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The gap generation is studied in suspended clean graphene in the continuum model for quasiparticles with
the Coulomb interaction. We solve the gap equation with the dynamical polarization function and show that,
comparing to the case of the static polarization function, the critical coupling constant lowers to the value
�c=0.92, which is close to that obtained in lattice Monte Carlo simulations. It is argued that additional
short-range four-fermion interactions should be included in the continuum model to account for the lattice
simulation results. We obtain the critical line in the plane of electromagnetic and four-fermion coupling
constants and find a second-order phase transition separating zero gap and gapped phases with critical expo-
nents close to those found in lattice calculations.
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I. INTRODUCTION

Graphene, a one-atom-thick layer of graphite, is a remark-
able system with many unusual properties that was fabri-
cated for the first time 5 yrs ago.1 Theoretically, it was shown
long time ago2 that quasiparticle excitations in graphene
have a linear dispersion at low energies and are described by
the massless Dirac equation in 2+1 dimensions. The obser-
vation of anomalous integer quantum Hall effect in
graphene3 is in perfect agreement with the theoretical
predictions4 and became a direct experimental proof of the
existence of gapless Dirac quasiparticles in graphene.

The unusual band structure of graphene has an important
consequence for the electron-electron interaction in this ma-
terial. In the continuum limit, graphene model on a honey-
comb lattice, with both on-site and nearest-neighbor repul-
sions, maps onto a �2+1�-dimensional field theory of Dirac
fermions interacting through the Coulomb potential plus, in
general, some residual short-range interactions represented
by local four-fermion terms. The vanishing density of states
at the Dirac points ensures that the Coulomb interaction be-
tween the electrons in graphene retains its long-range char-
acter due to vanishing of the static polarization function for
q→0.5 The large value of the “fine-structure” coupling con-
stant �=e2 /�vF�1 means that a strong attraction takes
place between electrons and holes in graphene at the Dirac
points. As is known, for graphene on a substrate with the
effective coupling � /��1, � being a dielectric constant, the
system is in a weak-coupling regime and exhibits semime-
tallic properties due to the absence of a gap in the electronic
spectrum. Much less is known about suspended graphene
where the coupling constant is large. In fact, suspended
graphene provides a condensed-matter analog of strongly
coupled quantum electrodynamics �QED� intensively studied
in the 1970s and 1980s.6–10 The dynamics of the vacuum in
QED leads to many peculiar effects not yet observed in na-
ture. Some QED-like effects such as zitterbewegung �trem-
bling motion�,11 Klein tunneling,12 Schwinger pair
production,13 and supercritical atomic collapse14,15 have a
chance to be tested in graphene �for experimental observa-
tion of the Klein tunneling in graphene, see Ref. 16�. To
observe these effects in graphene, it is important to use sus-

pended and clean samples where charges from a substrate do
not interfere with the dynamics of electrons.

Recently, it was shown in Ref. 17 that, for strong-enough
coupling ���c, there is a tachyonic solution in the spectrum
of the Bethe-Salpeter �BS� equation for the electron-hole
bound state signaling the presence of excitonic instability of
the zero-gap ground state of monolayer graphene in the su-
percritical regime. The critical coupling equals �c=1 /2 if the
vacuum polarization is neglected and �c�1.62 in the
random-phase approximation with the static polarization.18 It
was also shown there that physically, the excitonic instability
is connected with the well-known supercritical Coulomb
center problem19 where �c=1 /2 in two spatial dimensions.20

The situation is similar to that in the theory of
superconductivity,21 where the four-fermion vertex instabil-
ity has its origin in the Cooper pair problem. It was argued in
Ref. 17 that the formation of an excitonic condensate of
electron-hole pairs should cure the excitonic instability and
lead to opening of a quasiparticle gap in a free-standing clean
graphene resulting in dramatic changes in the transport prop-
erties. A similar situation occurs in QED in 3+1 dimensions
where the gap generation takes place in the strong-coupling
regime6,7,10 �see also Refs. 8 and 9�.

The problem of gap generation in graphene was consid-
ered before the actual fabrication of this material in Refs.
22–24, where the random-phase approximation with the
static polarization function was used. Recently, lattice Monte
Carlo simulations found the value of the critical coupling
�c=1.08 for a semimetal-insulator transition25 and this mo-
tivated us to reconsider the problem of gap generation in
graphene. It was already indicated in Ref. 23 that taking into
account the frequency-dependent polarization function
should lower the critical coupling. We investigate this ques-
tion in the present paper and confirm that the dynamical
polarization is indeed quantitatively important: solving the
gap equation with frequency-dependent polarization func-
tion, we find the critical coupling �c=0.92 instead of
�c=1.62 in the case of static polarization. We would like to
note also that the presence of a gap would be valuable for
electronics applications, in particular, for working graphene
transistors.

