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We examine the density-density correlation function in the Tomonaga-Luttinger liquid state for the one-
dimensional extended Hubbard model with the on-site Coulomb repulsion U and the intersite repulsion V at
quarter filling. By taking into account the effect of the marginally irrelevant umklapp scattering operator based
on the bosonization and renormalization-group methods, we obtain the generalized analytical form of the
correlation function. We show that, in the proximity to the gapped charge-ordered phase, the correlation
function exhibits anomalous crossover between the pure power-law behavior and the power-law behavior with
logarithmic corrections, depending on the length scale. Such a crossover is also confirmed by the highly
accurate numerical density-matrix renormalization-group method.
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I. INTRODUCTION

One-dimensional �1D� electron and spin systems have at-
tracted much attention since they often exhibit nontrivial
quasi long-range ordered behavior due to the large low-
dimensional quantum fluctuation effects.1,2 The critical be-
havior in the 1D systems, which is called the Tomonaga-
Luttinger liquid �TLL� state, has a long history of research,
and it is known that the low-lying modes are described by
collective gapless excitations and physical quantities show
power-law behavior in the temperature and/or distance de-
pendences. It has also been recognized that, in the systems
with spin-rotational symmetry, logarithmic singularities ap-
pear in the magnetic-field-dependent corrections to the
magnetization3,4 and the spin susceptibility,5 and in the
temperature-dependent corrections to the spin susceptibility,6

specific heat,7 nuclear magnetic resonance,8 etc. Motivated
by such developments in the field, a number of numerical
studies has been successfully performed to examine the loga-
rithmic corrections in spin-chain systems.9–16 The spin-spin
correlation function of the 1D S= 1

2 Heisenberg model has
been extensively studied as a most fundamental theoretical
model to examine the presence of logarithmic
corrections.17–20 At this moment, the correlation amplitudes
in the asymptotic form of the correlation function can be
exactly obtained.21–23 In contrast, only few efforts have been
devoted to those of the Hubbard model due in part to the
difficulty of analyzing.24 Therefore, the situation is much less
satisfactory as far as the logarithmic corrections in the Hub-
bard model are concerned.

In the present paper, we focus on the logarithmic correc-
tions in the equal-time density-density correlation function of
the quarter-filled Hubbard model including the Coulomb re-
pulsion between electrons on site U and the nearest-neighbor
sites V. So far this model has been analyzed as a minimal
model to describe physical phenomena in organic solids.25

The Hamiltonian of the 1D extended Hubbard model at quar-
ter filling is given by

H = − t�
j,s

�cj,s
† cj+1,s + H.c.� + U�

j

nj,↑nj,↓ + V�
j

njnj+1,

�1�

where cj,s is the annihilation operator on the jth site with spin
s�=↑ ,↓�, and the density operators are nj =nj,↑+nj,↓ and
nj,s� :cj,s

† cj,sªcj,s
† cj,s− 1

4 . The hopping energy between the
nearest-neighbor sites is represented by t. It is known that, at
zero temperature, the gapped charge-ordered �CO� state
emerges in the large repulsive U and V region, where the
phase boundary is determined numerically by using the exact
diagonalization26,27 and the highly accurate density-matrix
renormalization-group �DMRG� method.28 The mechanism
of this quantum phase transition has also been addressed by
the bosonization technique and the RG method.2,29,30 In this
paper, we perform the detailed analysis on the equal-time
correlation function N�x���njnj+x� in the TLL phase. The
exponent of the correlation functions is characterized by the
so-called TLL parameter K�.24 Especially by focusing on the
correlation function near the boundary to the CO insulating
state, we show that it exhibits the nontrivial crossover, de-
pending on the length scale, from the power-law behavior
with logarithmic correction for short distance, to the pure
power-law behavior for large distance.

The present paper is organized as follows. In Sec. II, the
analytical form of the correlation function is obtained by
utilizing the RG technique based on the bosonization
method. In Sec. III, the analytical results are confirmed by
using the highly accurate DMRG method. The summary is
given in Sec. IV. Detailed derivation of the analytical form of
the correlation function is given in Appendix.

II. BOSONIZATION APPROACH

In this section, we derive the generalized analytical form
of the correlation function in the TLL state. We analyze the
U→� limit case and the finite-U case separately since the
picture of the U→� can become transparent with the anal-
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ogy of the spin-chain system which properties are well un-
derstood.

