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A method for calculation of band structure has been proposed based on the Green’s function theory and local
sampling. Potential energy in the Hamiltonian of Schrödinger’s equation is approximated with a series of
sampled Dirac delta functions weighted by appropriate factors. These factors are found from multipole expan-
sion of atomic potentials in the crystal lattice, with considering effects such as screening. Fourier transform
was then applied to describe the wave function in reciprocal space. Sampling can be uniform or nonuniform
throughout space; however rate and interval optimization are essential. Theory was implemented for silicon,
germanium, and graphene sheet individually while results were compared with the ab initio nonlocal pseudo-
potential method. Also for silicon, the pseudopotential used in orbital-free density-functional theory was
employed as a suitable sampling source. Phase variations in the dispersion formula are analyzed, introducing
adapting parameters to improve compatibility with ab initio results. Local analysis with low order truncation in
real space reduces implementation time while giving acceptable results.
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I. INTRODUCTION

Rapid development of nanostructured materials demands
different methods of obtaining the energy band structures
while preserving accuracy and efficiency. Extending applica-
tions of semiconductor crystals in nanoscale electronics and
their dual photonic1 and phononic2,3 structures are enforcing
to provide new and efficient methods to acquire band struc-
tures in order to characterize phenomena such as particle
transport or band-to-band transitions, new dispersion effects,
etc. In particular, there is a need to provide insight into novel
nanostructures such as the two-dimensional �2D� graphene4,5

and graphane,6 one-dimensional �1D� carbon nanotubes
�CNTs�, and the zero-dimensional fullerene and carbon
nanotori.7–9

At present, numerous methods for extraction of electronic
band structure are in use. There exist successful methods
such as density-functional theory �DFT� and quantum Monte
Carlo �QMC� methods. Although DFT has the ability to
simulate precise charge density10 and much more efficient
with respect to other ab initio methods, it may still be
regarded as a relatively complicated approach. Thus over the
past decades analytical and numerical methods for calculat-
ing the energy dispersion have been developed; these include
the free-electron approximation �nearly free-electron
method�,11 cellular method,12 tight-binding method,13,14

Wentzel-Kramers-Brillouin approximation,15 scattering
matrix method, QMC,16 DFT,17–19 Hartree-Fock-Slater
approximation,20 and finally the so-called empirical pseudo-
potential �EMPS� method.21 DFT calculations are normally
equipped with the augmented plane wave22–24 representation
of orbitals. In nearly all circumstances, the adiabatic or the
so-called Born-Oppenheimer approximation25,26 is used,
which allows neglecting the momentum of heavy nuclei.
Also wavelet-based methods are introduced in photonic to
calculate band structure of 2D photonic crystals.27,28 This is
while envelope function and k ·p perturbation methods are
widely used for design and analysis of quantum well29 and
dot devices.30

In this paper, we present a method for calculation of the
electronic band structure based on the combination of one-
particle Green’s function method and sampling from the
electronic potential. Sampling is done in the physical space
by using Dirac’s delta functions as the basis of expansion in
the approximation of electronic potential. The sampled effec-
tive potential can be simply the atomic potential with Cou-
lomb screening while the effects of the nearest neighbors are
included. We have however noticed that for some materials
this construction of effective potential could be inappropri-
ate. In such cases, the ab initio local pseudopotentials
�AILPS� �or other sources as discussed later� may be used as
an external input for the electronic potential to the code.
Results of both models are compared with the nonlocal
pseudopotential including spin-orbit interaction. When the
atomic potentials are used subject to screening, more than
one fitting parameter may be necessary for reproduction of
accurate results. Furthermore, the series expansion of the
one-particle wave function must be truncated; these need
tuning like what is done in EMPS. However, only incorpo-
ration of the first few terms turns out to be usually sufficient.

In three-dimensional �3D� problems, plane-wave methods
lead to multidimensional matrices with orders greater than
two, which need addressing by typically more than two in-
teger indices. For the purpose of numerical computations, it
is common to map these matrices onto square matrices with
the order of two, which result in very large dimensions and
diminished efficiency of energy eigenvalue extraction. The
problem is overcome here by increasing sampling rate and
decreasing truncation number; this leads to a more local
analysis of the lattice where eventually only one primitive
cell is sampled as the building block of periodic system. This
approach has also the capacity of employing the spatial po-
tential obtained through other approaches, such as ab initio
tables which give discrete data of charge density.

We calculate the band structures of Si, Ge, and graphene
sheet by using the proposed method. For Si, the AILPS result
was used, which is a modification of Kohn-Sham �KS�
theory. We observed the errors to decrease in comparison to
Ge while truncation number was held small. For the
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graphene, sensitivity due to variation in delta function
weights, sample locations, and adapting parameters are as-
sessed. Results are comparable with ab initio and third-
neighbor tight-binding curves.

The organization of this paper is as follows: In Sec. II we
discuss the method used to sample the potential in real space.
Then in Sec. III we proceed to describe the expansion of
Bloch waves and the Green’s function approach. The next
section presents the analytical derivation of dispersion equa-
tion. Results and example test cases are presented in Sec. V
and finally the conclusions are drawn. Furthermore, two ap-
pendices �Appendices A and B� present a theorem on Dirac
deltas and also discuss a method for the approximation of
error in evaluation of potential coefficients.

II. POTENTIAL SAMPLING

Approximation of the energy subbands is directly con-
nected to the assessment of the eigenvalues for the well-
known Schrödinger’s equation31

� �2

2m
�2 + �����r� = V�r����r� , �1�

where ���r� is the probability wave, V�r� represents the
potential-energy operator, and � denotes the total energy. The
electronic potential operator V�r� has a crucial role in our
analysis and needs to be appropriately dealt with, otherwise
inaccurate input matrices in the computation are expected.
Usually, potential well of each closed shell in crystal, espe-
cially for ionic structures, is modeled by an effective poten-
tial magnitude. This effective value weights a delta function
located at a definite point, where the nucleus or closed-shell
pointing vector resides.32 This model needs simple simula-
tion steps and yields satisfactory results, even in comparison
to precise approaches such as ab initio. This holds true, in
particular, for substances which constitute weak orbital over-
laps, e.g., graphene,4,5 where overlap integrals of tight-
binding method are small. Also the arrangement of atoms in
lattice sites and their potential effect upon each other is in-
ferior.

A. Closed shell potential well

One needs to have the electronic potential and charge den-
sity in a crystal at hand prior to sampling. The inherent dif-
ficulty of determining the correct shape of potential and
charge distributions lies within the fact that their exact forms
are not known unless a self-consistent solution of Poission’s
and Schrödinger’s equations has already been performed but
this means that the band structure should already have been
available before. Hence, only an externally provided nonself-
consistent, yet careful, choice of potential can lead to a more
efficient computation than methods such as DFT.

