact� information on the un-
known true correlation energy ec�rs ,�� exclusively from the
extreme limits of high �rs→0� and low densities �rs→��.
Furthermore, unlike VWN and PW92, the DPI model has the
correct analytic structure to all orders in both limits. Pro-
vided that the coefficient b1��� from the high-density �rs
→0� expansion is known, no numerical QMC data for
ec�rs ,�� at finite values of rs are required.

Currently, however, b1��� is known only for �=0. There-
fore, we make a compromise and use the single information
from the QMC study of Ref. 10 that the ferromagnetic phase
transition occurs at rs=75. Forcing in addition that etot

DPI�rs ,��
is independent of � at rs=75, we predict a reasonably smooth
� dependence of b1���.

The correlation energies predicted by our DPI model for
both the unpolarized ��=0� and the fully polarized ��=1�
cases are in excellent agreement with QMC energies. In the
extreme limits rs
1 or rs�50, where the high- and low-
density asymptotes are, respectively, accurate, the DPI model
should be more trustworthy than previous QMC results or
parametrizations thereof. In particular, Fig. 3�d� shows �in
agreement with later QMC calculations15� that the early
QMC �Ref. 10� calculation and the standard parametrizations
thereof put the energy of the fully polarized system too low
relative to that of the unpolarized system at rs�75.

Finally, we point out that it is of great interest to evaluate
the exact expression for b1��� from perturbation theory.
Then, the DPI model of Eq. �7� could be tested for the partly
or fully spin-polarized cases, without relying on any numeri-
cal QMC data. We would expect therefrom an accuracy suf-
ficient for most density-functional applications, as it is from
the widely used parametrizations, although perhaps not suf-
ficient to describe the delicate magnetic phase transition of
the low-density uniform phase. At that point, there might be
some advantage to finding more accurate fluid-phase values
for f0, f1, and f2 from the method of strictly correlated
electrons.43–45

The widely used PZ, VWN, and PW92 parametrizations
of the uniform-gas correlation energy are highly fitted to
QMC data, and do not constrain either the low-density ex-
pansion coefficients or the high-density ones a1 and b1 �al-

though our Table I shows that PW92 extracted reasonable
estimates of a1 and b1 from QMC data�. It is gratifying that
the method of constraint satisfaction used to construct many
standard density functionals16,17,46 can also be used to con-
struct their uniform-gas input.
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APPENDIX A: EXACT COEFFICIENT a1(�)

For �=0, a1��� is the sum of Eqs. �16� and �22� in Ref. 27.
From Eqs. �10� and �19� there, its � dependence can be ob-
tained by spin scaling of the functions Qq�u�, given there by
Eq. �11�, and Qrs

10�q , iqu�, given by Eq. �A3� in Ref. 29. The
result is

a1��� = −
3�

4
5

−�

�

du

� �4R�u,��2R1�u,�� − 
R�u,��R�1��iu,��� .

�A1�

Here, �= � 4
9
 �1/3 and

R�u,�� =
1

2
�R�x1u�

x1
+

R�x2u�
x2

� ,

R1�u,�� =
1

2
�x1R1�x1u� + x2R1�x2u�� ,

R�1��iu,�� =
1

2
�R�1��ix1u� + R�1��ix2u�� . �A2�

In the above expressions, x1= �1−��−1/3, x2= �1+��−1/3, and

R�u� = 1 − u arctan�1/u� ,

R1�u� = −



3�1 + u2�2 ,

R�1��iu� =
4

1 + u2 ��1 + 3u2� − u�2 + 3u2�arctan�u�� .

�A3�

R�u� and R1�u� are given by Eqs. �13� and �14� in Ref. 27.
R�1��iu� is given by Eq. �B3� in Ref. 20. Upon numerical
integration in Eq. �A1�, we find a1�0�=9.2292�10−3 and
a1�1�=3.125�10−3 �cf. Fig. 2�c��, in agreement with Ref.
20; see Appendix B there.

APPENDIX B: EXPRESSION FOR THE CONSTRUCTED
b1(�)

The functions I0, I1, J0, and J1 of Eq. �11� in Sec. III can
be written as
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FIG. 5. The spin susceptibility enhancement vs rs.
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I0 = �a0��� + a1���rs�ln
rs

1 + rs
+ b0���

+ 2a0����1 − �1 + rs�−1/2� , �B1�

I1 =
rs

1 + rs
, �B2�

Jn = �1 + �− 1�n�/2 + Dn�1 − �1 + rs
2�−1/4� + En��1 + rs

2�1/4

− �1 + rs
2�−1/2� + Fn��1 + rs

2�1/2 − �1 + rs
2�−1/2�,n = 0,1.

�B3�

Here

F0 =
b0��� − a1��� + 2a0���

f0 − cx���
, �B4�

E0 =
− f1

f0 − cx���
F0 −

2a0���
f0 − cx���

, �B5�

D0 =
− f1

f0 − cx���
E0 −

f2 − cs���
f0 − cx���

F0 +

1

2
a1��� − a0���

f0 − cx���
− 1.

�B6�

F1 = 1/�f0 − cx���� , �B7�

E1 = − f1F1
2, �B8�

D1 = f1
2F1

3 − �f2 − cs����F1
2 − F1. �B9�

By the construction for b1��� in Sec. III, etot
DPI�rs

t ,��
=etot

DPI�rs
t ,�=0�=−0.00995977 Ha at rs

t =75. Therefore, b1���
can be expressed as follows:

b1��� =
I0�rs

t ,�� − ec
DPI�rs

t ,��J0�rs
t ,��

ec
DPI�rs

t ,��J1�rs
t ,�� − I1�rs

t�
�B10�

with

ec
DPI�rs

t ,�� = etot
DPI�rs

t ,� = 0� −
cs���
�rs

t�2 −
cx���

rs
t . �B11�
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