
Coulomb screening and collective excitations in biased bilayer graphene

Xue-Feng Wang*
Department of Physics, Soochow University, 1 Shizi Street, Suzhou 215006, China

Tapash Chakraborty
Department of Physics and Astronomy, The University of Manitoba, Winnipeg, Canada R3T 2N2

�Received 23 November 2009; published 4 February 2010�

We have investigated the Coulomb screening properties and plasmon spectrum in a bilayer graphene under
a perpendicular electric bias. The bias voltage applied between the two graphene layers opens a gap in the
single-particle energy spectrum and modifies the many-body correlations and collective excitations. The energy
gap can soften the plasmon modes and lead to a crossover of the plasmons from a Landau damped mode to
being undamped. Plasmon modes of long lifetime may be observable in experiments and may have potentials
for device applications.
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Bilayer graphene �BLG� has attracted much attention due
to its unique electronic characteristics, distinct from the
Dirac gas in monolayer graphene and the Fermi gas in tradi-
tional semiconductor quantum wells.1–3 In addition, an en-
ergy gap between the conduction and valence bands of a
BLG can be opened and tuned by introducing an electrostatic
potential bias between the two graphene layers.4–11 This can
be easily realized via one or more external gates to perpen-
dicularly bias BLG and make it a potential component for
integrated electronics. It is then very intriguing to understand
some fundamental properties such as correlation and screen-
ing properties of electron gases in a biased BLG. As collec-
tive excitations, plasmon modes are a direct result of elec-
tronic correlation due to Coulomb interaction between
electrons. Experimental detection of plasmon modes has re-
cently become feasible and has been used to determine the
dynamical behavior of electrons in graphene layers.12–14

Previously, assuming zero or nonzero spin-orbit interac-
tion induced energy gap, we have studied the Coulomb
screening and collective excitation spectrum of intrinsic and
doped monolayer graphenes at zero and finite temperatures
in the random-phase approximation �RPA�.15 Later,
Qaiumzadeh and Asgari16 assumed an unspecified energy
gap of arbitrary width for doped monolayer graphene and
studied the corresponding ground-state properties at zero
temperature in RPA.17 They concluded that the conductance
and charge compressibility decrease with the band gap. Fur-
thermore, a THz source has been proposed based on the
stimulated plasmon emission in graphene18 and the absorp-
tion of THz electromagnetic radiation in gapped graphene
has been estimated.19 On the other hand, the Coulomb
screening and the collective excitations in zero gap BLG
have been studied in our previous work at zero and finite
temperatures2 and by Hwang and Das Sarma3 for the zero-
temperature case. In this Rapid Communication we report on
our studies of the correlations, screening, and the plasmon
spectrum of electron gases in a biased BLG.

In the effective-mass approximation,1 the Hamiltonian de-
scribing electrons of moderate energies in the K valley of a
biased BLG reads as
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with k�=kx� iky =−i�x� i�y and k= �kx ,ky� being measured
from the K point. The effective mass of the quadratic term is
m�=2�2�1 / �3a0�0�2�0.033m0 with m0 the free-electron
mass, a0=1.42 Å the C-C bond length on the graphene
layer, �0=3.16 eV the intralayer coupling, and �1=0.4 eV
the direct interlayer coupling. The second term arises from
the electrostatic potential bias U between the two graphene
layers separated by a distance d=3.35 Å. The Hamiltonian
is obtained by keeping only the linear term of the Tayler
expansion on the small energy value in unit of �1, so it is
valid for electrons of energy less than 0.4 eV which is ad-
equate in our case. The indirect interlayer coupling is ne-
glected since it affects only the energy band in the range of
less than 2 meV from the middle of the conduction-valence
band gap.2

The eigenenergy of the above Hamiltonian is Ek
�

=�U�1+ ��2k2 /m�U�2 /2 with the eigenfunctions �k
+1�r�

= �
cos��k/2�

−sin��k/2�ei2	k �eik·r and �k
−1�r�= �

sin��k/2�
cos��k/2�ei2	k �eik·r for �=+1

and −1, respectively. Here 	 is the azimuth of the vector k,
i.e., tan 	k=ky /kx, and �k indicates the ratio of the kinetic
energy to the potential bias with tan �k=�2k2 / �m�U�. The
conduction band which touches the valence band at k=0 in
unbiased BLG becomes separated from it by an energy gap
equal to the potential bias U. This gap converts the BLG
from a semimetal into a semiconductor and accordingly
modifies the optical and electric properties of the electrons
inside. For finite U, the density of states of the BLG diverges
on the edge of the energy gap �E�=U /2. At zero temperature,
the carrier density N in a BLG of Fermi energy EF is
N= �

2m�



�EF

2 −U2 /4.
Following the well-established formalism for spin

systems,20 we obtain the dielectric matrix of a biased BLG in
the form of a unit matrix multiplied by a dielectric function
��q ,��=1−vq�q ,�� with the bare Coulomb interaction
vq=e2 / �2�0q� and the electron-hole propagator
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The factor four comes from the degenerate two spins and two
valleys at K and K�, f�x� is the Fermi function, and the

vertex factor reads �gk
�,���q��2= 1

2 	1+��� cos �k cos �k+q
+��� sin �k sin �k+q cos�2	k−2	k+q�
. At q=0 or q=−2k,

�gk
�,���q��2= �1+���� /2. Similar to unbiased BLG, the inter-

band vertical and back scatterings are both forbidden but the
intraband back scattering is allowed in biased BLG.