To this end, several choices for a suitable model potential
may be realized by either integrating the Poisson’s equation
based on an assumed form of charge distribution or directly
choosing a prescribed form for the effective potential. Pre-
scription of an inaccurate charge density would result at best
in a partially screened Coulomb potential. It is also possible

to use the potential resulting from Wang-Parr’s algorithm.33

However, this method is iterative and too difficult to be
practical for the periodic structures of our interest. The other
alternative is to employ any of the available
pseudopotentials,10 which replace the strong Coulomb poten-
tial of the nucleus and surrounding electrons with an effec-
tive potential. The radial dependence of pseudopotentials is
in such a way that they tend to behave like the Coulomb
potential of an ionic core at large distances away from the
nucleus but deviate significantly from the 1 /r dependence at
shorter distances. AILPS and ab initio nonlocal pseudopoten-
tial �AINLPS� are known to give rise to satisfactory conse-
quences. There exist also empirical pseudopotentials, which
receive data for some fitting parameters from experiments. It
is noteworthy to mention that there exist models, such as the
generalized exponential cosine-screened coulomb �GECSC�
potential,34 which includes an exponentially collapsing pro-
file with taking effective interaction in many-body environ-
ment. GECSC is generally based on dividing potential into
shape-invariant and perturbed terms. Then bound-state ener-
gies and the corresponding wave functions are estimated for
a definite perturbation order.

Charge density and potential contours are also available
by ab initio output tables but they do not provide the suitable
database in some cases. For example, theoretical charge den-
sity of Si is normally investigated through local-density ap-
proximation �LDA� and generalized gradient approximation
methods. Zuo et al.35 performed a through Hartree-Fock the-
oretical study of charge density of silicon. They compared
the theoretical values with the exchange and correlation po-
tentials constructed from the experimental data on the struc-
ture factors of silicon and observed good agreement �cf. Sec.
II B�. However, this does not imply that they can be readily
applicable to another method. In addition, such kinds of
analyses are not available for a wide range of materials.

So we need to take on an initial yet simple sampling pat-
tern, then we introduce some tuning factors to reproduce the
appropriate potential profile. For this purpose, we expand the
electrostatic potential on the spherical multipoles as

�0
j �r� =

1

�sem
�

�
�

�=−�

�
1

2� + 1
���

Y����,	�
�r − r j��+1 , �2�

where �, ��N, and Reffective
a0 corresponds to an effective
atomic radius larger than the Bohr radius a0. �0�r� is the
spatial electrostatic potential due to jth atom. Also, Y�� ,	�
denote the spherical harmonics and �sem is the spatial aver-
age of material permittivity. It should be noted that since a
background permittivity is included by incorporating �sem,
then the screening effect is not totally ruled out; part of its
contribution has actually been included in an averaged fash-
ion. ��� coefficients would then be36

��� =� ��r��Y�����,	��r��d3r� �3�

in which ���= �−1�����

�

and ��r� is the charge-density op-
erator. The corresponding operator ��r� in the case of a
single closed shell and its valence electrons is
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��r� = Qnuc��r − rnuc� − �
i

e��r − rnuc − rie� , �4�

where Qnuc�R+ is the effective nucleus charge and ri, i
�N, denotes the position vector of electrons measured with
respect to the nucleus. It is a common practice to consider a
screened Coulomb potential such as those utilized in some
pseudopotential models.34,37 Conventional screenings in
plasmons or electron gas are typical examples of deviation
from the primitive 1 /r potential model. In our case, electrons
around the nucleus may contribute significantly to this effect,
specifically for metals. Using Thomas-Fermi formula for
�̃��� �dielectric static function in � space�, which relates the
Fourier transform of spatial charge to the generalized elec-

trostatic potential ̃��� we have

̃�����2 + ks
2� = ����, ks = 4�3n0/��1/3a0

−1 �5�

or

− �2�r� + ks
2�r� = ��r� , �6�

in which ks is referred to as the Thomas-Fermi screening
length. Also, n0 is the intrinsic carrier concentration which is
dependent on the temperature. We furthermore define D�r�
=−�0�r�. Green’s function of the above differential equa-
tion, which also includes screening effect, takes the form

T�r,r�� =
1

�r − r��
exp�− ks�r − r��� , �7�

So, the generalized electrostatic potential is obtained with the
convolution of T�r ,r�� and ��r� as

�r� = ��r� � T�r,r�� . �8�

This may be expanded as

�r� = �sem��r�

= ��r� � �
�

�
�=−�

� � 4�

2� + 1

r�
�

r

�+1Y��

� ���,	��Y����,	�

�exp�− ks�r − r���	 , �9�

where r�=min�r ,r�� and r
=max�r ,r��. This expression
combines both the multipole model and screening effect for
an average spherical charge density.

In the case of our proposed method, however, the poten-
tial energy due to atoms is given by

V�r� =
1

2�
j
�

r��rj

��r − r���0
j �r��d3r�. �10�

Obviously it is not usually possible to find a closed-form
expression for V�r� except in some particular cases, such as
point charge assumption for ��r�. So one may choose to
estimate Eq. �10� numerically at specific locations, where
sampling takes place. We later employ this method for the
2D graphene and 3D Ge. This method, however, fails to
reproduce convincing results for some materials, where other
models must be borrowed from more precise methods, like

what is employed for Si in Sec. VI. The local pseudopoten-
tial �LPS� obtained by LDA assumes that the total crystal
potential is given by the sum of ionic potentials estimated at
a definite point �an assumption which we used above too�.
But the profile must also be modified to contain proper de-
viations from the simple 1 /r model. In LPS, electrostatic
potential is separated into estimation of two series which
sweep real and reciprocal domains �Fourier space�. These
series must be evaluated through Ewald summation routine
to care of the convergence.38

While LPS is not convincing for structures where core-
valence exchange and correlation are significant but it can
describe core-valence interactions for variational analysis.
Also LPS should be enhanced to nonlocal pseudopotential
for approaches which consider moving particles such as
Monte Carlo.15 However for single-particle simulations
where many-body effects is usually neglected, LPS still
works fine.

B. Many-body effects

The nuclei of the electronic lattice contribute to a static
potential which shows itself in Hamiltonian operator for all
Ne electrons in the system. In this context, DFT is a powerful
method in description of interacting electrons under influ-
ence of such potential. Also, for bulk crystals the KS-DFT
modified by Wang-Parr’s approach33 leads to stable compu-
tations.

In the standard DFTs, the effective single-particle poten-
tial is defined as a partial derivative of energy functional with
respect to the charge density and the exchange-correlation
potentials or many-particle interactions are added to the Cou-
lomb repulsion. Generally, noninteracting kinetic energy
contains much larger magnitudes than the exchange and cor-
relation energies. So with utilizing KS-DFT, one can de-
scribe the system with a set of Ne one-electron orbitals while
they fulfill Ne coupled KS equations. In Wang-Parr’s modi-
fication of this method, a self-consistent procedure is intro-
duced to characterize the effective through an iterative com-
bination of LPS with KS-DFT.

Both reciprocal and real-space AILPS charts due to KS-
DFT approach are achieved, especially for Si.35,39,40 In fact,
one-particle KS-DFT eigenvalues are widely used in band-
structure calculations. These eigenvalues, which convention-
ally appear in KS formulation, fulfill an orthonormality con-
dition with no apparent physical significance. This means
that, if we were able to estimate the aforementioned
exchange-correlation potential, there would be no justifica-
tion in explaining of eigenvalues as being exact energy quan-
tities to add or extract an electron to or from system. This
yields that DFT energy gaps are normally lower than experi-
mental amounts. So even if DFT results are used for sam-
pling, still some fitting parameters should be imposed for
precise results; this is because one would normally expect
that those problems associated with DFT would be also in-
herited by the present approach.