A. U\� limit

In the U→� limit, since the double occupancy of elec-
trons is excluded, the extended Hubbard model �Eq. �1�� re-
duces to the spinless half-filled model,

HU→� = − t�
j

�dj
†dj+1 + H.c.� + V�

j

nj
dnj+1

d , �2�

where nj
d=dj

†dj −
1
2 . It is well known that this model can be

mapped onto the XXZ spin-chain model by using the Jordan-
Wigner transformation2,31 and the physical properties have
been extensively studied with both the exact treatment based
on the Bethe ansatz and numerical approaches. Here we ex-
amine the analytical form of the correlation function by us-
ing the exact results obtained in the context of spin-chain
problems.

The density operator is expressed in terms of the bosonic
field operator � as2,16,31

��x� =
nj

d

a
=

1

2��

d�

dx
− �− 1� j c

�a
sin	2�

�
� , �3�

where a is the lattice constant and we will set a=1 in the
following. The parameter � can be related to the TLL param-
eter by K��1 / �4��. The nonuniversal parameter c will be
shown later. The model Hamiltonian �2� can be expressed in
terms of the bosonic field �.

It is well known that the TLL phase is realized for small
V�Vc�=2t� while the gapped CO state appears for V�Vc. In
the TLL phase, the parameter � is known exactly from the
Bethe ansatz as ��1−�−1 cos−1�V /2t�, and the TLL param-
eter K�=1 / �4�� varies within the range of 1 /4�K��1 /2
for 0�V�Vc. The TLL parameter K� approaches to an uni-
versal value K�=1 /4 when V→Vc. The mechanism of this
quantum phase transition has also been addressed by the
bosonization technique and the RG method2,29,30 and it has
been clarified that the 1/4-filled umklapp scattering has a
crucial role in making the TLL state into the gapped CO
state. It has also been shown that the universality class of this
TLL-to-CO phase transition is in the Kosterlitz-Thouless
transition, where the umklapp scattering is irrelevant in the
TLL phase while it becomes relevant in the CO phase. It is
worthwhile to note that, on the phase boundary between the
TLL and CO states, the umklapp scattering term becomes
marginally irrelevant, where it shows very slow scaling-
parameter dependence and can give rise to anomalous cor-
rections to physical quantities. We analyze this effect on the
density-density correlation function by using the RG method
developed in Ref. 19. The resultant form of the correlation
function for U=� in the TLL state is given by

N�x� = −
K�

�2x2 + A2
cos 4kFx

x4K�

�1 − ��/x�2–8K��1/2

�1 + ��/x�2–8K��3/2 , �4�

where kF is the Fermi wave vector, kF�=� /4�. The derivation
of this form is given in Appendix. The parameter � is the
short-distance cutoff which appears in the RG method. The

coefficient A2 is expressed as A2�c2 / �2�2� with the param-
eter c introduced in Eq. �3�. In Refs. 21 and 22, it has been
proposed that the nonuniversal parameter c is controlled by
the TLL parameter, i.e., c=c���, and its exact form is given
by

c��� = 2
 	��/�2 − 2���
2	�	�1/�2 − 2����1/2�


exp�1

2


0

� dt

t 
 sinh��2� − 1�t�
sinh��t�cosh��1 − ��t�

−
2� − 1

�
e−2t�� . �5�

The numerical values of A2 are shown in Table I. For
�U ,V�= �� ,0�, the quantity c��� becomes c��=1 /2�=1. We
note here that the quantity � in Eq. �4� is the only unknown
parameter, which is to be determined numerically.

Here we find that Eq. �4� has two different asymptotics:
�i� in the short-range region, the power-law behavior with
logarithmic correction is obtained, while �ii� the logarithmic
correction disappears in the long-range region. By noting
�x /��−�8K�−2�=exp�−�8K�−2�ln�x /���, the length scale xcross

TABLE I. Amplitude A2=c2��� / �2�2� as a function of V / t for
U=�.

V / t A2

0.0 0.0506606

0.1 0.0548623

0.2 0.0592869

0.3 0.0639583

0.4 0.0689056

0.5 0.0741643

0.6 0.0797783

0.7 0.0858022

0.8 0.0923055

0.9 0.0993773

1.0 0.107134

1.1 0.115734

1.2 0.125393

1.3 0.136425

1.4 0.149299

1.5 0.164769

1.6 0.184141

1.7 0.209986

1.8 0.248441

1.9 0.321076

1.95 0.404613

1.99 0.655754

1.995 0.796158

1.999 1.22703

1.99999 3.98564
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which characterizes crossover between these two regions is
given by

xcross = � exp�1/�8K� − 2�� . �6�

We note that, for V=Vc�=2t�, the logarithmic correction ap-
pears in the whole length scale, i.e., xcross→�. By noting
A2→ �2−V / t�−1/4 / �	2�� for V→Vc, the explicit form of the
correlation function �4� at V=2t is given by

N�x� = −
1

4�2x2 +
1

�2��3/2
cos 4kFx

x
ln1/2�x/��

for �U,V� = ��,2t� . �7�

This formula was reported in Ref. 32 for the S= 1
2 antiferro-

magnetic Heisenberg spin chain.