It has been shown that the interlayer indirect C-C interac-
tion introduces anisotropic fine structures near the Fermi en-
ergy in the range of 2 meV and leads to some interesting
dielectric and collective phenomena.2 For systems with en-
ergy gap U�5 meV or with Fermi energy EF satisfying
�EF−kT��3 meV, this anisotropy becomes negligible. For
large U comparable to �1, the effect of the “Maxican hat” at
the bottom �top� of the conduction �valence� band1 should be
taken into account. Nevertheless, for moderate U and EF, the
model described here should be valid. Furthermore, we as-
sume that the BLG is far enough from the substrate and the
gate so a unit background dielectric constant is used in the
calculation.

In intrinsic BLG where no net carrier exists, i.e., N=0 and
the Fermi energy EF=0, intraband scattering is only allowed
at nonzero temperatures. In Fig. 1, we have shown that the
real part ��r, solid curve� and imaginary part ��i, dotted� of
the dielectric function versus the energy in an intrinsic sys-
tem with potential bias U=5 meV at a finite temperature 77
K for �a� q=0.005�108 m−1 and �b� q=0.5�108 m−1. In
the small q case, the intraband scattering introduces a dip for
�r and a peak for �i of low energy as illustrated in the insets.
Consequently, there exist two plasmon modes, one Landau
damped and one almost undamped. The depth and the width
of this real part dip increase with the temperature indicating
the increase in intraband scattering strength and also the en-
ergy of the undamped plasmon mode. At �=�U2+q4 /16m�,
the threshold of interband single-particle excitation con-
tinuum �SPEC�, �i steps up and a sharp peak of �r is

observed thanks to the flat bottom and top of the energy
bands. This peak may introduce additional plasmon modes
and is similar to the case in gapped monolayer graphene.15

As q increases, the �r dip ��i peak� due to intraband scatter-
ing shifts quickly to the higher energy side while the �r peak
��i step� due to the interband scattering moves only slowly.
As a result, the well separated intra- and interband structures
at small q mix with each other and then separate again when
q increase as shown in Fig. 1�b�.

The effect of a bias on the zero-temperature propagator
−�q ,�� in doped BLG �Ref. 3� with a fixed carrier density
N=1012 m−2 is studied in Fig. 2. The interband contribution
decreases with the bias potential U as the energy gap widens.
The intraband contribution, on the contrary, increases with
the bias since the energy dispersion leads to an enhancement
of the density of states near the Fermi energy. Here
one of the characteristics in BLG against in monolayer
graphene2,3 is the strong back scattering of electrons on the
Fermi surface which results in an intraband peak at
q=2kF=3.54�108 m−1. If the Fermi energy remains fixed
as the bias increases, the carrier density decreases and the
intra�inter�band contribution at large �small� q becomes less
sensitive to the bias and decreases �increases� with the bias.

The plasmon modes are obtained by solving the zeros of
the real part of the dielectric function �r�q ,��=0 and the
corresponding imaginary part �i represents the damping rate
of the plasmon modes. In Fig. 3, we plot the typical spectrum
of plasmon modes �solid and dashed curves� in doped BLG
at zero temperature under potential bias �a� U=30 meV and
�b� U=60 meV. The upper light shadow is the interband
SPEC edged at �=�U2+kF

4 /m�2 /2+�U2+ �kF−q�4 /m�2 and
the lower dark shadow is the intraband SPEC edged at
�=�U2+ �kF+q�4 /m�2−�U2+kF

4 /m�2 /2. One undamped
mode is located in the SPEC gap due to finite Fermi energy.
In the long wavelength limit, its dispersion is the same as
that of Fermi two-dimensional �2D� gas of two valley,
�0=��e2 /4
�0� / �N
q /m��. However, compared to the

FIG. 1. �Color online� �r �solid� and �i �dotted� are plotted ver-
sus � in biased intrinsic BLG at temperature T=77 K for �a� q
=0.005�108 m−1 and �b� q=0.5�108 m−1. The potential bias is
U=5 meV and the Fermi energy EF=0. The details at low fre-
quency for small q is shown in the inset of �a�.