Practically, Coulomb DFT is known to have reasonable
elicitation of average charge density; this is because of the
dominant contribution given by Hartree-Fock in contrast to
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correlations �perhaps these correlations can be used as cor-
rections, however not in the case of influential electron-
electron interactions�. Since discussion about features of this
theory is not the main motivation here, only the relevant
results will be considered in Sec. V B.

C. Sampling approach

We approximate the effect of the electronic potential by a
3D array of weighted 3D Dirac’s delta functions ��3��r�. A
similar idea has been earlier used by Hsu and Reichl,32 who
employed regularized delta functions in place of the crystal
potential; they replaced each atom with one delta function
and observed reasonable results for graphene and carbon
nanotubes. Instead of one sample per atom, we take many
samples from the effective potential inside the unit cell to
reproduce the potential with more accuracy. It is possible to
use both uniform or nonuniform grids. For addressing sam-
pling points, Cartesian and polar systems are exchangeable,
however, a uniform sampling with perpendicular or radial
intervals would provide different regimes of phase varia-
tions. As it will be discussed, optimization of grid size will
be necessary to ensure a high degree of accuracy; this leads
to definition of proper fitting parameters. Weights are simply
the value of the effective potential at the points of sampling,
but they can scale altogether according to a constant scaling
factor �SF�, to be discussed below. The Dirac’s delta func-
tions ��3��r� have a flat spectrum but in the reciprocal space,
the wave function is fortunately multiplied by the Fourier
transform of the Green’s function, which decays quickly by
increasing distance from the center of the reciprocal space.
Hence, in practice we only need to limit the number of sum-
mation terms, which are being taken into account.

To ensure an acceptable and fast simulation process, four
fitting parameters are defined: the total number of samples
�ns�, the adjustment factor �AF�, the interval number �N�,
and the SF. The AF distinguishes the boundaries of sampling
domain, here referred to as the S-domain. We define the AF
as the ratio of the physical width of the S-domain to the
lattice constant; in practice, the AF does not exceed 0.5. The
AF tunes the density of the samples �referred to as the reso-
lution�, intervals, and the exceeding phase. The N denotes
the number of intervals along each coordinate. Hence, ns is a
function of the AF, N, as well as the geometrical shape of
primitive cell. Generally speaking, we evaluate the AF to
enforce the S-domain not to overshoot cell region, then AF
and N together would determine the resolution. The SF in-
creases or decreases all sample weights simultaneously, these
weights are solely dependent on the potential profile.

The sampling domain is same as the primitive cell, which
constitutes the whole crystal through the translation vectors

� = map
1 + nap

2 + pap
3 �11�

in which m, n, p�N are limited by simulation boundaries or
crystal dimensions and ap

1 ,ap
2 ,ap

3 represent primitive cell’s
basis vectors. In each cell, we can arbitrarily choose sam-
pling points but it is recommended to select samples which
are located within appropriate intervals. This method helps
us to grasp a reasonable image of the actual profile based on

the number of closed shells in each cell. Additionally, loca-
tions of closed shells measured from the origin are denoted
by Sp

j , where the index j sweeps the number of atoms in the
cell. We select the position of origin, in such a way to pro-
duce the highest possible degree of symmetry, to simplify the
coding process. Normally, it is suitable to locate the origin of
system at the center of the cell. Finally by introducing the
destination vector Rp

ns, local sampling points around the nu-
clei are addressed, where ns distinguishes the sample index.

The necessity of regularizing the location of samples is
connected to the expression for dispersion equation �cf. Sec.
IV�. Expectedly, connecting vector from origin to the sam-
pling point is the sum of two connection and destination
vectors plus periodicity vector,

r�ns = r� j� + Rp
ns = � + Sp

j + Rp
ns. �12�

Nonuniform sampling can be then utilized to collect data
from regions with high magnitude or sharp gradients in elec-
tronic potential, which are generally distant from atoms con-
taining less information than the nearby points. Continuous-
time-domain methods for linear systems are available which
anticipate abrupt changes and appropriate intervals.41 Such
methods could be exploited only for 1D problems, where an
analogy to the time coordinate exists, however for higher
dimensional structures these issues must be fully resolved.

III. BLOCH WAVE EXPANSION AND GREEN’S
FUNCTION

Application of Green’s functions in calculation of energy
bands, although already known but has not been fully devel-
oped to its full capacity. Nonsingular Green’s functions, ex-
tracted with no restriction on crystal potential, are common
studies performed in this case.42 Here, we introduce the idea
of merging Green’s function formalism with delta-based
sampling and is successfully done as per our knowledge. By
the Lippman-Schwinger equation the whole wave function
divides into the summation of two parts: �a� free solution
from Schrödinger’s equation and �b� the retarded Green’s
function solution obtained from convolution with the product
of the wave function and the external potential. Here, we
formulate the Green’s function in the reciprocal domain
while in real-space boundary conditions must be satisfied
with respect to Dirichlet or Newmann restrictions.

It is known that the Bloch wave functions as the eigen-
functions of the periodic real space are proportional to prod-
uct of a linear phase term by a periodic function �eliminating
scattering effect� as

���r� = exp�− i� · r����r� , �13�

���r�ns� = ���� + Sp
j + Rp

ns� = ���Sp
j + Rp

ns� . �14�

The aforementioned periodicity, however, does not include
just potential term but the entire Hamiltonian. Please note
that the treatment of propagating Bloch waves in mass-
dependent media, such as superlattices, is different and not
presented here. Usually, envelope function approximation to-
gether with k ·p perturbation approaches are used in such
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cases.29,30 Now we express the Schrödinger’s equation in Ry-
dberg units

�2���r� + ����r� = �
�

Vp�r����r� , �15�

where Vp�r� is related to the potential distribution in the sub-
domains or primitive cells �index p pertains to primitive�.
For the Bloch wave function, Eq. �15� appears with an
imaginary shift in gradient


��− i��2 + �����r� = �
�

Vp�r����r� . �16�

We can rewrite Eq. �16� using delta function expansion of Vp

Vp�r� = �
j=1

L

�
ns=1

N

Cns�
�3��r − r�ns� , �17�

where L�N and N�N denote total number of atoms and
sampling points in a subdomain, respectively, and Cns�R is
the normalized coefficient corresponding to potential value
in the appropriate point. It is evident that we can reconstruct
Eq. �16� based on the Green’s function theory in the form of

���r� = − G��r,r0� � 
V�r����r�� , �18�

where G��r ,r0� satisfies


��− i��2 + ��G��r,r0� = − ��3��r − r0� . �19�

This shows that the impulse response of a system with the

Hamiltonian Ĥ= ���−i��2+� is G��r ,r0�. Thus, the re-
sponse of a similar system with the same Hamiltonian to
V�r����r� is given by

���r� = G��r,r0� � �
��

�
j=1

L

�
ns=1

N

Cns�
�3��r − r�ns����r� ,

�20�

�� = map
1 + nap

2 + pap
3 m1,n1,p1 � N . �21�

Now we substitute Fourier series expansion as the basis of
���r� in Eq. �20�. This results in

���r� = �
�

�̃� exp�i�� · r�

= − G��r,r0� � �
��

�
j=1

L

�
ns=1

N

�
Cns�
�3��r − r� j� − Rp

ns����Sp
j + Rp

ns�� , �22�

�� = 2��mbr
1 + nbr

2 + pbr
3� , �23�

where �� denotes the transfer vector and br
1 ,br

2 ,br
3 represent

the conventional basis vectors in the reciprocal lattice. Due
to the periodicity of ���r�, its Fourier transform could be
achieved simply with respect to the expansion coefficients.

