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Detecting Majorana bound states
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We propose a set of interferometric methods on how to detect Majorana bound states induced by a topo-
logical insulator. The existence of these states can be easily determined by the conductance oscillations as
function of magnetic flux and/or electric voltage. We study the system in the presence and absence of Majorana
bound states and observe strikingly different behaviors. Importantly, we show that the presence of coupled

Majorana bound states can induce a persistent current in absence of any external magnetic field.
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I. INTRODUCTION

One of the main interests in current research on quantum
computation is to find materials that facilitate the construc-
tion of large scale quantum computers. The main impediment
is decoherence and the generation of errors. A promising way
of reducing the effect of decoherence and errors is to employ
quantum systems that have topological characteristics.! Re-
cently, topological insulators have been considered that can
be tuned to support topological states, such as Majorana
bound states. There have been several proposals'*> how one
could encode information with Majorana fermions that is
protected against a variety of errors. Majorana fermions
which can also occur in highly correlated systems such as
py+ip, wave superconductors,® the v=5/2 fractional quan-
tum hall state,’ at the boundary of superfluid 3 He-B (Ref. 7)
and finally in superconducting graphene® have the special
characteristic that they are their own antiparticles. They are
also predicted to appear as low-energy excitations in Kitaev’s
two-dimensional spin-1/2 system on a honeycomb lattice.>3

The aim of this work is to detect Majorana bound states,
at the interface between topological insulators with super-
conducting and magnetic correlations, addressed also in
Refs. 6 and 10. Coupled Majorana bound states (implying
two Majorana bound states which are interacting) can encode
a qubit nonlocally and obviate local environmental
perturbations.10 Their detection, so far, has been difficult as
Majorana fermions are neutral quasiparticles. To overcome
that recent works proposed to employ Dirac to Majorana
fermion converters.!":!2 There, Dirac particles emitted from a
source are converted to Majorana’s and then reconverted
back at the drain. In our work Majorana bound states are
efficiently monitored by a mesoscopic Aharonov-Bohm in-
terferometer. In particular, the presence of Majorana bound
states can be probed by the symmetry of the nonlocal con-
ductance as function of the magnetic field or an applied elec-
tric field. Further, we show that the presence of coupled Ma-
jorana bound states could induce persistent currents in a
topological insulator ring in absence of any magnetic flux.

II. PROPOSED PHYSICAL MODEL

To detect Majorana bound states (MBS) that exist in the
topological insulator (TI),'” we look at an Aharonov-Bohm
(AB) interferometer made up of a two-dimensional (2D) TI
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[e.g., Bi,Se; (Ref. 13) or a HgTe quantum well]'* as depicted
in Fig. 1(a). In a TI, spin-orbit coupling causes an insulating
material to acquire protected edge or surface states. A mag-
netic flux exists in the center of the AB interferometer. The
regions of the interferometer are labeled in Fig. 1(a). In the
upper arm of the ring, at the interface between s-wave super-
conducting (S) and a thin ferromagnetic (F) layer, MBS
(white ellipses at the interface) occur as shown in (c). Topo-
logical edge modes (EM), circulate at the edges, interacting
with the MBS. A magnetic flux penetrates the ring while an
electric voltage covers the lower arm (in green) of the ring.
The superconductor and Ferromagnet deposited on top of the
TI, via the proximity effect, induce superconducting and fer-
romagnetic correlations in the substrate. The places where
these correlations intersect is where MBS occur. The ring is
connected to two leads on either side. The left lead is at
potential V; while V,=0 (see Fig. 2). The full Hamiltonian in
the upper and lower arms of the interferometer satisfies

[vpT.0.+ (eV—Ep+eAlfic)T, ]V =EV, (1)

wherein p=-ifid/dx is the momentum operator, E, the
Fermi energy, v the Fermi velocity, eV the electric field
applied to the lower arm only, and A defines the magnetic
vector potential. The four component wave function
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FIG. 1. (Color online) An overview of the setting from the top.
The 2D topological insulator (TI in blue) is made into (a) an
Aharonov-Bohm interferometer. In the upper arm of the ring, MBS
(white ellipses at edge of f and s) occur as shown in (c). Topological
EM, circulate along the edges, interacting with the MBS. A mag-
netic flux penetrates the ring while an electric voltage covers the
lower arm (in green) of the ring. (b) A loop made up of a TI which
supports MBS. (d) Representation of incoming and outgoing waves
from left coupler as in (a).
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FIG. 2. (Color online) Edge modes and back scattering. (a)
Quantum Hall conductor with localized flux. (b) Coupling between
outer and inneredge modes in a quantum Hall conductor. (¢) A TI
with a hole, spin-up (black) and --down (white) edge modes coun-
terpropagate along the hole. (d) A MBS scatterer (red shaded area
on the upper arm of the AB ring) induces e-h mixing and back
scattering.