Another problem studied in the present paper is the order
of phase transition connected with the gap generation in
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graphene. Due to the scale invariance of the model with the
Coulomb interaction, an infinite-order phase transition was
found in Refs. 23 and 24. Such a phase transition belongs to
the class of the so-called conformal phase transitions.26 Ac-
cording to the recent Monte Carlo �MC� simulations25 �for
related MC simulations, see Ref. 27�, the semimetal-
insulator phase transition in graphene is of the second order.
One of the reasons for such a difference might be lattice
finite-size effects which can change the order of phase
transition.28–30 On the other hand, according to Refs. 31–33,
the effective continuum theory for quasiparticles in graphene
should contain besides the Coulomb interaction some addi-
tional contact four-fermion interaction terms that arise from
the microscopic graphene lattice interactions. These terms
contain a dimensionful parameter, therefore, they explicitly
break the scale invariance of the continuum model. In such a
case, one may expect a conventional second-order phase
transition. In order to take into account these four-fermion
interaction terms, we consider in the present paper the sim-
plest Gross-Neveu interaction term and show that the pres-
ence of this interaction term plays an important role. First,
instead of a critical point, we now have a critical line in the
plane of electromagnetic and four-fermion coupling con-
stants separating symmetric and symmetry-broken phases.
Second, the inclusion of this term indeed changes the order
of phase transition from infinite to the second order along a
part of the critical line 0����c. Third, it lowers the value
of the critical electromagnetic coupling comparing to the
case of purely Coulomb interaction. At last, the critical indi-
ces stay closer to those obtained in lattice simulations.25

The structure of the paper is the following. We begin with
presentation in Sec. II of the continuum model describing
graphene quasiparticles interacting through the Coulomb po-
tential. In Sec. III, we solve the gap equation with the
frequency-dependent one-loop polarization function and de-
termine a critical coupling for the onset of a gap. To get
insight into analytical solutions of the gap equation, we then
turn back to the case of the static polarization and find as-
ymptotical behavior of the gap function, calculate the exci-

tonic condensate �	̄	� of particle-hole pairs, the correlation
length, and critical exponents near the phase-transition point
�c. In Sec. V, we include the Gross-Neveu four-fermion in-
teraction, find explicitly the critical line in the plane of Cou-
lomb and four-fermion interaction coupling constants, and
determine the critical exponents for the phase transition
along this line. In Sec. VI, we summarize the main results.

II. MODEL

For the description of the dynamics in graphene, we will
use the same model as in Refs. 22 and 23 in which while
quasiparticles are confined to a two-dimensional plane, the
electromagnetic �Coulomb� interaction between them is three
dimensional in nature. The low-energy quasiparticle excita-
tions in graphene are conveniently described in terms of a
four-component Dirac spinor 	a

T= �
KAa ,
KBa ,
K�Ba ,
K�Aa�
which combines the Bloch states with spin indices a=1,2 on
the two different sublattices �A ,B� of the hexagonal
graphene lattice and with momenta near the two-

nonequivalent valley points �K ,K�� of the two-dimensional
Brillouin zone. In what follows, we treat the spin index as a
“flavor” index with Nf components, a=1,2 , . . . ,Nf, then
Nf =2 corresponds to graphene monolayer while Nf =4 is re-
lated to the case of two decoupled graphene layers, interact-
ing solely via the Coulomb interaction.

The action describing graphene quasiparticles interacting
through the Coulomb potential has the form

S =� dtd2r	̄a�t,r��i�0�t − ivF���	a�t,r�

−
1

2
� dtdt�d2rd2r�	̄a�t,r��0	a�t,r�U0�t − t�, �r − r���

�	̄b�t�,r���0	b�t�,r�� , �2.1�

where vF is the Fermi velocity, 	̄=	†�0, and the 4�4 Dirac
� matrices �=�3 � ��3 , i�2 ,−i�1� furnish a reducible repre-
sentation of the Dirac algebra in 2+1 dimensions. The bare
Coulomb potential U0�t , �r�� is given by

U0�t, �r�� =
e2��t�
�

� d2k

2�

eikr

�k�
=

e2��t�
��r�

. �2.2�

However, the polarization effects considerably modify this
bare Coulomb potential and the interaction will be

U�t, �r�� =
e2

�
� d�

2�
� d2k

2�

exp�− i�t + ikr�
�k� + ���,k�

, �2.3�

where � is the dielectric constant due to a substrate and the
polarization function ��� ,k� is proportional �within the fac-
tor 2� /�� to the time component of the photon polarization
function. Correspondingly, the Coulomb propagator has the
form

D��,q� =
1

�q� + ���,q�
, �2.4�

where the one-loop polarization function is5

���,k� =
�e2Nf

4�

k2

	�2vF
2k2 − �2

�2.5�

and in the instantaneous approximation it becomes

��� = 0,k� =
�e2Nf

4��vF
�k� . �2.6�

The continuum effective theory described by the action �2.1�
possesses U�2Nf� symmetry. In the case of graphene, Nf =2,
the corresponding 16 generators are �see, for example, Ref.
23�

��

2
� I4,

��

2i
� �3,

��

2
� �5,

��

2
� �3�5, �2.7�

where I4 is the 4�4 Dirac unit matrix, and ��, with �=0, 1,
2, and 3, are four Pauli matrices connected with the spin
degrees of freedom ��0 is the 2�2 unit matrix�. However, as
was pointed out in Ref. 31 �see also Refs. 32 and 33�, this
symmetry is not exact in the graphene tight-binding model
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on lattice. In fact, there are small on-site interaction terms
which break the U�2Nf� symmetry; their role will be consid-
ered in Sec. V.