IV. DISPERSION EQUATION

Fourier transform of the periodic envelope function of the
Bloch wave can be found by summing Fourier series coeffi-

cients multiplied by the corresponding delta functions in re-
ciprocal space,

F����r���� = �2��3�
�
��̃� �

�=1

N=3

���� − �� · ap
��	 .

�24�

Exploiting this transformation in Eq. �22� gives

�2��3�
�
��̃� �

k=1

N=3

���k − �� · ap
k�	

= − G̃���,r0� � �
��

�
j=1

L

�
ns=1

N

Cns���Sp
j + Rp

ns�

� exp
− i� · ��� + Sp
j + Rp

ns�� �25�

in which G̃��� ,r0�=F�G��r ,r0�. Referring to Eq. �19�,
F�G��r ,r0� is calculated as

G̃���,r0� =
− exp�− i� · r0�

� − �� − ��2
, �26�

lim
�→�

�
−�

�

�G�r,r0��2d3r = lim
�→�

�2��−3�
−�

�

�G��,r0��2d3� � � .

�27�

With a realistic assumption for energy eigenvalues of a
material bulk, it is convincing to have �=K2=−k2�0, K
= ik �in Rydberg units�. This is due to the potential wells with
negative values, which enforce Cns coefficients to be nega-
tive, too. Note that in Eq. �25� the exponential term on the
right-hand side can be divided into separate expressions
�exp
−i� · �Sp

j +Rp
ns�� and exp
−i� ·���� and the first has no

dependence on ��. Finally, applying the expansion theorem
in Appendix A results in

�2��3�
�
��̃� �

�=1

N=3

���� − �� · ap
��	

= − G̃���,r0� · �2��3�
��

�
j=1

L

�
ns=1

N

��Cns���Sp
j + Rp

ns�exp
− i� · �Sp
j + Rp

ns��

� �
�=1

N=3

���� + ��� · ap
��	 . �28�

If m ,n , p and m1 ,n1 , p1 sweep a symmetric range such as

−C ,C�, we would have delta functions on both sides while
their respective weighting coefficients must equate. Also no-
ticing the characteristics of the delta function, � should be
replaced with �� therein. This is because �1=�� ·ap

1=2�m,
�2=�� ·ap

2=2�n, and �3=�� ·ap
3=2�p must hold. Hence
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�̃� = − �
j=1

L

�
ns=1

N

Cns���Sp
j + Rp

ns�G̃����,r0�

�exp
− i�� · �Sp
j + Rp

ns�� . �29�

The Fourier transform of the Green’s function therefore is

G̃����,r0� =
exp�− i�� · r0�
k2 + ��� − ��2

. �30�

Equation �29� would be more meaningful if we rewrite �� at
sampling points, again based on the Fourier series expansion
as

���Sp
j + Rp

ns� = �
�

�̃� exp
i�� · �Sp
j + Rp

ns�� . �31�

Then

�̃� = −
1

k2 + ��� − ��2�� �
j=1

L

�
ns=1

N

��Cns�̃� exp�− i�� · r0�exp
i�� · �Sp
j + Rp

ns��

�exp
− i�� · �Sp
j + Rp

ns�� , �32�

where �=m1ap
1+n1ap

2+ p1ap
3. The result would lead to a sys-

tem of equations which constitutes the expansion coefficients
that are assembled from Eq. �32�. Within a bulk material
containing no defects, the periodic part of propagating wave
attains sinusoidal configuration for a specific wave vector
and this can be the first verification to examine the solution
to this system of equations. Of course, this rule holds true
only for single-element materials and must be revised for
alloys and compounds. Another perception is the rate of de-

cay for �̃� with respect to growth of m, n, and p. Truncation
is reliable only when out-of-range coefficients are small
enough.

In the above summation, other than sample weights and
Fourier series coefficients, there are linear phase terms de-
pendent on Sp

j +Rp
ns, ��−��, and �� ·r0. This normally re-

sults in a slight dependence of results on the absolute choice
of origin since the summations have to be truncated and
imaginary parts may not completely cancel out. Hence, the
sampling vector in a primitive cell plays a critical role in
determination of final eigenvalues. Especially as mentioned
before, the choice of the cell’s origin in such a way to result
in the maximally symmetric Sp

j vectors is particularly benefi-
cial if our truncation limits of m ,n , p and m1 ,n1 , p1 are sym-
metric or belong to 
−C ,C�. Normally we are able to set r0 at
the cell’s midpoint, causing zero phases as a desirable con-
dition. On the other hand if the magnitude of destination
vector Rp

ns is kept small enough, the additional phase made
by ���−��� ·Rp

ns introduces a slight variation in the real part
of coefficients. This additional phase, for a wide range of Rp

ns

would even be comparable with the phase produced by
���−��� ·Sp

j . This affects the real parts of the coefficients in
turn. This is the case for the farther sampling points within
the primitive cell in contrast to the atom’s position. The ad-
justment factor introduced in Sec. II C tunes this phase varia-

tion maxima as well as sample intervals. This adjustment
factor may also be assumed as a fitting parameter to empiri-
cal results.

Now, the first summation in Eq. �32� can be decomposed
into three scalar summations. Thus,

�̃mnp = −
1

k2 + ��mnp − ��2�m1

�
n1

�
p1

�
j=1

L

�
ns=1

N

��Cns�̃m1n1p1
exp�− i�mnp · r0�

�exp
i��m1n1p1
− �mnp� · �Sp

j + Rp
ns�� . �33�

To extract the energy dispersion equation after finding all

�̃−C�3�,. . .,C�3�, we consider Eq. �13� and recast for ���r� to
obtain

���r� = �
�

�̃� exp
i��� − �� · r� �34�

in which �̃� or �̃� for all m ,n , p ,m1 ,n1 , p1� 
−C ,C� are
definite and estimation of ���r� is just restricted to a substi-
tution. At this stage, only energy eigenvalues are found. In

the next step we focused on estimating �̃mnp coefficients to
find the corresponding Bloch eigenfunctions. For this pur-
pose, it is sufficient to rewrite Eq. �32� in the form

� · �̃� = ��� − ��2�̃� − �
�

a�,��̃�, �35�

where

a�,� = �
j=1

L

�
ns=1

N

Cns exp�− i�� · r0�exp
i��� − ��� · �Sp
j + Rp

ns�� .

�36�

In fact, Eq. �35� may be regarded as the final formula for
eigenstates.

V. RESULTS AND DISCUSSIONS

Here we present the computation results for three widely
used crystals: silicon, germanium, and graphene. In all three
cases, we notice good agreement with other methods.

Along with the four fitting parameters defined in Sec.
II C, we also define the truncation number �C� which deter-
mines the dimension of the final matrix. It is noteworthy that
the overall computational time and the accuracy of results
depend on a tradeoff among AF, ns, and C. We also define
the number of close neighbors �ncn�, which directly influ-
ences the potential profile and thereby the sample weights. In
practice, the major bottleneck which limits the computational
efficiency is the rapid growth of the dimension of matrix
representation of Eq. �33�.