V=(V,, ¥V, , ¥, ¥,), while the 7 matrices mix the e and
h blocks of the Hamiltonian. The eigenstates of Hamiltonian
(1), can be calculated by considering plane-wave solutions.
The Hamiltonian for the superconducting-magnet interface
[white ellipse at edge of red and greens dashed areas as in
Fig. 1(c)] is that for the MBS,

As discovered by Fu and Kane,® a MB state appears at the
intersection of the magnet-superconductor interface with the
edge of the TI. The 4 X4 § matrix of scattering via the MBS,
Ref. 10, can be written as SMaj—s where {a,b}={e,h} and
{i,j}={1,2}. The elements are determmed as follows

s“—s“—1+1x s22—s22—1+1x

eh he _ - eh he _ -
SII=S1 =X, Sp=5p= ix’

ee ch
5= =81 =551= 512 Y,

hh hho_ b h
Sy == S| =S ==85=Y
N
FI(E+ lrz) , Fz(E+ lrl) EM\JT‘IF2
= , X = N = s
b4 b4 z
1= Ey— (E+il)(E+iT,). (3)

In the above equation, E is the incident electron energy, I'|,,
are the strengths of coupling to left/right arms, and E;, the
strength of coupling between the individual MBS.

III. EDGE MODES AND SCATTERING MATRICES

To understand the edge modes and the type of scattering
matrix needed to describe them, we show in Fig. 2, the edge
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modes flowing in our system and the way MBS affect them.
We start with a related system, in Fig. 2(a) a quantum hall
conductor with an AB flux is shown. A localized state around
the hole develops and is sensitive to the flux, the outer edge
states are not.'> However the outer edge states determine the
net conductance when a voltage is applied to left lead. Thus,
if there is no scattering between outer and inner edge states
the conductance is independent of flux. For conductance to
be sensitive to flux one has to couple both these states. Thus
as seen in Fig. 2(b) we couple the outer edge states to the
inner states via the two couplers. The couplers induce inter-
edge scattering as shown by dashed lines. A 3 X 3 matrix can
effectively describe this scattering process as there are three
outgoing and three incoming modes. In the TI with a hole
shown in Fig. 2(c), the edge states occur in pairs but are of
opposite spins (black:up, white:down), there are also two
localized counterpropagating edge states which develop
around the hole. If as we assume there is no scattering be-
tween states with opposite spins then up spin conductance
will be equal to that for down spins. Couplers induce back-
scattering for all edge modes while MBS mixes electron and
hole edge modes and also backscatters. We restrict ourselves
only to describing electron spin-up and hole spin-down edge
modes as shown in Fig. 2(d) this leads to two counter propa-
gating electron and another two hole edge modes around the
flux. This leads to a 6 X6 S matrix for either couplers while
a 4 X4 matrix couples inneredge modes. Similarly one can
construct the electron spin down and hole spin-up edge
modes. The total conductance will be twice that for incident
electron spin-up edge modes since there is no spin-flip scat-
tering. In Figs. 1(a) and 2(d), the length of upper arm is I,
and of lower arm is [, total circumference of loop is
L=I[,+1,. The Majorana scatterer further divides the upper
arm, as shown in the figure [,=1,+1, with [;=1[,. The loop is
connected to two current leads on either side. The couplers
(triangles) in Fig. 1 which connect the leads and the loop are
described by a scattering matrix S. The S matrix for the left
coupler yields the amplitudes O;=(3,, Sy, Vies Yin> Baes Ban)
emanating from the coupler in terms of the incident waves
I,=(0,,04, %4> %> B> B1n), and for the right coupler
yields the amplitudes O,=(7,, 71, Yie» Yan> Bre>Bon) €manat-
ing from the coupler in terms of the incident waves
L=(i,,ip, o> &an> Yoo» Vo). The S matrix for either of the
couplers,'® left and right, is given by