III. GAP GENERATION AND THE CRITICAL COUPLING
CONSTANT

In this section, we study spontaneous generation of a gap
in the quasiparticle spectrum of graphene. The Schwinger-
Dyson equation for the quasiparticle propagator has the form

S−1�p0,p� = p0�
0 − p� − �0 − ie2� d3k

�2��2

�D�p0 − k0,p − k��0S�k0,k��0, �3.1�

where the Coulomb propagator D�q0 ,q� is given by Eq. �2.4�
and in the random-phase approximation, the polarization is
taken as in Eq. �2.5�. The vertex corrections are rather small5

and we neglect them in what follows.
The general form of the propagator of quasiparticles is

S−1�p0,p� = Z−1p0�
0 − Ap� − � , �3.2�

where Z, A, and � are functions of p0 and p and we included
also a bare gap in Eq. �3.1� �0. We assume that a dependence
of these functions on the energy p0 is rather weak so that we
can approximate these functions by their values at p0=0. In
this approximation, it is easy to see that Z=1, then after the
Wick rotation, k0= i�, we get a coupled system of equations
for A�p�, ��p�,

A�p� = 1 +
e2

�p2�
−�

�

d�� d2k

�2��2

�D��,p − k�
pkA�k�

�2 + k2A2�k� + �2�k�
, �3.3�

��p� = �0 +
e2

�
�

−�

�

d�� d2k

�2��2

�D��,p − k�
��k�

�2 + k2A2�k� + �2�k�
. �3.4�

We write the integral over � as

I = �
−�

�

d�D��,q�
1

�2 + k2A2 + �2

= �
−�

� dxf�x�
x2q2 + k2A2 + �2 , f�x� =

	x2 + 1
	x2 + 1 + g

, �3.5�

whereg=�Nf� /4. The function f�x� changes slowly from
1 / �1+g� at x=0 
the instantaneous approximation for
D�� ,q�� up to 1 at x=�. The integral in Eq. �3.5� can be
evaluated exactly

I =
1

�q�	k2A2 + �2
J�d,g�, d =

	k2A2 + �2

�q�
,

J�d,g� =
�d2 − 1��� − gc�d�� + dg2c�g�

d2 + g2 − 1
, �3.6�

where

c�x� =
2 cosh−1�x�

	x2 − 1
, x � 1, c�x� =

2 cos−1�x�
	1 − x2

,

x � 1, c�1� = 2. �3.7�

For �=0 and setting A=1 on the right-hand side of Eq. �3.3�,
we get the leading one-loop correction,34 which comes from
the range of momenta k�p in the integral

A�p� = 1 +
2

�2gNf

� − 2g + �g2 − 1�c�g��ln

�

p
+ finite terms,

�3.8�

where � is a momentum cutoff of order the inverse lattice
spacing in graphene. The function A�p� renormalizes the
Fermi velocity vF

��p�=vFA�p�. The growth of vF
��p� in the

infrared stops when a nonzero quasiparticle gap is taken into
account 
see Eq. �3.3��. In what follows, we assume that the
velocity renormalization is already performed35 and put
A=1 in Eq. �3.4� which then takes the form

��p� = �0 +
e2

�
� d2k

�2��2

��k�
�p − k�	k2 + �2�k�

J�d =
�k�

�p − k�
,g ,

�3.9�

where we set also �=0 in the variable d. Since the function
J depends weakly on the angle between the vectors p and k,
we can approximate �p−k�→max��p� , �k��. Thus we write

J� k

max�k,p�
,g = J�1,g���k − p� + J� k

p
,g��p − k� .

