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Using the Density Matrix Renormalization Group and two-leg ladders, we investigate an electronic two-
orbital Hubbard model including plaquette-diagonal hopping amplitudes. Our goal is to search for regimes
where charges added to the undoped state form pairs, presumably a precursor of a superconducting state. For
the electronic density p=2, i.e., the undoped limit, our investigations show a robust (7,0) antiferromagnetic
ground state, as in previous investigations. Doping away from p=2 and for large values of the Hund coupling
J, a ferromagnetic region is found to be stable. Moreover, when the interorbital on-site Hubbard repulsion is
smaller than the Hund coupling, i.e., for U’ <J in the standard notation of multiorbital Hubbard models, our
results indicate the coexistence of pairing tendencies and ferromagnetism close to p=2. These results are
compatible with previous investigations using one-dimensional systems. Although further research is needed to
clarify if the range of couplings used here is of relevance for real materials, such as superconducting heavy
fermions or pnictides, our theoretical results address a possible mechanism for pairing that may be active in the

presence of short-range ferromagnetic fluctuations.

DOI: 10.1103/PhysRevB.81.085106

I. INTRODUCTION

It is widely believed that magnetism is a fundamental in-
gredient to explain the origin of high-temperature supercon-
ductivity in several materials. In fact, there is experimental
evidence that the superconductivity in many heavy fermion
(HF) compounds is mediated by spin fluctuations.'* Mecha-
nisms for superconductivity based on antiferromagnetism
have been extensively discussed for the Cu-based high-
temperature superconductors as well.> Recently, considerable
excitement has been generated by the discovery of high-
temperature superconductivity in the iron pnictides.® Except
for the cuprates, the iron-based superconductors now have
the highest superconducting (SC) critical temperature 7, of
any material (see, for example, Ref. 7). As in HF systems
and cuprate superconductors, in the pnictides, there is also
evidence that the superconductivity is not mediated by the
electron-phonon interaction.®?

Magnetism and superconductivity can appear in different
ways. In some HF compounds, superconductivity and anti-
ferromagnetic (AFM) order coexist,! while for the cuprates
the superconductivity emerges after the long-range AFM or-
der is destroyed by doping.’ In some HF systems, it is the
superconductivity and ferromagnetism (FM) (as opposed to
AFM order) that coexist.!? In this work, we will be interested
in detecting a clear evidence of pairing of extra charges that
are added to the undoped limit where magnetic order exists.
Using a two-orbital model and two-leg ladders, it will be
shown that a possible region for the robust coexistence of
(spin triplet) pairing together with magnetic order is where
ferromagnetism develops. This is in qualitative agreement
with previous investigations carried out using one-
dimensional systems.'! Our effort should be considered sim-
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ply as providing the first steps in relating pairing and mag-
netism in a complex two-orbital model via computational
techniques on ladder geometries. Antiferromagnetic order, as
found in the pnictides, could also be favorable for pairing
tendencies in the spin singlet channel, as discussed
recently.!>!3

In principle, a theoretical investigation based on model
Hamiltonians for strongly correlated materials starts with an
effective tight-binding model, containing the minimum in-
gredients to describe the physics of the materials under in-
vestigation. However, even if a well-defined reasonable
model is used, it is still highly nontrivial to extract the
ground state properties of these effective models in two or
three dimensions using unbiased numerical methods. In fact,
at present, there are no accurate techniques to study
Hubbard-like models in dimensions two and three. Thus, in
order to get at least some insight on the ground states prop-
erties of theses models, it is common practice to study the
model Hamiltonians in quasi-one-dimensional geometries. In
particular, a very popular route that has been used for several
theoretical investigations is to study strongly correlated elec-
tronic systems using “ladder” geometries.'* The N-leg lad-
ders consist of N chains of length L coupled by some param-
eter (as, for example, fermionic hopping terms). The two-
dimensional system can in principle be obtained by
considering the limits of both N and L sent to infinity, al-
though in practice this is difficult to do. This ladder-based
procedure has been used to investigate models for the high
temperature superconductors'® and for the HF systems.*!°
Some important results were obtained with this method. For
example, research based on microscopic models for the high
T, superconductors,’ as well as research on HF models,* in-
dicate that superconductivity mediated by antiferromagnetic
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fluctuations can be stabilized, in agreement with several ex-
periments. Thus, the use of ladders appears to be an impor-
tant ingredient to unveil dominant ground state tendencies.
Moreover, the hopping amplitudes that will be used in our
investigations below include next-nearest-neighbor diagonal
hoppings that are only possible when plaquettes exist in the
lattice under consideration.