FIG. 2. �Color online� The intra- and interband contributions to
the real part of the zero-temperature propagator function − in
doped BLG with carrier density N=1012 m−2 versus the wave vec-
tor q are illustrated for U=0 �solid�, 20 �dashed�, 40 �dotted�, and
60 �dash dotted� meV. The corresponding energy bands for different
U is shown in the inset. N0=2m� /
 is the density of states of
unbiased BLG.
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plasmon dispersion in BLG without bias which is just
slightly modified from that of Fermi 2D gas, this dispersion
is greatly softened for finite q as also shown in Fig. 4. Our
numerical analysis shows that this is a result of the deforma-
tion near the bottom and top of the energy bands. Note that
the lowered plasmon group velocity may be helpful for mak-
ing a stimulated plasmon oscillator.18 A Landau damped
mode is located just below the intraband SPEC edge as usu-
ally happens in traditional 2D Fermi gas but is pushed to
lower energy at larger q. The undamped mode can enter into
the interband SPEC and becomes a slightly damped mode in
some cases as shown in Fig. 3�a� under U=30 meV or
merges with the damped mode and disappears near the cross

of intra- and interband SPEC edges as shown in Fig. 3�b�
under U=60 meV.

With the plasmon spectrum in mind, we now explore how
U affects the energy and damping properties of the modes. In
the left panels of Fig. 4, we show � versus U at several
typical q when keeping the Fermi energy constant. As in Fig.
3, the light shadow indicates the interband SPEC and the
dark shadow for the intraband one. At small q as illustrated
in �a�, there is one undamped plasmon mode with energy
located inside the SPEC gap of which the width is about 2EF
and one damped mode of low frequency. When U reaches
and passes 2EF, the Fermi level drops below the conduction
bottom and the two plasmon modes merge and disappear. At
larger q, the intraband SPEC edge shifts up and the interband
one shifts down for U�2EF and � increases as shown in �b�
and also in Fig. 3. Then the two SPECs will merge and the
previous undamped plasmon mode enter the interband SPEC
and become slightly damped. In this case, we may open the
SPEC gap again by applying a stronger bias and transfer the
slightly damped plasmon mode into a undamped as shown in
�c�. The � versus U curve forms a shoulder when it meets the
interband SPEC reflecting the strong coupling between the
single-particle and collective excitations as also shown in
other cases.2,15,20

If N remains constant as shown in the right panels, the
Fermi vector is also constant but the EF shifts up with U.
This is clearly shown in �d� by the interband SPEC edge of
small q which is located near �=2EF. The undamped plas-
mon mode continues to exist as U increases and its energy
varies slowly. This is because EF is always higher than the
conduction bottom with a constant Fermi vector. � decreases
with U as the effective mass near EF increases. For a large q
the plasmon mode located inside the interband SPEC and is
slightly damped at small U, one can always make it un-
damped by increasing the bias and widening the gap between
the intra- and interband SPECs as shown in �f�.

When an external gate voltage is applied to a BLG, the
carrier density varies with the gate voltage as well as the
energy gap.7–10 Although N and U can be dependent on each
other in a nontrivial way, our result suggests that � is pro-
portional to �N in almost the same way in both doped and
undoped BLG. This happens because � is mainly determined
by N as illustrated in the right panels of Fig. 4. The variation
in U of small amount affects � only in a very limited scale.
Nevertheless, as shown in Fig. 4, the higher U opens a wider
energy gap in the SPEC and prolongs the lifetime of the
plasmon modes. In other words, a gate voltage can vary the
imaginary part of the dielectric constant at the plasmon en-
ergy and the effect may be observed in experiments.

In summary, a potential bias can be applied between the
two graphene layers of a bilayer graphene with the help of a
gate voltage. We have studied the effect of the potential bias
on electronic correlations, Coulomb screening, and collective
excitations at both zero and finite temperature. The potential
bias opens a gap in the single-particle energy spectrum and
makes the semimetal bilayer graphene a semiconductor. As a
result, the dielectric function for the Coulomb interaction and
the propagator function are modified significantly. The po-
tential bias also opens a gap in the single-particle excitation
spectrum and softens the collective excitation modes. This

FIG. 3. �Color online� The plasmon spectrum �solid curves for
undamped or slightly damped mode and dashed for Landau damped
mode� and single-particle continuum spectrum �light shadow for
interband SPEC and dark shadow for intraband SPEC� at zero tem-
perature under potential bias �a� U=30 and �b� U=60 meV are
illustrated for BLG with N=1012 m−2. The plasmon dispersion in
the long wavelength limit, �0=��e2 /4
�0� / �N
q /m�� is also
presented.

FIG. 4. �Color online� The energy � versus the potential bias U
of zero-temperature plasmon modes �solid for undamped and
dashed for Landau damped� at fixed EF=36 meV �left panels� or at
fixed N=1012 m−2 �right panels� for q=0.05 in �a� and �d�, 0.5 in
�b� and �e�, and 1�108 m−1 in �c� and �f�, respectively.
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may result in undamped collective excitation modes that are
observable in experiments. In the single gate configuration,
the doping and gate voltage can vary the potential bias and
the carrier density of the bilayer graphene and manipulate the
energy and lifetime of the collective excitation modes inside.
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