�3.10�

Assuming ��p�=���p�� and integrating over the angle in Eq.
�3.9�, we get

��p� = �0 +
�

�2�
0

� dkk��k�
	k2 + �2�k�

K�p,k� , �3.11�

where the kernel

K�p,k� =
��p − k�

p
K� k

p
J� k

p
,g +

��k − p�
k

K� p

k
J�1,g�

�3.12�

where K�x� is the complete elliptic integral of the first kind
and ��x� is the Heaviside step function. For zero bare gap,
�0=0, Eq. �3.11� admits a nontrivial solution which bifur-
cates from the trivial one at some critical coupling �=�c. To
find this critical point, we neglect the terms quadratic or
higher order in � in Eq. �3.11�. It must be emphasized that
this is not an approximation: it is a precise manner to locate
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the critical point by applying bifurcation theory.37 Hence, the
bifurcation equation amounts to a linearization of Eq. �3.11�
with respect to the gap function. The result reads

��p� =
�

�2�
0

�

dk��k�K�p,k� . �3.13�

Note that the ultraviolet cutoff, �, has been taken to infinity,
which is appropriate at the bifurcation point.37 This equation
is scale invariant and is solved by ��p�= p−� on the condition
that the exponent � satisfies the transcendental equation

1 =
4g

�3Nf
�

0

�

dxx−�

����1 − x�K�x�J�x,g� + J�1,g�
��x − 1�

x
K�1

x
�

=
4g

�3Nf
�

0

1

dx
x−�J�x,g� + J�1,g�x�−1�K�x�, 0 � �� 1,

�3.14�

where J�x ,g� is given by Eq. �3.6� and

J�1,g� =�
2 arccos g
	1 − g2

, g � 1

ln�g + 	g2 − 1�
	g2 − 1

, g � 1.� �3.15�

Equation �3.14� defines roots � for any value of the coupling
g. A bifurcation occurs when two roots in �0,1� become
equal. Numerically, we find that this happens for �=1 /2 and
the critical coupling �Nf =2�,

gc = 1.445, �3.16�

which corresponds to �c=0.92. For values g�gc, the roots
become complex, indicating that oscillatory behavior of the
gap function takes over from nonoscillatory one. Equation
�3.14� determines the critical line in the plane �� ,Nf� which
is presented in Fig. 1. This line should be compared to the
critical line

�c =
4�c

2 − �Nf�c
�3.17�

obtained in Ref. 23 using the static polarization function

�c=1 /4 in Ref. 23 for the kernel approximation �4,3� used
below and �c=0.23 for more refined bifurcation analysis in
Ref. 17�. The most crucial difference between two critical
lines is that there is a critical number of flavors,
Ncrit=2 /��c, for the critical line �3.17� for which �=�,
while � never tends to infinity at finite Nf for the critical line
�3.14� presented in Fig. 1.

Recently, in Ref. 36, an approximation for the frequency-
dependent one-loop polarization �2.5� was used which re-
duces it to Eq. �2.6� with additional 	2 in the denominator, in
this case the critical value �c=1.13. The more refined analy-
sis using bifurcation theory gives �c=0.93 very close to the
value we found above. We remind also that renormalization-
group calculations in two loops yield �c=0.833.38

A dynamical gap is generated only if ���c. Since for
suspended clean graphene the fine-structure constant
��2.19 is supercritical, the dynamical gap will be generated
making graphene an insulator. Note that for graphene on a
SiO2 substrate, the dielectric constant ��2.8 and ��0.78,
i.e., the system is in the subcritical regime. The value of �c is
rather large that implies that a weak-coupling approach
might be quantitatively inadequate for the problem of the gap
generation in suspended clean graphene. Therefore, it is in-
structive to compare our analytical results to lattice Monte
Carlo studies,25 where �c=1.08�0.05 for Nf =2 that is rather
close to our analytical findings.

IV. NONLINEAR EQUATION AND CRITICAL
EXPONENTS

The above analysis is adequate precisely at the critical
coupling, i.e., at the bifurcation point of the original nonlin-
ear equation. To study momentum dependence of solutions
of Eq. �3.11� beyond the critical point, we now turn back to
the case of static polarization when J=� / �1+g� and Eq.
�3.11� is written in the form

��p� = �0 +
2�

�
�

0

� dkk��k�
	k2 + �2�k�

K�p,k� ,

� =
�

2�1 + �Nf�/4�
, �4.1�

with the kernel 
compare to Eq. �3.12��

K�p,k� =
1

p + k
K�2	pk

p + k
 =

��p − k�
p

K� k

p
 +

��k − p�
k

K� p

k
 .

�4.2�

The gap equation is essentially different from a gap equation
in BCS theory where the gap is momentum independent. In
Fig. 2, we present the results of our numerical solution to Eq.
�4.1� for �0=0, Nf =2, and several values of �. The gap is
weakly dependent on a momentum up to values p���0�
after which the behavior becomes steeper. To estimate the

1 2 3 4 5
N f

1

2

3

4

5

Αc

FIG. 1. The critical coupling as a function of Nf.
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gap ��0�, we need to know the bandwidth parameter �
which can be obtained by equating the wave vector integral
over the Brillouin zone to the integral over two Dirac points
with a cutoff at kc. We get kc= �� /	3�1/2�2 /a�, where a is the
lattice constant, therefore, restoring � and vF=	3ta / �2��, we
find �=�vFkc=	�	3t�2.33t. For the hopping parameter
t=3 eV, we obtain ��7 eV. The maximal possible gap
��0� is reached for �→� that corresponds to the value
�=1 /��0.32�Nf =2�. For the values of �’s used in Fig. 2,
we find the estimates ��0�=200, 40, and 25 K for �=0.3,
0.27, and 0.25, respectively.