—(a+b) e Ve

S= Vel al bl |, (4)
NE ) G |

with a=2(\(1-2€)-1), b=3(J(1-2€)+1), and I being the
identity matrix. € plays the role of a coupler with maximum
coupling €= ; while for €=0, the coupler completely discon-
nects the loop from the lead. For left coupler, the waves into
and out are marked in Fig. 1(d). The waves incident into the
branches of the loop are related by the S matrices for left part
of the upper branch by
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with k,=(E+Ef+V)/hv and k;,=(E-Ef-V)/fv are the elec-
tron and hole wave Vectors while k, and k; are wave vectors

ol ¢l
with V=0. o b and — are the phase shifts due to flux in
¢ Pl 2md

L b L b

the upper and lower branches Clearly, - o o LY =0,
where @ is the flux piercing the loop and ®, is the flux
quantum hf The transmission and reflection probabilities

from Fig. 1 and Eq. (3) are given as follows: normal electron
Te2

. S, .
reflection Re=|0— 2, nonlocal electron cotunneling T,=
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FIG. 3. (Color online) G,,, in units of e?/#, as function of inci-
dent electron energy E (controlled via a gate voltage) in units of A.
The dashed and solid lines in the left panel are for individual
(Ey=0) and coupled MBS (Ey;=1.0), E); in units of A the super-
conducting gap.
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2 and nonlocal crossed An-

local Andreev reflection R, =

dreev reflection T),= |:—h|2 wherein 7, & are as depicted in Fig.
1(a). In the calculations we consider e=%=c=1 and
I'y=I',=T". For the setting as described in Fig. 1(b), the scat-
tering matrices can be written in exactly similar fashion (see
also Ref. 19). The total persistent current density!” in a small
interval dE is then sum of the individual electronic and hole

current densities calculated as J=ev(J,+J,), with
Te= (7= B1el), and =y~ 1Bu)-
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FIG. 4. (Color online) Nonlocal conductance, in units of ¢?/#,
as function of magnetic flux (top panel) in units of ®y=7%c/e and
electric potential (bottom panel) in units of A for E=0.1A.
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FIG. 5. (Color online) The current density (j) in units of ev as
function of the incident electron energy, for e=1/2, and Ep=0. A
finite current (red dashed line) flows when MBS are coupled.

IV. DETECTION PROCEDURE FOR MBS

To distinguish the behavior of the MBS we analytically
solve Egs. (4)—(7) and derive expressions for reflection and
transmission probabilities. For brevity we present plots that
result from these solutions. In Figs. 3 and 4 we plot the
nonlocal ~ conductance  G,=(e*/2h)(1-R,~R,+T,+T),)
=(e?/h)(T,+T,). We subsumed a “~” sign into the hole wave
vectors, indicating their opposite direction to electrons, in the
S matrices. Thus in G,; we add the individual contributions
rather than subtract. As a consistency check, the sum of
probabilities T,+7;,+R,+R;=1. Further, current conserva-
tion also holds as currents in either leads are equal 7,+7)
=1-R,—R;,. The nonlocal conductance implies a current
which appears in the right lead, while a voltage V| is applied
to left lead and no voltage is applied to the right. Hence,
appearance of a current is due to the nonlocal effect of volt-
age applied to the left lead. In Figs. 3-5, the dimensionless
parameter €=1/2, Fermi energy E;=0 and I'=0.1 in units of
A and lengths /,=1,=1/2 in units of Zv/A. In Fig. 3, we
focus on the behavior of G,; as function of the electronic
energy (which can be tuned by a gate voltage) in the top left
panel. We see there is a pronounced dip in the case wherein
MBS are decoupled. On the adjacent panel we plot the indi-
vidual contributions. We see that most of the contribution to
G,, comes from electron cotunneling. Further, G,,(E)
=G, /(=E) for ¢=0, but this equality does not hold in pres-
ence of magnetic flux. Figure 4 shows the variation in G,; as
function of the magnetic flux. It shows G, (¢$)=G,/(—¢) in
the case where the MBS are decoupled, while for coupled
states G,;(¢) # G,;,(—¢). The absence or presence of an elec-
tric voltage on the lower arm does not make much of a quali-
tative difference while a quantitative difference is manifest.
On the lower panel of Fig. 4 we plot G,; against the electric
potential V on the lower arm of the ring. It is seen that while
G,(V)# G, (V) irrespective of whether MBS are coupled
or not, there is a halving of periodicity when MBS are de-
coupled. The reason for nonobservance of magnetic-field
symmetry is twofold: (i) a coupled MBS scatterer, breaks
time-reversal symmetry as in Eq. (3), e.g., s{57 557 and (ii)
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FIG. 6. (Color online) Nonlocal conductance as function of
magnetic flux and voltage applied to left lead, V, for a AB ring
with a s-wave superconductor in its upper arm in absence of MBS.
z represents normal metal-superconductor interface strengths in
units of A.