A. Germanium in diamond structure

For Ge with a diamondlike structure �simply achieved by
combination of two displaced fcc lattices with a separation of

a/4,a/4,a/4��, the primitive cell can be defined by consider-
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ing the fcc’s cell transmitted by a 
a/8,a/8,a/8� transfer vec-
tor. For diamond, connection vectors are Sp

1

= 
3 /8,3 /8,3 /8�a and Sp
2=−Sp

1. When origin is located at the
midpoint of the cell, maximum phase symmetry in Eq. �33�
is attained.

Here, we utilized the multipole expansion model of
screened Coulomb potential for Ge �in contrast to the AILPS
source for the case of Si in Sec. V B�. Nevertheless, the
results for Ge demonstrate slight deviations in most regions,
even with a small truncation number. Applying a uniform
sampling with AF=0.1, N=4, ns=125 �total 250 samples in
primitive cell�, and ncn=24, the discrete potential distribu-
tion is obtained with similar intervals such as illustrated in
Fig. 1.

As mentioned, increasing ns with a fixed AF enhances the
sensitivity of sampling to potential degree of diversity. This
can be interchangeably compared to truncation number. Ob-
viously low order truncation for a reasonable reconstruction
of the local potential in the lattice calls for denser sampling.
In addition, the AF must be so tuned that the sample weights
also contain weak contributions from distant points away
from the core. Another condition may be recognized while
the magnitudes of samples are examined with realistic ab
initio results. Although deviations in Cns are not followed by
the same scale errors in the band structure but it may have
drawbacks on the effective-mass tensor. So SF variations are
not allowed in a wide range.

To enhance the resolution, N was enlarged to ten yielding
2662 �2�113� samples in cell. In Fig. 2 the potential well in
S-domain is shown for a Ge atom. As it is demonstrated, the
profile represents the deviations from the ordinary Coulomb
potential due to exponential term in Eq. �9�. In Fig. 2�b� the
AF is changed from 0.25 to 0.1. Not only the resolution is
enhanced for a constant value of N=10 but also X and Y
�and Z� maxima decrease. Hence, the new interval should be
0.4 times the previous one; this guarantees the points at the
depth of the well to be also sampled.

Decay regimes for series coefficients of Bloch waves are
shown in Fig. 3 for C=2. The vertical axis denotes the norm
of the eigenvector, which is plotted with respect to the first
five eigenvalues. The horizontal axis is the number corre-
sponding to the variations in the indices m, n, and p �for C

=2, 125 combinations of m, n, and p is available�, being here
denoted by M. A similar regime could be obtained for C=3

with the total number of 343. Distributions for �̃�
1,. . .,5 are

symmetric relative to 62th point on horizontal axis. But what
is important here is the diminishing of maxima for M�20
and M
100. This means that we can be quite confident that
for m ,n , p
��Z, the coefficients of Eq. �32� are adequately
weak.

FIG. 1. Spatial location of samples �ns=125� and discrete po-
tential distribution �delta weights� are shown for a germanium
closed shell with lattice constant of 5.66 Å along principal coordi-
nates. AF=0.1, N=4, and ncn=24 �potential is in the range of mil-
lielectron volt�. Maxima of X, Y, and Z equals to N / �N+1�AF·a or
approximately 0.453 Å while size of intervals is AF·a / �N+1� or
0.1132 Å.

FIG. 2. �Color online� �a� Spatial profile for potential of Ge
closed shell containing three z contours. AF=0.1, N=10, ns
=1331, and ncn=24 �potential is in the range of millielectron volt�.
�b� Changes in S-domain, resolution, and interval with respect to
AF reduction. For an AF greater than 0.25, S-domain overshoots
primitive cell boundaries.

FIG. 3. Eigenvectors relevant to the first five energy bands
�dots� for C=2, AF=0.1, ns=1331, and ncn=24. A symmetric dis-
tribution would be obtained if we shift the chart horizontally by
−62. Coefficients less than 20 �and over than 100� are close to zero.
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Ge energy bands are here extracted, accompanied by no
correction, except regularizing the AF. We utilized the same
profile as shown in Fig. 2. Since except the screening effect
no other phenomenon was supplemented to the multipole
expansion, this degree of accuracy is quite acceptable and in
fact surprising. The band structure of Ge for the first six
eigenvalues is shown in Fig. 4. We note that for a low trun-
cation number �C=3� and matrix representation with the di-
mension of 343�343, noticeable deviations just occur at �6c
and L6c �see Table I�. For this specific truncation number, the
upper band turns aside further than five lower bands as it is
obvious on the L-�-� path or X point; increasing C compen-
sates these deviations. Furthermore, ns has a saturation limit.
In other words, above the saturation limit, decreasing inter-
vals does not correct curvature any further and it just slows
down the overall simulation. With the choice of AF=0.1 and
ns=125, the gap is found to be about 0.74 eV, which is much
closer to the actual value of 0.67 eV than the value predicted
by N-L pseudopotential of 0.9 eV. Also for an ns larger than

1331, the AF must be decreased to attain the same result.
This is connected to the total energy gathered in the
S-domain, which is tunable with AF, ns, and SF.

Numerical data at the high-symmetry points are listed in
Table I, which compares to the AINLPS including spin-
orbital interaction.43 In a simple way, we may estimate the
relative error by subtracting data from two methods in Table
I and then dividing by the average quantity. The mean value
of defined error for all symmetry points is estimated to be
10.32% to which the upper band has the largest contribution.
The error collapses with the growth of truncation number but
this growth from another other point of view weakens the
locality of analysis. Anyway, we can assert that applying
local sampling method requires much smaller matrices than
the common plane-wave method and best results are attained
by C=3.

B. Silicon in diamond structure

Silicon is regarded as the main material with lots of ap-
plications in the semiconductor technology and has been ex-
tensively analyzed through the concept of atomic charge den-
sity by DFT theories. For Si, modeling of each closed shell
with one unique delta function requires various adjustments
to improve the fitness with pragmatic patterns. So obtaining
a good sampled profile with numerous weighted delta func-
tions needs tuning, too; the difference originates from that
with a given profile, changing one delta weight leads to the
scaling of all other values using SF �in the case of Ge, we
used the SF as is shown in Fig. 2�.

The spatial charge used here is obtained from the AILPS
method. AILPS expresses the charge density with the func-
tion t�KS�rc�+d0rF1 exp
−rF2�d1+d2r2�� for a radius r less
than rc while it employs the standard KS model beyond rc.
The appropriate measures to set formula constants are given
by Chai and Weeks40 �Fig. 5�.

We extended borders of S-domain to 9rc, nearly three
times greater than the radius where Vps�r� and Coulomb po-
tential are compatible. A total of 6776 samples were taken
surrounding each atom while truncation number was kept
fixed at 3. The average error with the same definition as for
Ge in Sec. V A was noticed to be only 6.83% for Si, as
compared to the high-symmetry points of the energy-
dependent pseudopotential method.43 The corresponding
band structure obtained using the proposed method is shown
in Fig. 6.

C. Graphene

Since its discovery in 2004,44 the 2D graphene’s honey-
comb lattice as a substructure of the 1D CNT has received
particular attention.45–48 Ignoring the slight out-of-plane
bending of carbon-carbon connection, CNT is the rolled-up
graphene plane with a definite chirality vector; also calculat-
ing its band structure is simple with zone folding method, if
graphene energy subbands are accessible through common
tight-binding approaches.4–6 In addition, graphene itself with
the high degree of conductivity and anomalous Hall effect �at
high magnetic fields� has the aptitude for being used in ul-
trafast transistors.