Note that microscopic models that may present supercon-
ductivity induced by antiferromagnetism, such as the one-
orbital Hubbard model and the Kondo Lattice model, have
been extensively studied by several authors. However, mi-
croscopic models for superconductivity in a ferromagnetic
spin background have been much less explored, with the
exception of studies using one-dimensional chains.!' This
may be caused in part by the perception that superconductiv-
ity and ferromagnetism, as opposed to antiferromagnetism,
cannot coexist.!” However, this perception has been chal-
lenged by the discovery of superconductivity and FM in the
HF compounds UGe, (Ref. 10) and URhGe.'® Moreover, SC
and FM were also observed!? in the d-band metal ZrZn,.

Motivated by the discovery of superconductivity in the
HF compound UGe,, a few years ago, Karchev et al. pro-
posed a one-band model to study the coexistence of super-
conductivity and ferromagnetism.?? However, other research-
ers have argued that the treatment used to investigate that
model, as well as the model itself, were not appropriate to
describe the coexistence of these phases.?!=23

Due to the lack of studies of microscopic models for su-
perconductivity mediated by ferromagnetic fluctuations be-
yond one-dimensional chains,'' in this work, we have de-
cided to investigate a microscopic ladder model where the
coexistence of superconductivity and ferromagnetism ap-
pears possible. In fact, it will be shown below that the two-
orbital model that has been originally proposed to describe
the low-energy physics of the iron-based
superconductors!>1324 actually leads to the coexistence of
pairing and spin ferromagnetic tendencies. Qualitatively, our
results are compatible with those reported using chains.!!
Although the model considered here may not be a proper
effective model for superconducting ferromagnets such as
UGe,, we believe that the mechanism that bounds together
the charges carriers (see Sec. III B) is so simple and generic
that our calculations may also apply in a variety of other
models as well.

II. MODEL

In these studies, we have considered the following Hamil-
tonian defined on a two-leg ladder geometry:

H=- X
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where d;’ yo\ Creates an electron with spin projection o in the
orbital y=x,y (d,, and d,,, respectively) at the rung j and leg
)\:TI .2, 8, 1s the electronTspin density operator, p; ..\
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erwise. To avoid a proliferation of extra parameters in our
analysis, we have decided to fix the values of these hoppings
from considerations previously used in the pnictide context.
Our use of models originally devised for pnictides is simply
based on the pragmatic observation that some pairing ten-
dencies and ferromagnetic regions at large J were already
observed in those models.'*!3 It should be clear though, that
our research is mainly motivated by heavy fermion phenom-
enology.

Following this strategy, then the hopping amplitudes #,, 1,,
t;, and t4 are obtained using the Slater-Koster tight-binding
scheme, and they are given by'>!32

t] =- 2(b2 - Clz + gz)/Apd,
h=— 2(b2 - (12 - gz)/APd,
ty=—(b*+d*- gz)/Apd,

ty=—(ab-g*)/A,,. (2)

where the Fe-As hopping amplitudes are a=0.324(pdo)
-0.374(pdm),  b=0.324(pdo)+0.123(pdm), and g
=0.263(pdo)+0.31(pdm). A,, is the energy difference be-
tween the p and d levels. We have set (pda)?/A,,=1 to fix
the energy scale, and we use pdw/pdo=-0.2, as previously
discussed.'>!* Regarding the couplings U, J, and J’, note
that they are not independent, but they are assumed to satisfy
the relation U=U"+2J, which is strictly valid within a cubic
environment for the full #,, sector.?®?” For an explicit deri-
vation of this relation in the case of manganites, see Ref. 28.

We have investigated the model defined above using a
two-leg ladder of size 2 X L by means of the Density Matrix
Renormalization Group (DMRG) technique,?® under open
boundary conditions (OBC), and keeping up to m=1400
states per block in the final DMRG sweep. We have carried
out ~6—13 sweeps, and the discarded weight was typically
1079107 at the final sweep. In our DMRG procedure, the
center blocks are composed of 16 states. We have used a
FORTRAN DMRG code to calculate most results, and a C++
DMRG code for additional validation.>® We have also con-
firmed some of our results against Lanczos Exact Diagonal-
ization techniques, when possible.