To get insight into analytical solutions of Eq. �4.1�, we
approximate the elliptic integral functions in Eq. �4.2� by
their asymptotical values at p�k and p�k. We obtain the
kernel

K�p,k� =
�

2
���p − k�

p
+
��k − p�

k
 . �4.3�

This allows us to reduce the nonlinear integral Eq. �4.1� to
the second-order nonlinear differential equation


p2���p��� + �
p��p�

	p2 + �2�p�
= 0, �4.4�

with the infrared �IR� and ultraviolet �UV� boundary condi-
tions

p2���p��p=0 = 0, �4.5�


p��p����p=� = �0. �4.6�

Equation �4.4� is scale invariant, i.e., if ��p� is a solution,
then l��p / l� is also a solution. The scale invariance is broken
by the UV boundary condition only.

The chiral condensate �0�	̄	�0� is the order parameter for
the semimetal-insulator transition in graphene. It breaks
spontaneously the initial U�2Nf� symmetry down to the
U�Nf� � U�Nf� but keeps parity and time-reversal invari-
ances. It is expressed through the full fermion propagator as
follows:

�0�	̄	�0� = − lim
x→0

�0�T	�x�	̄�0��0�

= − itr�
−�

� d�

2�
�� d2p

�2��2G��,p�

= −
Nf

�
�

0

� dpp��p�
	p2 + �2�p�

=
Nf

��
p2���p��p=�, �4.7�

where for the last equality, we used Eq. �4.4�. Hence, the
condensate is nontrivial if a nontrivial solution of the gap
equation exists.

One can easily find the solutions of Eq. �4.4� in two
asymptotic regions. For p���p�,

��p� = C1 +
C2

p
. �4.8�

The IR boundary condition �4.5� implies C2=0, therefore,
��p��C1 for p���p�. For p���p�,

��p� � C3p−�+ + C4p−�−, �� =
1

2
� 	�c − � . �4.9�

Clearly, in order to find a solution of Eq. �3.11�, one needs to
show that there exists a solution of the nonlinear differential
Eq. �4.4� which connects the asymptotic ��p��const in the
infrared region, p→0, with the asymptotic �4.9� at large mo-
menta. For this, let us define

��p� = etu�t + t0�, t = ln p , �4.10�

then the function u�t� satisfies the differential equation

u� + 3u� + 2u + �
u

	1 + u2
= 0. �4.11�

The IR boundary condition implies

e2t�u� + u��t=−� = 0. �4.12�

We require that etu�t�→1 as t→−� since all other solutions
for ��p� are obtained by varying the constant t0. For this
normalization, the infrared scale for the general solution is
given by ��0�=e−t0.

The dependence of the integral Eq. �3.11� on the bare gap
�0 now becomes an ultraviolet boundary condition for the
differential equation; it is

u��t� + t0� + 2u�t� + t0� = �0/� . �4.13�

This condition determines the value of the parameter
t0=−ln ��0� as a function of the coupling constant, �, the
bare gap, �0, and the cutoff, �. Equation �4.11� can be re-
written in the form

u� + 3u� = −
d

du
V�u�, V�u� = u2 + �	1 + u2 �4.14�

or, equivalently,

FIG. 2. �Color online� Momentum dependence of the solution to
the gap equation �4.1� for �0=0, Nf =2: bold �black� line for
�=0.3, dashed �red� line for �=0.27, and dash-dotted �green� line
for �=0.25.
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�1

2
�u��2 + V�u��

= − 3�u��2. �4.15�

Equation �4.14� is the equation for a particle of unit mass
moving in a potential V with friction proportional to velocity.
The “energy” 1

2 �u��2+V�u� reaches its absolute minimum at
u=0, hence, the particle moves toward u=0 damped by the
friction. The asymptotical behavior near u=0 is described by
the linearized equation

u� + 3u� + �2 + ��u = 0 �4.16�

and depends on whether the coupling ���c�1 /4 or
���c,

u�t� →
B

	�c − �
e−3t/2 sinh
	�c − ��t + ��� ,

t → �, weak coupling�� � �c� , �4.17�

u�t� →
A

	� − �c

e−3t/2 sin
	� − �c�t + ��� ,

t → �, strong coupling � � �c, �4.18�

where the constants A, B, and � are functions of the coupling
constant �. We explicitly singled out the factor 1 /	�c−� in
front of Eqs. �4.17� and �4.18� since the function u�t� must be
nontrivial at �=�c. Obviously, A��=�c�=B��=�c�.

The asymptotics �4.17� and �4.18� imply that at weak cou-
pling, the particle situated initially at u�−�� reaches u=0 for
infinite time, meanwhile, at strong coupling, it will get to
u=0 in a finite time and then oscillate there with damped
amplitude.