breakdown of Andreev reflection symmetry (sflll*(—E)
=s"(E)) instead of s¢"*(~E)=—s¢(E), regardless of whether
MBS are coupled or not. However, for E, I'<<A, the break-
down of Andreev reflection symmetry can be discounted as
this amplitude is minimal and therefore, we chose the low
energy and weak coupling sectors in Figs. 3 and 4 so as to
bring out the distinction between coupled and individual
MBS in the nonlocal conductance versus magnetic-field plots
wherein breakdown of time-reversal symmetry is the main
reason.

Because, of break down of time-reversal symmetry elec-
trons and holes scattered from the coupled state get different
phases when they travel from left to right and vice versa. The
same philosophy which first predicted persistent currents in
mesoscopic rings due to the fact that a magnetic flux can
break time-reversal symmetry'® is once again present here.
Importantly, here it is not just the magnetic flux which causes
the breaking of time-reversal symmetry but it is also the
Majorana scattering. This implies that a circulating current
can arise in the TI loop because of the scattering due to
coupled MBS independent of the fact whether a magnetic
flux is present or absent. To isolate this effect we calculate
the persistent current for the setting described in Fig. 1(b). In
presence of coupled MBS, a persistent current is induced in
the TI loop while for individual (or decoupled) MBS such a
current is absent. In Fig. 5, we plot the persistent current
density (in units of ev), which when integrated over the en-
ergy gives us the total persistent current. Experimental detec-
tion of this persistent current would be via a measurement of
the magnetic moment of the ring.

Finally, we consider the case of a similar setting [as in
Fig. 1(a)] but without any MBS. This system is a normal
metal AB ring with an s-wave superconductor in its upper
arm. The left lead is at potential V; while no voltage is ap-
plied to the right. In Fig. 6 we plot the results for the nonlo-
cal conductance G,=(e?/%)(1-R,+R,+T,-T,). Note that
this formula for the nonlocal conductance differs from that
used earlier, for TIs so as to ensure current conservation and
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TABLE I. Detecting MBS.

MBS Magnetic field  Electric field/gate voltage
Individual (E,,=0) G(d)=G(-9) G(E)=G(-E)
Coupled (E,, #0) G(d) #G(—¢) G(E)=G(-E)
Absent G(h)=G(-9¢) G(V)) #G(-Vy)

because the hole wave vectors here do not have a minus sign
subsumed. To conserve currents on either side of the super-
conductor one lets the potential in the superconductor float.
Due to the absence of MBS the nonlocal conductance is
symmetric with respect to magnetic field reversal (see top
panel of Fig. 6). In the bottom panel of Fig. 6, we see
G,(V,)# G, (=V,). This is in contrast to the case where
MBS are present.

V. CONCLUSIONS

We have presented a mechanism to detect MBS occurring
in TIs. The realization and control of MBS would be the first
step toward a fault tolerant quantum computer. In Table I we
summarize our results. We see that coupled MBS break mag-
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netic flux symmetry. One also sees that period doubling oc-
curs in presence of an electric potential and in the presence
of individual MBS (Fig. 3). These can be easily used as
means to detect MBS. Further there is a pronounced zero-
energy dip/crest in presence of individual MBS which
changes into a continuous function (without a maximum or
minimum) in their absence. Finally, coupled MBS, can in-
duce a persistent current in absence of a magnetic flux in a
topologically insulating loop. Although these results are de-
rived for a loop made of a TI, the results would remain valid
in case the TI is replaced with a semiconductor provided a
MBS can exist in such a system,? since we used a generic
Hamiltonian for the Majorana scatterer, see Eq. (2). An ex-
tension of the work would be to study the shot noise gener-
ated in our settings.”! The symmetries of this could also be a
matter of interest in the process of detection.
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