In this work, we will focus on the region of Hubbard and
Hund parameters where U= U-3J=U'-J<0, although a
few results for positive values of Uy will be presented as
well. As shown below, in the region where U,;<<0, there is a
robust evidence of binding of holes/electrons close to density
p=2. In this regime U’ <J. This inequality may not seem
realistic at first sight, since the on-site spin triplet formation
favored by J (Hund’s rules) has its origin in the alleviation of
the Coulombic energy penalization caused by U’. However,
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while in the full five-orbital model for Fe-based compounds
U’ <J is unphysical for the reason stated above, the two-
orbital model is an effective model and it is unclear how the
main parameters are affected by the projection from five to
two orbitals. Thus, the regime U’ comparable to J may not
be unrealistic. Clearly, additional investigations are needed
to analyze if this regime of couplings is of relevance for real
materials, such as heavy fermions. Ab initio calculations are
needed for this purpose (beyond the scope of the present
analysis).

III. RESULTS

A. Magnetic Properties at p=2

Let us start our analysis by focusing on the density p=2.
To investigate the magnetic order at this density, the Fourier
transform of the real-space spin-spin correlation function
was measured

1 Ly '
S@=rgr 2 UTIONS S0, ()
G N

where S;,=S; ,+S; . In Fig. 1(a), the spin structure factor
S(q) of the two-leg model is presented for several system
sizes. As can be observed in this figure, there is a robust peak
at wavevector q=(m,0), showing the tendency toward a
stripelike AFM order. This is the analog of the magnetic
order found in pnictides but using a two-leg ladder geometry.
Similar results, obtained with Exact Diagonalization on
small clusters, were reported before.!>!3 Note that the peak
increases with the system size, suggesting the development
of a true long-range magnetic order in systems with a higher
dimension.

The results for the spin structure factor show that along
the y(x) axes the spins are aligned following a ferromagnetic
(AFM) order, at least at short distances. This stripelike AFM
structure is present in a wide range of parameters, as shown
in Fig. 1(b) (inset), including U.4>0. Neutron scattering
measurements for pnictides also show a similar spin order.?!
We have observed that the stripelike AFM structure appears
only when the plaquette-diagonal hopping amplitudes (3 and
t4) are of value similar as those of the nearest-neighbor hop-
ping amplitudes. If we force #;=7,=0, then the peak in the
spin structure factor S(q) appears at wavevector q=(, ).
Note also that for the two-leg geometry, the (7r,0) AFM state
is not, naturally, degenerate with the (0, 7) AFM state. Due
to this fact, a study in a ladder geometry could make a better
connection with the two-dimensional results of the pnictide
materials where (7,0) is favored over (0,7) by a lattice
distortion.

For quasi-one-dimensional systems, a true long-range
magnetic order is replaced by a power-law decay of the spin-
spin correlations. Thus, in order to analyze the range of the
magnetic order, we have also investigated the spin-spin cor-
relation function along one of the legs (say, leg 1), defined as
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FIG. 1. (Color online) (a) Spin-structure factor S(g,) vs g, for
the two-leg ladder system with sizes L=12, 16, and 24, and for
density p=2, J=1.5, and U,;=-0.5. (b) S(7r,0) as a function of J
for ladders with linear sizes L=8 and U.;=-0.5. The inset shows
the magnitude of this peak as a function of U.g, for the coupling
J=1.5. (c) Spin-spin correlation Cqy,(j) Vs j along the long ladder
direction, for a system with size L=24, and for the couplings U,
=-0.5 and J=1.5. The dashed curve is a fit given by Eq. (5).

1

Cspin(l) = M‘

> (S5,85), (4)

et

where M is the number of site pairs (i,j) satisfying [=|i—j]|.
In practice, we have averaged over all pairs of sites separated
by distance /, in order to minimize boundary effects (a few
sites at the edges were also discarded while implementing
this averaging procedure).

In Fig. 1(c), the spin correlation function Cyy;,(j) is shown
for the 2 X 24 cluster and using U =-0.5. The dashed line is
a fit of the numerical data with the function

~ cos(mx)
spin = aT . (5)

Similar results were found for the 2X 16 cluster. The ob-
served power-law decay suggests that a two-dimensional
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system with the same model and parameters would develop
long-range magnetic order at zero temperature.

B. Doping with two holes or electrons

Let us now consider the effect of doping with charges this
ladder system. If tendencies toward the pairing of the extra
charges are unveiled, they would be an indicator that this
model could become superconducting in a two-dimensional
geometry, for the couplings here considered.