It is easy to see that at weak coupling, there are no non-
trivial solutions satisfying the UV boundary condition for
�0=0. For strong coupling, the UV boundary condition
�4.13� with �0=0 admits an infinite number of solutions for
the gap scale ��0�, corresponding to different solutions of
the equation

u��t� + t0� + 2u�t� + t0� �
A	�

	� − �c

e−3�t�+t0�/2 sin�� + �� = 0,

�4.19�

where

� = 	� − �c�t� + t0 + �� = 	� − �cln� e��

��0� ,

� = arctan�2	� − �c� . �4.20�

Hence, the solution is given by �=�n−� or

��0� = �e� exp�−
�n − �

	� − �c
, n = 1,2, . . . . �4.21�

The solution without nodes, n=1, corresponds to the ground
state since it generates the largest fermion gap and has the
lowest energy. The critical coupling �c=1 /4 is a bifurcation
point of the integral Eq. �3.11� with the static vacuum

polarization.39 The expression �4.21� for the gap implies that
this bifurcation point corresponds to a continuous phase tran-
sition of infinite order. As was shown in Ref. 17, the critical
coupling �c is closely related to the phenomenon “fall into
the center” in quantum mechanics problem. A similar situa-
tion takes place in the strong coupling QED4 �Ref. 7� where
in the ladder approximation �and more generally in quenched
approximation when fermions loops are neglected40�, the
phase transition is also of infinite order. The dimensionless
correlation length,

� =
�

��0�
� exp� �

	� − �c
 , �4.22�

exponentially grows when �→�c. Such a behavior is inher-
ent for the Berezinskii-Kosterlitz-Thouless phase transition

or the conformal phase transition �CPT� �Ref. 26�� and, ob-
viously, is related to the scale invariance of the problem un-
der consideration. Note, however, that taking into account
the finite size of graphene samples should turn this phase
transition into a second-order one �as it is shown for QED3
in Ref. 28�.

Equation �4.22� means also that in nonperturbative phase,
there is a nontrivial running of the coupling � �or the Fermi
velocity vF� though we neglected its perturbative running.
Defining the � function in a standard way, we find

���� � �
d�

d�
= −

�

4
�1 + �Nf�/4�2�� − �c�3/2, � � �c,

�4.23�

where � is defined in Eq. �4.1�. The � function depends
nonanalytically on the coupling � and cannot be obtained in
perturbation theory. We expect that if a perturbative running
of � is included, the critical point �c becomes a second-order
phase-transition point on which the � function �4.23� is con-
tinuous when approached from both perturbative and nonper-
turbative phases.

The order parameter �	̄	� in terms of the function u�t� is
given by

�	̄	� =
Nf

��
e2t�
u��t� + t0� + u�t� + t0�� �4.24�

and equals

�	̄	� = −
NfA

�	��� − �c�
�1/2�3/2�0�sin�2��

= −
NfA

��3/2�
1/2�3/2�0� , �4.25�

where the relation �=�−� was used.
For nonzero bare gap, �0�0, we obtain the following

equation for the scale ��0�:

�0 =
A	�

	� − �c

�3/2�0�
	�

sin�� + �� �4.26�

and the order parameter
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�	̄	� =
Nf

��
���0 −

A
	� − �c

�3/2�0�
	�

sin �� . �4.27�

Let us write �+�=�− , where  tends to zero when
�0→0 and �→�c. Then the above equations are rewritten as

�0 =
A	�

	� − �c

�3/2�0�
	�

sin  , �4.28�

�	̄	� =
Nf�

��
�2� − 1

2�
�0 − A

�3/2�0�
	�

cos  

	� � . �4.29�

In such a form, the equations are convenient for finding criti-
cal exponents near the phase-transition point �c. Critical ex-
ponents describe the approach to criticality of such quantities
as the correlation length, the order parameter, the suscepti-
bility, etc.; they are defined in a standard way10,41

� =
�

��0�
� �� − �c�−!,

�	̄	�
�2 � �� − �c��,

" =� ��	̄	�
��0

�
�0=0

� �� − �c�−�, � → �c, �4.30�

�	̄	���=�c
� �0

1/�, �0 → 0. �4.31�

If the theory of second-order phase transition is applicable,
then the exponents are assumed to obey the following hyper-
scaling relations in spaces of arbitrary dimension D:

2� + � = D!, 2�� − � = D!,
� − 1

� + 1
=

2 − #

D
,

� = !
D − 2 + #

2
. �4.32�

Here, the exponent # describes the behavior of the correla-
tion function

�	̄	�r�	̄	�0����=�c
$ r−D+2−#, r → � . �4.33�

Using Eq. �4.29�, we find

�	̄	���=�c
= −

4Nf�

�
��0 +

2A�3/2�0�
	� � �4.34�

and due to Eq. �4.26�,

��0� � � �0

ln��/�0�
2/3

, � = �c. �4.35�

The critical exponent �=1 and from hyperscaling relations
we obtain

# = 2, � = 0, � =
3!

2
. �4.36�

The infinite-order phase transition with the correlation length
�4.22� formally corresponds to the limit

� =
3!