FIG. 4. �Color online� Band structure of Ge with revealed sym-
metry points. F=0.2 �optimized adjustment factor�, C=3, ns
=2662, and seven neighbors other than unit cell’s atoms are con-
sidered to be included in the multipole potential.

TABLE I. Comparison between energies of high-symmetry
points with the nonlocal pseudopotential model �including spin-
orbital interaction� and sampling method.

S point
N-L pseudopotential

�eV�
Sampling method

�eV�
�E

�eV�

�6v −12.66 −12.14 −0.26

�7v −0.29 −0.11 −0.18

�8v 0.00 0.00 0.00

�7c 0.90 0.74 0.16

�6c 3.01 1.92 1.09

X5v −8.56 −8.32 −0.24

X5v −3.29 −3.55 0.26

X5c 1.26 0.91 0.35

L6v −10.39 −10.31 −0.08

L6v −7.61 −7.24 −0.34

L6v −1.63 −1.68 0.05

L4,5v −1.43 −1.63 0.20

L6c 0.76 0.64 0.12

L6c 4.16 3.07 1.09
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Sampling in the lozenge-shape primitive cell of bilayer
graphene may also contain effects from the other layer �sym-
metric or asymmetric�, especially when considering the C-C
bond length �0.142 nm from ab initio analysis� which is
comparable to the layer-layer distance. Anyway, in this paper
we consider the monolayer honeycomb structure with a lat-
tice constant of 0.242 nm; this can be functional to examine

the effect of background potential on � electrons �Pz orbital�.
To evaluate the desirable potential, again we use the screened
multipole model. In addition to the first three nearest neigh-
bors, the effects of the six second-nearest-neighbors’ effect
were also brought into account or ncn=9 
see Fig. 7�a��.
S-domain can be the entire lozenge-shape cell or a partial
region based on the AF. We may also prefer a radial
sampling, taking no care of the cross-bordering across cells.
The center of the S-domain was placed amid A1 and A2; Sp

1

and Sp
2 are then given by �a /2�3,0� and �−a /2�3,0�, respec-

tively. Considering that �� is equal to 
�m+n�2� /
��3a� , �m−n�2� /a� and the similarly in �� subscripts
changes as 
�m1+n1�2� / ��3a� , �m1−n1�2� /a�, the produced
phase by ���−��� ·Sp

j would be obtained explicitly as
� /3�m+n−m1−n1�.

Here we employed a radial sampling. Paths of sampling
supposed to be circles while parameters of the polar system
�radius and angle� had similar intervals individually. Now, let
us discuss about role of the AF in controlling the excess
phase because we found out that � bands of graphene are so
sensitive to this excess phase. At first, the AF tunes �Rp

ns�
maxima. When ��−�� and Rp

ns have approximately close
directions, �Rp

ns� contribute to an important effect on the
phase variations in a�,�. This may suggest that with a smaller
AF and constant ns, the maximum range of the excess phase
would decrease. On the other hand, the excess phase depends
on the exact location of samples and we know with a con-
stant N �ns�, the AF specifies this location. Because of this,
we would see in the following that a slight change in the AF
affects the eigenvalues dominantly, which makes the calcu-
lation of graphene’s band structure by this method very dif-
ficult. It is notable that for a symmetric sampling, the imagi-
nary parts of a�,� cancel out exactly; so the AF just affects
the real part of a for a definite � ,�. The excess phase for
two different the AF is shown in Fig. 8. For comparison, we
tuned ns in each to result in nearly equal sample density. It is
shown that for a larger S-domain, the maximum excess phase
is greater. In addition, although ns is almost the same but
phase diagram for AF=0.5 exhibits stronger oscillations. In
Sec. V B for Si, we preferred not to use the AF as an adjust-
ment factor because our purpose was to extend the S-domain
until Coulomb model and Vps�r� become compatible; how-
ever in the case of Ge, the choice of AF=0.2 was noticed to
be the optimum value.

To examine our model on graphene, we extracted the two
energy bands �� bands� near the Fermi level. The triangular

FIG. 5. �Color online� �a� Ab initio model for local pseudopo-
tential. Solid line: Vps�r� which is utilized in OF-DFT method, with
t�KS=0.1, d0=0.02942, d1=0.3119, d2=0.06861, rc=1.861, and
F1=F2=6; horizontal axis �distance� is normalized to Bohr radius
and potential is in the range of millelectron volt. Dot-dash line:
model used for sampling here. Inset: valence charge density ob-
tained from low-q and high-q methods �see Ref. 40�. �b� distribution
of delta weights with partially nonuniform sampling.

FIG. 6. �Color online� Si energy bands with revealed symmetry
points. Sampling is performed on AILPS model. C=3, ns=6776,
and S-domain is a sphere with the radius equal to 9rc. Seven neigh-
bors other than unit cell’s atoms were regarded.

FIG. 7. �Color online� �a� Planar graphene lattice with depicted
primitive cell �S-domain�, primitive vectors, and affecting first- and
second-order neighbors �green color for A1 and blue color for A2�.
�b� Graphene reciprocal lattice. First Brillouin zone �hexagon� is
distinguished. Reciprocal basis vectors and symmetry points are
shown.
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half of the lozenge was considered as an independent
S-domain. With AF=0.38 and C=10, we changed delta
weights smoothly to gain the potential profiles shown in Fig.
9�b�. If we notice that the first three neighbors are located at
�a /�3,0�, �a /�3,2� /3�, and �a /�3,4� /3� for A1, a potential
fall occurs distant from core for angle=0. This embodiment
mirrors for A2. For the regularized AF, SF was altered from
0.8 to 1.25. Here, SF=1 was noticed to give close values to
the ab initio results �Vapp denotes the best responding pro-
file�. Enlarging SF yields a decrease in midgaps at � and M.

In Fig. 9�c�, the corresponding eigenvectors are shown. For
C=10, 441 combinations of m, n, and p are available and
here just 250 vectors with largest maxima are shown.

As expected, increasing delta weights results in small
changes at M but deviates � considerably. Comparison to the
ab initio method is shown in Table II at high-symmetry
points. During simulation it was found that the sensitivity of
� bands to truncation numbers over ten and for this special
AF was low. Consequently, improvement of results only with
imposing larger truncation would not be achieved, although
not impossible with another SF and AF.

On the other hand, the sensitivity to AF for a definite SF
and truncation is noticeable. This is clearly shown in Fig.
10�a�, where for similar potential, truncation, and sample in-
tervals, the conduction and valence bands are plotted with
changing AF from 0.33 to 0.38. The excess phase was cal-
culated in an independent process where all samples were
swept for m ,n ,m1 ,n1� 
−1,1�. We elicit although variation
in AF is so slight but conduction band reveals a large alter-
ation relatively. This is so because sample weights contribute
to S-domain �consider sample intervals are alike and changes
in excess phase are small comparatively�; practically, the ef-
fective potential or the mean value of weights decreases for a
lower AF. This sensitivity usually becomes apparent on �c,
where the magnitude of wave vector approaches to zero.