Let us start with the calculation of the binding energy of
two doped holes/electrons. This binding energy is defined as
A,=E(2)+E(0)-2E(1), where E(n) is the ground state en-
ergy with (4L+n) holes/electrons (4L is the number of elec-
trons corresponding to the “undoped” limit where there is an
electron per orbital and per site). On a finite system, the bind-
ing energy A,>0 is positive if the electrons/holes do not
form a bound state,> while in the thermodynamic limit A,
should vanish in the absence of pairing. On the other hand, if
the extra holes/electrons form a bound state, then A,<<0
even on a finite cluster, and this would be indicative that
effective attractive forces are present in the system.

Before presenting our numerical results for the binding
energies, let us first consider the following strong coupling
regime defined by —U=3/-U=J-U">1. As it will be ar-
gued below, and as it was discussed in previous investiga-
tions for one-dimensional chains,!' in this regime, the bind-
ing of hole/electrons is clearly present.

For completeness, let us address this limit in detail, al-
though it is clear that large J compared with U’ leads to an
effective attractive interaction.!' Let us denote the states of
the one-site problem via the symbol (ff), where the “arrows”
s,(sy) represent the electrons (with their spins projections) at
the orbital x(y). For this one-site problem with two electrons
and the limit considered here where J is large, the ground
state energy is degenerate. Its value is e,=U,g, and the three
corresponding eigenstates are (f) (%) and [($)+(}L)]/\e"§.
Since —U.;> 1, we can approximate the Hamiltonian as H
=Hyinetict Hint~ Hin and  the (highly degenerate) ground
state energy of the two-leg model becomes E(0)=2L X e,
=2L X Ul

Below, the dominant spin arrangement in the ground state
at density p=2 is shown to guide the discussion

(1) (3) (2) (5) (5
TACAGRCACH

using only the up and down projections of the spin one states
at every site for simplicity. Such a state is to be expected
since for J>1 the alignment of the two spins at the two
orbitals in the same site will occur, and as U~2J>1 then
having two electrons in the same orbital is not allowed. Of
course, any other configuration (such as a fully ferromag-
netic state) is also equally likely as the one shown in the
figure for —U.> 1. However, the hopping terms will lift the
large degeneracy, and our numerical results for the spin-spin
correlations presented before indicate that hopping terms fa-
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vor the (7,0) AFM configuration, for a wide range of cou-
plings in the undoped limit. For this reason, here, we have
chosen to present the dominant spin arrangement of the
ground state as a stripelike AFM state, but it could be fully
FM as well. Regardless of this detail, the arguments we will
use below to obtain the energies E(n) will hold true both for
a stripelike AFM state, as well as for a FM state.

Let us now add two extra electrons to the undoped sys-
tem. In the limit being considered here, where the hopping
amplitudes are negligible, the best way for the system to
minimize its energy is to have the two electrons located on
the same site, since in this way less on-site ferromagnetic
links are broken. The on-site Hubbard U energy penalization
is the same whether the doubly occupied orbitals are at the
same site or not, and since U’ is negligible with respect to J
in the limit considered, then the (effectively attractive) Hund
coupling determines the location of the extra charge, leading
to the double occupation of both orbitals at the same site.'!
In this case, the dominant spin arrangement of the ground

ey
D00

Once again, a stripelike AMF background is used, since for
J~1 and close to the density p=2 our numerical data show
[see Fig. 4(a)] that the (7,0) AFM order is the dominant one,
but it could have been FM as well.

In the limit of couplings considered here, the ground state
energy for the doped two-electron system is

E(Z) = (2L + S)Ueff+ 8J. (6)

Note that if the two extra electrons that are in the state (ﬁ)
were to move in opposite directions (after considering the
presence of small but nonzero hopping terms), they would
break two ferromagnetic on-site links. Such a state would
have a large energy and it is therefore “forbidden” for
-U.>1. However, if the two extra electrons move ‘“to-
gether” (i.e., 1L) in the same direction, forming a spin triplet,
then no other on-site FM links are broken. Thus, to minimize
the energy, the two-electrons added to the system must form
a bound state, at least in the limit where the hoppings ampli-
tudes are very small compared with the Hubbard and Hund
couplings (the same spin dominant picture works when in-
stead of adding electrons we remove two electrons, i.e., for
the two-hole problem). This argument, known from previous
investigations using chains,!! explains the binding of elec-
trons in the limit —U;> 1. More explicitly, the binding en-
ergy of the doped two-electrons/holes system in the limit
considered here is given by