B. For finite U

Next we examine the generic 0�U�� case. In this case,
there appears the conventional 2kF oscillation term in addi-
tion to the 4kF one. We show that the additional logarithmic
correction appears near the phase boundary to the CO phase,
not only in the 4kF oscillation term but in the 2kF oscillation
term.

Based on the conventional bosonization for electron sys-
tems, the density operator is given by2,29

��x� =
1

�

d��

dx
−

2c1

�a
sin�2kFx + ���cos �

+
2c2

�a
cos�4kFx + 2��� , �8�

where �� and � are the charge and spin phase fields. The c1
and c2 are nonuniversal numerical quantities satisfying
c1=1 and c2=0 in the noninteracting case. In the similar way
to the U=� case, the most general form of the density-
density correlation function is derived as �see Appendix�

N�x� = −
K�

�2x2 + A1
cos 2kFx

xK�+1

ln−3/2�x/��
�1 − ��/x�4–16K��1/8

+ A2
cos 4kFx

x4K�

�1 − ��/x�2–8K��1/2

�1 + ��/x�2–8K��3/2 , �9�

where � and � are the short-distance cutoff parameters for
the charge and spin sectors, respectively. In the case of
U��, the coefficients A1��c1

2� and A2�=c2
2 /2�2� are to be

determined numerically. The logarithmic correction
ln−3/2�x /�� in the 2kF oscillating term appears due to the
marginally irrelevant coupling of the spin channel.19 In the
noninteracting limit U=V=0, the quantity A2 vanishes and
the logarithmic correction ln−3/2�x /�� is replaced by a con-
stant, and then the correlation function reproduces the trivial
result N�x�=−1 / ��2x2�+cos 2kFx / ��2x2�.

From Eq. �9�, we find that an anomalous logarithmic cor-
rection also appears in the 2kF oscillating term near the
boundary of the CO phase. On the phase boundary, the cor-
relation function reads

N�x� = −
1

4�2x2 + Ã1
cos 2kFx

x5/4 ln−3/2�x/��ln−1/8�x/��

+ Ã2
cos 4kFx

�2��3/2 ln1/2�x/�� for �U,V� = �Uc,Vc� ,

�10�

where Ã1→0 and Ã2→1 for �Uc ,Vc�→ �� ,2�.

III. NUMERICAL RESULTS

For numerical confirmation of the logarithmic corrections,
we employ the DMRG technique which provides very accu-
rate data for the ground-state correlation functions of 1D
correlated electron systems.33 We consider L /2 electrons on
a chain with L sites and calculate the equal-time density-
density correlation function

N�x� = �njnj+x� − �nj��nj+x� , �11�

under the open-end boundary conditions �OBC�. Here, the
distance x is centered at the middle of the system. The ap-
plication of OBC enables us to obtain the correlation func-
tion �11� quite accurately for very large finite-size systems up
to �O�1000� sites. However, the real-space DMRG method
works with finite number of sites so that we have to pay
special attention to the finite-size effects for a precise com-
parison with the RG results. In the present calculations, the
most problematic finite-size effect is the Friedel oscillation
starting from the open edges. To eliminate it, we simply add
on-site potential energy V /2 on both edge sites. It corre-
sponds to a compensation of the “missing correlation”
caused by the absence of their neighboring site. Hereby the
Friedel oscillation is fairly suppressed.

On that basis, the remaining finite-size effects are inves-
tigated. We now choose some parameters in the vicinity of
the CO phase where the finite-size effect is relatively large
due to strong charge fluctuations. For these parameters, we
calculate N�x� for several chains with length up to L=1024
sites and then obtain the extrapolated values to the thermo-
dynamic limit �L→�� using the finite-size-scaling analysis.
By comparing the extrapolated values and the finite-size
data, we find that N�x�200� in the thermodynamic limit can
be reproduced with extracted central 200 sites of a chain with
L=512 sites within a few percent error. The relative error in
the ground-state energy, ��e���−e�512�� /e����, is below
0.1%, where e�L� is the ground-state energy per site for a
chain with L sites. Consequently, we will study the equal-
time correlation function N�x� for the central 200 sites of a
chain with L=512 sites without the finite-size-scaling analy-
sis. We keep up to m�4000 density-matrix eigenstates in the
DMRG procedure and all the calculated quantities are ex-
trapolated to the m→� limit. For your information, in this
way we obtain �A1 ,A2�= �0.991,−0.0003� �the exact are
�A1 ,A2�= �1,0�� for the coefficients of Eq. �9� in the nonin-
teracting case U=V=0 which poses a nontrivial problem to
the DMRG method.
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A. U\� limit