VI. CONCLUSION

We have devised a method based on the combination of
Green’s function formalism and local sampling by Dirac
delta functions in a periodic lattice. We have shown that the
method may be expected to produce satisfactory results. The
discussed approach shows superior performance, accuracy,
and efficiency over most of the other existing numerical and
analytical approaches. The method has been tested against
the well-studied 3D and 2D crystals, namely, silicon, germa-
nium, and graphene. In all cases, reasonable agreement to
other approaches were noticed. For the case of graphene, the
size of series expansion did not exceed ten while results were
close to ab initio and somewhat superior to the third-
neighbor tight binding. For the 3D lattices �Ge and Si� with a
high order density of samples we were able to keep the trun-
cation number below five while maintaining good accuracy.
Although precise computation of the energy bands still re-
quire greater truncations to compete with ab initio technique.
We note that the algorithm was interiorly responsive to the

FIG. 8. �Color online� Excess phase produced by ���

−��� ·Rp
ns for a radial sampling issue; ns is tried to be relatively

similar for both AF. It is seen that the maximum phase for AF
=0.5 is larger than the same for AF=0.12. Furthermore, for AF
=0.12 the mean value of entire phases is smaller. Horizontal num-
ber depends on the truncation number and the total number of
samples in each cell.

FIG. 9. �Color online� �a� Graphene � bands are shown for a
slight variation in applied potential �SF=0.8, 1, and 1.25�, C=10,
ns=540, ncn=9, and AF=0.38. Values of both conduction and va-
lence bands at high-symmetry points are specified. �b� Potential
profile versus r in polar system for 0.8, 1, and 1.25 of Vapp, angle
=0 �black curves�, and angle=� /3 �blue curve�. Refalling of black
curves for r
0.8 Å is due to the vicinity of first neighbor on
�a /�3,0� �potential is in the range of 10 meV�. �c� Real part of
eigenvectors relevant to � bands �left: conduction and right: va-
lence� and �=0. Imaginary part appears in a similar distribution of
collapsing.

TABLE II. Comparison between energy values of high-
symmetry points attained from ab initio and sampling methods.
AF=0.38, C=10, and ns=540.

S point Ab initio Sampling
�E

�eV�

�v −7.6 −6.36 −1.24

�c 11.3 11.28 0.02

Mc −2.3 −2.56 0.26

Mv 1.7 2.98 −1.26
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selection of the S-domain, intervals, and, in particular, the
sampling. Further extension of this work is needed to include
spin-orbit interaction, which will be hopefully the subject of
a separate study.
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APPENDIX A: EXPANSION THEOREM

Here, we present a theorem on the series of delta function,
which is needed for expansion of Eq. �22�.

Theorem. Let ��= �br
1 ,br

2 ,br
3� be the reciprocal space

transferring vector and �= �ap
1 ,ap

2 ,ap
3� be the lattice periodic-

ity vector. Then the completeness equation reads

�
��

exp�i� · ��� = �2��3�
��


���1 + ��� · ap
1�

����2 + ��� · ap
2����3 + ��� · ap

3��

= �2��3�
��

�
�=1

N=3

���� + ��� · ap
�� , �A1�

where � is defined as the 3D Fourier transform vector,

� = �1br
1 + �2br

2 + �3br
3 �A2�

Proof. Considering br
i ·ap

j =0 for i� j�1,2 ,3 and �i=� ·ap
i

we can write down

�
��

exp�i� · ��� = �
m1

exp�im1�1��
n1

exp�in1�2��
p1

exp�ip1�3�

= �
�=1

l=m1,n1,p1

N=3

�
l

exp�il��� . �A3�

Through direct application of Fourier series theorem, it
would be straightforward to show that

�
��

exp�i� · ��� = �
�=1

l=m1,n1,p1

N=3

�2��
l

���� + 2�l�	

= �2��3�
��

�
�=1

N=3

���� + ��� · ap
�� . �A4�

This completes the proof. �
It should be mentioned that for crystals having limited

physical dimensions, the above theorem is approximately
satisfied if typically ten or more lattice constants across each
principal direction is taken into account.

APPENDIX B: ERROR APPROXIMATION

In the discussion which follows, we present a systematic
method for estimation of error ce

ns arising in the evaluation of
the coefficients Cns, where Cns� =Cns+ce

ns. This is done by
introducing another Green’s function for the Schrödinger’s
equation. Suppose that the operator D, eigenstates ��

��r� and
eigenvalues �� obey

D��
��r� = ����

��r�, D = T + V,� � N , �B1�

where T is again a universal operator of noninteracting ki-
netic energy and V offers system dependent potential. For the
Green’s function satisfying D��r ,r0�=��3��r−r0�, we have

��r,r0� = �
��N

��
��r���

�
�

�r0�
��

. �B2�

Here, we rearrange the operator D to obtain in Rydberg units
to get

FIG. 10. �Color online� �a� Conduction and valence bands are
depicted for two values of AF=0.33 and 0.38 while the SF, trunca-
tion �T=10 for black curves� and sample intervals are kept constant.
We distinguish a slight variation in AF �and consequently in excess
phase and sample numbers� affects eigenvalues enormously. Also
apparently increasing truncation is not responsive over C=10. �b�
Potential profile for Vapp and various angles �a /�3,0� �potential is
in the range of 10 meV�. �c� Variation in real part of secondary
eigenvector due to a slight change �0.05� in AF 
also see Fig. 9�c��.
�d� Excess phase for AF=0.33 and 0.38.
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�− �2 + �
�

�
j=1

L

�
ns=1

N

Cns� ��3��r − r�ns�	��
��r� = ����

��r� ,

�B3�

�− �2 + �
�

�
j=1

L

�
ns=1

N

Cns� ��3��r − r�ns�	��r,r0� = ��3��r − r0� ,

�B4�

Hence, the Fourier transform of the new Green’s function
can be found as

�̃��,r0� =
exp�− i� · r0�

���2 + �
�

�
j=1

L
�

ns=1

N

Cns� exp�− i� · r�ns�

= �
��N

F���
��r���

�
�

�r0�
��

. �B5�

Here, we notice that � is related to the Bloch wave vector �

implicitly. In fact, �̃�� ,r0� is not a continuous function of �
in the reciprocal space because of the Fourier transform of
��

��r�. Now, various terms in the right-hand side of Eq. �B5�
can be extracted explicitly to obtain

�̃�
���� = �2��3�

�

�̃�
� �

�=1

N=3

�
�� − ��� − �� · ap
�� , �B6�

��
�

�

�r0� = �
�

�̃�
� exp
− i��� − �� · r0� . �B7�

By multiplication both sides of Eq. �B5�,

1 = �2��3 �
��N

�
�
� 1

��

exp�i� · r0����2�̃�
���

�
�

�r0�

� �
�=1

N=3

�
�� − ��� − �� · ap
��	

�=��−�

+ �2��3 �
��N

�
�
� 1

��

exp�i� · r0��
�

�
j=1

L

�
ns=1

N

�̃�
���

�
�

�r0�Cns�

�exp�− i� · r�ns� �
�=1

N=3

�
�� − ��� − �� · ap
��	

�=��−�

. �B8�

The condition �=��−� arises from the fact that we have
delta functions of � on the right-hand side. From the com-
pleteness criterion we have

��3��r� = �
���N

��
���r���

��
�

�0� . �B9�

This may give us an idea to state a delta-based expression
instead of the unity on the left-hand side of Eq. �B8�

1 = �2��3 �
���N

�
��
��̃��

����
��

�

�0� �
�=1

N=3

�
�� − ���� − �� · ap
��	 .