Ap=—|Uegl. (7)

Based on the discussion above, we conclude that for
—Ug> 1, there is an indication of pairing, and perhaps su-
perconductivity, in the two-orbital model. In fact, the on-site
interorbital pairing state found here in this extreme regime
results to be a spin triplet and transforms according to the
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irreducible representation A,, of the group D% Interest-
ingly, Exact Diagonalization calculations in two-dimensional
clusters, still in the FM state of the model but U’ >J, found
indications of a pairing state with the same characteristics
and symmetry but with electrons at distance of one lattice
spacing from each other.'>!3 The argument presented above
for this pairing is actually valid in any dimension, and also it
works for the two doped holes case, as already mentioned.
To confirm these argumentations, A, was calculated numeri-
cally for large values of —U.. An excellent agreement be-
tween the numerical data and the analytic expression [Eq.
(7)] was found.

Now, the crucial question is whether there is binding of
holes/electrons for values of —U g that may be of more rel-
evance for real materials. The answer to this question ap-
pears to be positive. In fact, the binding of electrons/holes
has been observed numerically for U.;=0 and several val-
ues of the coupling J, as shown in Fig. 2.3 More specifically,
Figs. 2(a) and 2(b) show the region in the J—(3J-U) plane
where the binding energies of electrons [Fig. 2(a)] and holes
[Fig. 2(b)] are less than —0.1, for the case of a 2 X3 cluster.
The region where A, <—0.1 was chosen to be represented, as
opposed to A, =0, since previous experience in the context of
the cuprates® suggests that this procedure effectively takes
into account size effects better. In practice, other values for
this “cutoff” do not alter our qualitative conclusions. Similar
results were found also for the 2 X2 cluster.

Thus far, only small clusters have been considered be-
cause the numerical analysis of large clusters would be too
time consuming, particularly with regards to calculating the
hundreds of points that are required to extract comprehensive
phase diagrams. However, larger system sizes were consid-
ered for a few selected sets of couplings, as shown in Fig.
2(c). In this figure, A, vs 1/L for some couplings is pre-
sented. Here, it is clearly observed that in the bulk limit the
binding energies of added electrons/holes converge to non-
zero values for some coupling sets. Close to p=2, these re-
sults strongly indicate that there are pairing tendencies for
U.+=0. Thus, to the extend that future investigations show
that J comparable to U’ is a realistic regime for effective
two-orbital models, this provides a possible mechanism for
pairing in real materials.

In Figs. 2(a) and 2(b), the magnetic phase diagram for the
case of two doped electrons/holes is also presented. The re-
gion above the red (bold) line is a ferromagnetic phase with
the maximum total spin S;,,=2L-1. Below this line, we
have observed that the total spin changes continuously from
zero, at J=0, up to its maximum value at J,.. As observed in
these figures and for a large region of couplings, pairing (and
presumably superconductivity) coexists with ferromagnetic
tendencies.

C. Phase Diagram

In Fig. 3, the phase diagram (J vs density) of the two-leg
ladder for U.;=-0.5 and several system sizes (see legend) is
presented. For p=2, it was observed that the total spin is zero
for L even, and that it can be 0, 1, or 2 for L odd, depending
of the values of J. Note that for L odd and p=2, the (7,0)
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FIG. 2. (Color online) (a)—(b) Phase diagram (J vs —Ux=3J
—U) for the 2X3 cluster showing the region where the binding
energies of electrons (a) and holes (b) is smaller than A,<-0.1,
indicative of pairing. Above the red line, the total spin saturates to
its maximum value. Below this line, the total spin changes continu-
ously from the maximum value to zero at J=0. The blue lines show
the region of J where A, <—0.1 for U.4=-0.5. These lines are the
same as presented in Fig. 3. (c) A, vs 1/L for some couplings (see
legend).

AFM configuration (+—+—+-) does not have the same num-
ber of + and — spins.