Let us first consider the correlation function N�x� in the
U→� limit. We now attempt to fit the DMRG results of
N�x� into the analytical form of Eq. �4�. Since the exact
solutions of A2 and K� are available, the quantity � is the
only fitting parameter in Eq. �4�. Figure 1�a� shows the
DMRG results of N�x� for �U ,V�= �� ,1.95t�. An excellent
agreement of the DMRG data with the fitted line is found.
We then obtain �=0.0515, which leads to xcross=34.8. It
means that the logarithmic correction appears at x�35 for
V=1.95t. We note that the central 200 sites out of L=512 are
used to carry out the fitting procedure and, however, the
fitting results are almost unchanged for any choice of the
length from 40 to 300. In the same way, we can also estimate
the values of xcross for the other V / t values. In Fig. 1�b�, the
estimated values of xcross are plotted as a function of V / t. We
find that the logarithmic correction is hardly present at
V�1.8 and the length scale xcross increases rapidly in the
vicinity of the CO insulating phase. Note that xcross→� at
V / t→2.

B. For finite U

We next turn to the case of U��. In this case, the nu-
merical results of the correlation function N�x� can be fitted
with the analytical form of Eq. �9�. Differently from the case
of U=�, there are five fitting parameters; namely, �, �, A1,
A2, and K�. Of them, K� may be obtained very accurately
with the DMRG method via the derivative of charge struc-
ture factor at q=0,

K� =
1

2
lim
q→0

�n�q�n�− q�� , �12�

with q=2� /L and n�q�=�l,se
−iqlcl,s

† cl,s. Thus, we can reduce
the fitting parameters from five to four. In Fig. 2, we show

the fitting results of the correlation function N�x� near the
boundary of the CO phase for U=5t and 10t �the critical
boundary has been estimated as Vc�3.70t�2.76t� for
U=5t�10t� in Ref. 28�. We can see that the DMRG data is in
good agreement with the fitted line for all the parameter sets.
From the obtained results of xcross, we find that the logarith-
mic correction appears for �U ,V�= �5t ,3.5t� and �10t ,2.5t�.
Especially at �U ,V�= �5t ,3.5t�, the length scale is extremely
large xcross�1600; it allows us to crossly notice that this
point is very close to the boundary of the CO phase. Mean-
while, the logarithmic correction is hardly present for
�U ,V�= �5t ,3t� and �U ,V�= �10t ,2t�. As a result, we confirm
that the logarithmic correction is present also for U�� and
its length scale grows rapidly near the CO phase boundary.

Finally, we discuss the correlation amplitudes, A1 and A2,
of Eqs. �4� and �9�. Figure 3 shows the DMRG results of the
amplitude A2 as a function of V / t for several values of U / t.
In the U=� limit, we can see an excellent agreement be-
tween the DMRG and exact results. We also find a very
sharp increase near V=Vc=2t. For U=5t, the behavior of A2
seems to be quite similar to that for U=�; while, the ampli-
tude A1 is rapidly decreased near V=Vc=3.70t, e.g.,
A1�10−2 at V�3t. Thus, the 2kF oscillating term would be
negligible in the vicinity of the CO phase. When U= t, the
amplitude A2 decreases with increasing V / t in reflecting that
the 4kF fluctuation is not enhanced by V. We note that the
two amplitudes A1 and A2 are rather small with the same
order of magnitude for small U and larger V values.

IV. SUMMARY

We study the density-density correlation function in the
TLL state for the 1D extended Hubbard model at quarter

0 10 20 30 40

-0.1

0

0.1

1 10 10210-4

10-3

10-2

10-1

0 1 2
10-1

1

10

102

�

�

�

�

� � � � � � � � � � � � � � �

�

�

	