�B10�

Substitution of Eq. �B10� into Eq. �B8� and equating the
weights of delta functions on both sides, results in

�
��

�
���N

��̃��
����

��
�

�0� �
�=1

N=3

�
�� − ���� − �� · ap
���

= �
�

�
��N

� 1

��

exp
i��� − �� · r0��̃�
���

�
�

�r0�

����� − ��2 + �
�

�
j=1

L

�
ns=1

N

Cns� exp
− i��� − �� · r�ns��
� �

�=1

N=3

�
�� − ��� − �� · ap
��� �B11�

and

�
���N

�̃�
����

��
�

�0� = �
��N

� 1

��

�̃�
���

�
�

�r0�exp
i��� − �� · r0�

����� − ��2 + �
�

�
j=1

L

�
ns=1

N

Cns�

�exp
− i��� − �� · r�ns��� . �B12�

where m ,n , p ,m1 ,n1 , p1� 
−C ,C�.
Employing Eq. �B12� would be possible when all eigen-

vectors and eigenvalues are determined with an iterative
method �or any efficient approach� from Eq. �32�. Notice that
the summation sweeps over all eigenstates and eigenvalues
for any choice of m, n, or p. In fact for any variation in m or
n or p we obtain a linear equation as f�ce

1 ,ce
2 , . . . ,ce

N ,��=0.
Obviously, various combinations of �m ,n , p� give rise to
�2C+1�3 linear equations, which may be inefficient for esti-
mating all ce

ns if N
 �2C+1�3, with a given �. However, at
the time of calculating eigenvectors �without any error as-
sumption�, numerous values of wave vectors enter as the
input �through sweeping paths in � space�. Based on the
desired accuracy for plotting curves, the number of inputs N�

could change. So a system of equations is obtained, which
relates the wave vectors and their relevant eigenvalues
through

�
f�ce

1,ce
2, . . . ,ce

N,�1�
f�ce

1,ce
2, . . . ,ce

N,�2�
]

f�ce
1,ce

2, . . . ,ce
N,�N�

� =�
0

0

]

0
�, N� � N. �B13�
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Resultant errors �ce
1 ,ce

2 , . . . ,ce
N� of solving the above linear

system produces new sample weights, which can be entered
in an iterative procedure for determination of eigenvectors

and eigenvalues. In practice, an accurate eigenvalue extrac-
tion leads to small errors even at initial steps; hence, small
aberrations would vanish gradually.

*khorasani@sina.sharif.edu
1 K. Sakoda, Optical Properties of Photonic Crystals �Springer-

Verlag, New York, 2001�.
2 P. Halevi, Photonic and Phononic Crystals �Wiley, New York,

2008�.
3 M. M. de Lima, Jr. and P. V. Santos, Rep. Prog. Phys. 68, 1639

�2005�.
4 S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev.

B 66, 035412 �2002�.
5 B. Gharekhanlou, M. Alavi, and S. Khorasani, Semicond. Sci.

Technol. 23, 075026 �2008�.
6 B. Gharekhanlou and S. Khorasani, IEEE Trans. Electron De-

vices 57, 209 �2010�.
7 P. Lambin and V. Meunier, Appl. Phys. A: Mater. Sci. Process.

68, 263 �1999�.
8 K. V. Christ and H. R. Sadeghpour, Phys. Rev. B 75, 195418

�2007�.
9 C. P. Liu and J. W. Ding, J. Phys.: Condens. Matter 18, 4077

�2006�.
10 R. M. Martin, Electronic Structure: Basic Theory and Practical

Methods �Cambridge University Press, Cambridge, 2004�.
11 S. Elliott, The Physics and Chemistry of Solids �Wiley, New

York, 2005�.
12 S. L. Altmann and C. J. Bradley, Proc. Phys. Soc. London 86,

915 �1965�.
13 T. K. Mitra, J. Phys. C 11, L191 �1978�.
14 A. P. Horsfield and A. M. Bratkovsky, J. Phys.: Condens. Matter

12, R1 �2000�.
15 F. Robicheaux, U. Fano, M. Cavagnero, and D. A. Harmin, Phys.

Rev. A 35, 3619 �1987�.
16 S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503

�1990�.
17 H. Löwen, J. Phys.: Condens. Matter 15, V1 �2003�.
18 M. Schmidt, J. Phys.: Condens. Matter 15, S101 �2003�.
19 R. J. Furnstahl, J. Phys. G 31, S1357 �2005�.
20 M. Bender, P. H. Heenen, and P. G. Reinhard, Rev. Mod. Phys.

75, 121 �2003�.
21 S. Gonzalez, D. Vasileska, and A. A. Demkov, J. Comput. Elec-

tron. 1, 179 �2002�.
22 C. P. Beulshausen and L. Fritsche, Eur. Phys. J. B 2, 237 �1998�.
23 G. M. Fehrenbach and H. Bross, Eur. Phys. J. B 9, 37 �1999�.
24 G. Lippert, J. Hutter, and M. Parrinello, Theor. Chem. Acc. 103,

124 �1999�.

25 O. Zaitsev, R. Narevich, and R. E. Prange, Found. Phys. 31, 7
�2001�.

26 G. A. Hagedorn and A. Joye, Commun. Math. Phys. 223, 583
�2001�.

27 X. Checoury and J. M. Lourtioz, Opt. Commun. 259, 360
�2006�.

28 Z. Z. Yan and Y. S. Wang, Phys. Rev. B 74, 224303 �2006�.
29 M. Khoshnegar, M. Sodagar, A. Eftekharian, and S. Khorasani,

IEEE J. Quantum Electron. 46, 228 �2010�.
30 M. Sodagar, M. Khoshnegar, A. Eftekharian, and S. Khorasani,

J. Phys. B 42, 085402 �2009�.
31 S. Gasiorowicz, Quantum Physics �Wiley, New York, 2003�.
32 H. Hsu and L. E. Reichl, Phys. Rev. B 72, 155413 �2005�.
33 Y. Wang and R. G. Parr, Phys. Rev. A 47, R1591 �1993�.
34 S. M. Ikhdair and R. Sever, J. Mater. Chem. 41, 329 �2007�.
35 J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter

9, 7541 �1997�.
36 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1998�.
37 S. M. Ikhdair and R. Sever, Z. Phys. D: At., Mol. Clusters 28, 1

�1993�.
38 B. R. A. Nijboer and F. W. de Wette, Physica �Amsterdam� 23,

309 �1957�.
39 B. Zhou, Y. A. Wang, and E. A. Carter, Phys. Rev. B 69, 125109

�2004�.
40 J. D. Chai and J. D. Weeks, Phys. Rev. B 75, 205122 �2007�.
41 F. Kerestecioglu and S. Tokat, Circuits, Systems and Signal Pro-

cessing 22, 395 �2003�.
42 A. I. Nazhalov, Russ. Phys. J. 38, 761 �1995�.
43 U. Rössler and D. Strauch, Group IV Elements, IV-IV and III-V

Compounds �Springer-Verlag, Berlin, 2001�.
44 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,

Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 �2004�.

45 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas,
E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S.
Ruoff, Nature �London� 442, 282 �2006�.

46 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 �2007�.
47 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 �2009�.
48 T. Low, S. Hong, J. Appenzeller, S. Datta, and M. S. Lundstrom,

IEEE Trans. Electron Devices 56, 1292 �2009�.

CALCULATION OF BAND STRUCTURE USING LOCAL… PHYSICAL REVIEW B 81, 085122 �2010�

085122-13