For 2<p<2.5(1<p<2), a ferromagnetic phase was
found (the region above the symbols) with magnetic moment
per site given by m=2—p/2(m=p/2). The symbols indicate
the value of J. where the total spin saturates. The critical
value J,. was determined by the level crossing of the energies
in the sector with S=Sp and S¢=Spa—1. Using this pro-
cedure, we were able to obtain J. for large systems. For
densities in the ranges p=1.25 and p=2.5, we have not
found any trace of ferromagnetism. Below the FM region, it
is very hard numerically to determine the total spin with
good accuracy for large systems. However, our results for the
2 X2 and 2 X 3 clusters with two doped electrons/holes sug-
gest that the total spin changes continuously, from maximum
value at J. to zero at J=0. The total spin can be extracted
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FIG. 3. (Color online) (a) Phase diagram of the two-leg ladder
model Hamiltonian defined in Eq. (1). The region above the sym-
bols is a fully saturated ferromagnetic phase (see text). The blue
lines correspond to regions where A,<<—-0.1 for the cluster 2 X3
with two doped electrons/holes, as presented in Figs. 2(a) and 2(b).

from the spin structure factor at q=(0,0). For a few sets of
couplings, we also observed, through the value of
S[q=(0,0)], that in fact, the total spin of the ground state
changes continuously for the 2 X8 cluster as well. These
results suggest that the total spin varies continuously below
the FM region present in Fig. 3 for any cluster sizes. Overall,
our results are qualitatively compatible with those found in
one-dimensional systems.!! Note also that tendencies to FM
states at robust J were also reported via Exact Diagonaliza-
tion methods on small clusters.'>!3

We believe the FM phase is stabilized by a mechanism
that has the same characteristics as the Double Exchange
(DE) mechanism.>* In the original DE scenario, there are
mobile and localized degrees of freedom. In the DE mecha-
nism, these degrees of freedom are separated and well-
defined. Although we do not have localized degrees of free-
dom in our model, from the perspective of one electron at a
given orbital an electron at the same site but the other orbital
behaves in some respects as a localized spin. For doped sys-
tems, when an electron moves from one site to the other, in
order to minimize the kinetic energy and the energy related
with the Hund coupling, all spins have to be aligned.

The blue lines in Fig. 3 are the same that were presented
in Figs. 2(a) and 2(b). We expect that the region of binding
extends beyond these lines up to the density p=2, forming
regions in parameter space where superconductivity exists
inside the phase diagram.

We have also measured the spin structure factor S(q)
away from the undoped density p=2. In Fig. 4, S(q) is pre-
sented for some particular densities for the two-leg ladder
model with size L=16, J=1.5, and U, =-0.5. As can be
observed in Fig. 4(a), there is still a peak at q=(7,0) for
densities close to p=2. Note that these peaks have smaller
intensity than those found for p=2 in Fig. 4(a), for the sys-
tem with size L=16. We have also observed that the height
of the peak at q=(,0) increases with the system sizes for
the densities close to p=2. These results indicate that a
stripelike AFM magnetic order also exists for densities close
to p=2. As shown in Fig. 4(b), this order does not exist
anymore for p=2.2 and p=1.7, at least within the precision
of our calculations, and it is replaced by ferromagnetic ten-
dencies. Note that for the electron doped case, there is a
small peak at q=(0, ) for densities p=2.2.
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FIG. 4. (Color online) Spin-structure factor S(g,) vs g, for the
two-leg ladder system with size L=16, J=1.5, and U.;=-0.5. (a)
S(q,) for the densities p=15/8, p=33/16, and p=17/8 (see legend).
(b) S(g,) for the densities p=7/4 and p=9/4.

IV. CONCLUSION

Using ladders, we have studied analytically and numeri-
cally a two-orbital Hubbard model. Via the DMRG tech-
nique, we were able to investigate the model defined on a
two-leg ladder geometry for systems with linear sizes up to
L=24. Our spin structure factor data show that for the “un-
doped” density p=2, a stripelike AFM order is present, as
observed in previous Exact Diagonalization studies.!>!*> We
have also presented evidence for triplet pairing tendencies of
added electrons/holes close to the density p=2, in some
range of couplings, in qualitative agreement with previous
investigations using chains,'! and with Exact Diagonalization
calculations in a less extreme FM regime of models for
pnictides.!>!3 More precisely, we have found that pairing
(and presumably superconductivity) and ferromagnetism co-
exist for a large region of parameters in the regime U’ <J.
Even for U’ comparable to J, our results still indicate a
(mild) tendency to pairing. Whether this range of couplings
for U’ and J is realized in real materials, such as heavy
fermions or pnictides, is a matter to be decided via experi-
ments, or with the help of ab initio computer simulations.
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