�

�

�

�  �

� � �

� � �

� � �

FIG. 1. �Color online� �a� DMRG results of the correlation func-
tion N�x� for �U ,V�= �� ,1.95t�. The solid line denotes a fitting with
Eq. �4�. Inset: �N�x�� plotted on a log-log scale. �b� Estimated length
scale of the logarithmic correction xcross as a function of V / t for
U=�.
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FIG. 2. �Color online� DMRG results of the correlation function
N�x� for several sets of �U ,V�. The solid lines denote fitting curves
with Eq. �9�. The estimated values of xcross and K� are also included.
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filling. Based on the bosonization and RG techniques, we
obtain the generalized analytical form of the correlation
function which exhibits anomalous power-law behavior with
logarithmic corrections near the phase boundary to the CO
insulating state. It would be pretty interesting that the loga-
rithmic corrections exist not only in the 4kF but also in the
2kF oscillating terms. Then, using the DMRG method the
appearance of the logarithmic corrections is confirmed for
both finite U and U=� limit by fitting the correlation func-
tion. Moreover, we find that the length scale of the correc-
tions grows rapidly with approaching to V=Vc and diverges
at V=Vc. Incidentally, the correlation amplitude of the 4kF
oscillating term shows a sharp increase near the CO phase
boundary while, that of the 2kF oscillating term is negligible
there.
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APPENDIX: DERIVATION OF THE ANALYTICAL FORM
OF THE CORRELATION FUNCTION

In this appendix, we derive the generalized form of the
correlation function �Eqs. �4� and �9�� based on the RG ap-
proach. In our derivation, we follow the formalism of the RG
method developed in Ref. 19.

The RG equations for the TLL parameter K��l� and the
1/4-filled umklapp scattering Gu�l� are given by2,30

d

dl
K��l� = − 2Gu

2�l�K�
2�l� , �A1a�

d

dl
Gu�l� = �2 – 8K��l��Gu�l� , �A1b�

where the initial values are estimated based on the perturba-
tive treatment in Ref. 30. The TLL parameter in the low-

energy effective theory can be evaluated from the fixed point
value of K��l�, i.e., K�=K����. The correlation functions for
the 2kF and 4kF oscillation parts, defined
as C2kF

�x−x���2�sin�2kFx+���x��sin�2kFx�+���x���� /
cos 2kF�x−x�� and C4kF

�x−x���2�cos�4kFx
+���x��sin�2kFx�+���x���� /cos 2kF�x−x��, respectively, are
given in the RG scheme by2,19

C2kF
�x� = exp�− 

0

ln�x/�0�

dlK��l�� , �A2a�

C4kF
�x� = exp
− 

0

ln�x/�0�

dl�4K��l� − 2Gu�l��� ,

�A2b�

where �0 is the short-distance cutoff. The couplings K��l�
and Gu�l� are determined by Eq. �A1�.

From Eq. �A1�, we find that the fixed point values are
given by �K���� ,Gu����= � 1

4 ,0� on the phase boundary be-
tween the TLL and CO states. Near this phase boundary, the
TLL parameter can be expanded as K��l�= 1

4 + 1
4G��l� and we

can treat G��l� perturbatively. Up to the second order in G��l�
and Gu�l�, the RG equations Eq. �A1� are rewritten as

d

dl
G��l� = − 2Gu

2�l�,
d

dl
Gu�l� = − 2G��l�Gu�l� . �A3�

In the case of G��0�� �Gu�0��, the umklapp scattering Gu�l�
flows to zero, i.e., is irrelevant, and G��l� has a finite fixed
point G�����0. Thus the TLL parameter in the low-energy
limit is given by K�= 1

4 + 1
4G����. The explicit solutions of

Eq. �A3� are given by

G��l� =
�

2
coth��l + tanh−1��/2G��0��� , �A4a�

Gu�l� =
�

2
cosech��l + tanh−1��/2G��0��� , �A4b�

where ��2�G�
2−Gu

2�1/2 is a scaling invariant quantity. Near
the phase boundary, i.e., for small �, the umklapp scattering
Gu�l� approaches to zero very slowly as increasing l. By
substituting Eq. �A4� into Eq. �A2�, we obtain the analytical
form of the correlation functions,

C2kF
�x� = ��0

x
�1/4+�/8� 1 − d2�

1 − �d�0/x�2��1/8

, �A5�

C4kF
�x� = ��0

x
�1+�/2� 1 + d�

1 + �d�0/x���3/2�1 − �d�0/x��

1 − d� �1/2

,

�A6�

where d is the nonuniversal quantity depending on the
initial values of RG equations, defined by
d�exp�−�−1 tanh−1�� /2G��0���. In terms of K�, the param-
eter � is given by �= �8K�−2�. By defining ��d�0 we can
derive Eqs. �4� and �9�.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

�

�

� � �

FIG. 3. �Color online� Correlation amplitude A2 for U / t=1 �tri-
angles�, 5 �squares�, and � �circles�. Filled and empty symbols de-
note the DMRG and exact results, respectively.
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