2
→ � . �4.37�

Certainly, the infinite-order phase transition is quite different
from that one studied in lattice simulations25 where a second-
order phase transition was found with the critical exponents
��2.3, ��0.8, and ��1�Nf =2�. One of the reasons for
such a difference might be a finite size of a lattice that
changes the kind of phase transition. Effectively, the finite
size of a lattice can be taken into account by introducing an
infrared cutoff �k0�� /L, L is a linear size of the system� in
the integral Eq. �3.11�.28,29 Another reason could be that one
should take into account residual lattice interactions, i.e., the
present analysis has to be further refined by incorporating
effective four-fermion terms �see the next section�.

V. PHASE DIAGRAM IN THE MODEL WITH ADDITIONAL
FOUR-FERMION INTERACTION

As discussed in Sec. I, when comparing the results of
lattice simulations25 to analytical calculations, one should
have in mind that the continuum theory described by La-
grangian �2.1� putted on a lattice contains unavoidably addi-
tional interaction terms, in particular, local four-fermion in-
teraction terms. This means that it would be appropriate to
add to the continuum theory some local four-fermion inter-
action terms in addition to the long-range Coulomb interac-
tion in Eq. �2.1�. The amount of induced couplings depends
of course on the particular lattice regularization employed.
Furthermore, according to Refs. 31–33, the effective con-
tinuum model for quasiparticles in graphene in addition to
the Coulomb interaction should contain contact four-fermion
interaction terms which arise from the original lattice tight-
binding model. Usually, these residual four-fermion terms
are irrelevant operators from the point of view of the renor-
malization group, however, we will show that they can play
a significant role in the critical behavior. In order to study
how these four-fermion terms influence the gap generation,
we will consider in this section a continuum model with the
Coulomb interaction and the Gross-Neveu four-fermion in-
teraction of the type

L4 =
G

2
�	̄a	a�2, �5.1�

where the four-fermion coupling constant G is of the
order of the lattice constant and the “flavor” index
a=1,2 , . . . ,Nf, Nf =2 for physical spin-1

2 electrons. The in-
teraction term �5.1� breaks the initial U�2Nf� symmetry of
the action �2.1� down to the U�Nf� � U�Nf� � Z2 symmetry.

While the gap term �	̄	 is invariant under the
U�Nf� � U�Nf�, it is not under the discrete chiral Z2 symme-

try: 	→�5	 ,	̄→−	̄�5. In the absence of the bare gap

term, �0	̄	, the Z2 symmetry forbids the fermion gap gen-
eration in perturbation theory. The appearance of the energy
gap is due to the spontaneous breaking of the above discrete

chiral symmetry that leads to a neutral condensate �	̄	� of
fermion-antifermion pairs �excitonic condensate�.
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The gap Eq. �3.11� is modified in the presence of the
interaction �5.1� in the following way:

��p� = �0 − G�1 −
1

4Nf
�	̄	� +

�

�2�
0

� dkk��k�
	k2 + �2�k�

K�p,k� ,

�5.2�

where the condensate �	̄	� contributes like a bare fermion
gap and can be computed from the fermion self-energy; the
factor 1−1 /4Nf in the second term on the right-hand side
takes into account both Hartree and Fock �−1 /4Nf� contribu-
tions. For the sake of simplicity, we consider only the Har-
tree term, if necessary, the Fock contribution can be easily
restored in final formulas.42 In the approximation to the ker-
nel used above 
Eq. �4.3��, the condensate is given by the
expression �4.7�. The condensate does not change the differ-
ential Eq. �4.4�, however, it modifies the ultraviolet boundary
condition �4.6�:

���1 +
g̃Nf

�
p���p� + ��p���

p=�
= �0, �5.3�

where we introduced the notation g̃=G� /� and � is defined
in Eq. �4.4�. Using the definition of the gap function in terms
of the u�t� function �4.10� and the asymptotic behavior of the
last one, Eqs. �4.17� and �4.18�, Eq. �5.3� can be written for
����0� in the following form:

B
�3/2�0�

	� ��1 +
g̃Nf

�
cosh�� ln

�e�

��0�


+
1 − g̃Nf/�

2�
sinh�� ln

�e�

��0�
� = �0,

� = 	�c − �, � � �c, �5.4�

B
�3/2�0�

	� �1 +
g̃Nf

�
+

1 − g̃Nf/�
2

ln
�e�

��0�� = �0, � = �c,

�5.5�

A
�3/2�0�

	� ��1 +
g̃Nf

�
cos��̃ ln

�e�

��0�
+

1 − g̃Nf/�
2�̃

sin��̃ ln
�e�

��0�� = �0,

�̃ = 	� − �c, � � �c, �5.6�

and we remind that in the utilized approximation �c=1 /4.
These equations imply the following solutions for the dy-
namical gap in the case �0=0:

��0� = �e�� g̃Nf�1 − 2�� − ��1 + 2��
g̃Nf�1 + 2�� − ��1 − 2��

�1/2�

, � � �c,

�5.7�

��0� = �e�exp�− 2
g̃Nf + 1/4
g̃Nf − 1/4�, � = �c =

1

4
, g̃Nf �

1

4
,

�5.8�

��0� = �e�exp�−
�n

�̃
−

1

�̃
arctan�2�̃

g̃Nf + �

g̃Nf − �
� ,

� � �c, n = 1,2, . . . . �5.9�

Note that solutions �5.8� and �5.9� contain essential singular-
ity; the first solution at g̃=1 /4Nf and the second one at
�=�c.

Setting ��0�=0, we find the critical line separating the
spontaneously broken and unbroken phases of the chiral
symmetry

�g̃ =
1

4Nf
�1 + 	1 − �/�c�2, for � � �c =

1

4

g̃ �
1

4Nf
, � = �c =

1

4
. �

�5.10�

The phase diagram in the plane of two coupling constants is
displayed in Fig. 3.42 Above the critical line, the gap equa-
tion for the fermion self-energy ��p� has a nontrivial solu-
tion. Thus, the chiral symmetry is dynamically broken that
implies the existence of a nonzero vacuum condensate

�	̄	�. For g̃=0, the condition for a gap generation becomes
���c and the corresponding critical coupling coincides with
Eq. �3.17�. On the other hand, in the other limiting case
�=0, g̃c=1 /Nf coincides with the critical coupling in the
Gross-Neveu model. In the part of the phase diagram above
the critical line ���c, the short-range four-fermion interac-
tions play important role for the condensate formation,
meanwhile, in the region ���c, Coulomb forces are mainly
responsible for the condensate formation.

We consider now the phase transition along the upper part
of the critical line and compute the critical exponents. Since
we consider nonrunning coupling � �in absence of running of

FIG. 3. Phase diagram for Nf =2.
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the Fermi velocity vF�, the renormalization-group flow can
be determined from Eq. �5.7� which near a critical point
takes the form

��0�
�

� � g̃ − g̃1

g̃ − g̃2
1/2�

, g̃1 =
�1 + 2��2

4Nf
, g̃2 =

�1 − 2��2

4Nf
,

g̃ � g̃1 � g̃2. �5.11�

It implies an explicit form of the � function for the coupling
g̃,

��g̃,�� ��� � g̃

��
�
�,��0�

= − Nf�g̃ − g̃1��g̃ − g̃2�, g̃ � g̃1.

�5.12�

Equation �5.12� has indeed a nontrivial fixed line at g̃= g̃1.
We stress that the � function �5.12� is obtained in nonpertur-
bative phase where a quasiparticle gap is spontaneously gen-
erated. In perturbative phase, the � function was calculated
in Ref. 43 
see Eq. �7� there�, in the leading order in
1 /Nf and small coupling �, both � functions behave as
��−�g−g0� near the fixed point g0��1−�� /Nf. As is seen
from Eq. �5.11�, the phase transition is of the second order.
Denoting the deviation from the critical line as �� g̃− g̃1 and
because ��0���1/2���→0�, we find the exponent

! =
1

2�
. �5.13�

The condensate is given by

�	̄	� =
NfB

��
�3/2�0��1/2

��cosh�� ln
�e�

��0� −
1

2�
sinh�� ln

�e�

��0�� .

�5.14�

On the critical line, Eq. �5.4� implies ��0���0
1/�3/2+��. Sub-

stituting it into the expression for the fermion condensate
gives the critical scaling relation

�	̄	� � �3/2−� � �0
�3/2−��/�3/2+��, �5.15�

thus the critical exponent

� =
3/2 + �

3/2 − �
. �5.16�

It is equal to �=2 in the case of the Gross-Neveu model
when �=0 and �→1 for �→�c. It is easy to find also the �
exponent

� =
1

2�
�3

2
− � . �5.17�

Finally, it follows from Eqs. �5.4� and �5.14� that

��0
�	̄	���0=0 � �−1, � → 0, �5.18�

hence the exponent �=1. The found critical exponents sat-
isfy the hyperscaling relations �4.32�. The additional critical

exponent # may be calculated independently or using hyper-
scaling relations, #=2−2�. By definition, the anomalous di-
mension �m of the composite operator is given by
dim�	̄	�=D−1−�m, then the correlator �4.33� implies the
relation #=D−2�m. In our case, D=3, we obtain
�m=1 /2+�. The dynamical dimension of the four-fermion

interaction term equals dim�	̄	�2=2 dim�	̄	�=4−2�m.

Because 1 /2��m�1 along the critical line, dim�	̄	�2�3

and the four-fermion operator �	̄	�2 acts as a renormaliz-
able one. In the renormalization-group terminology, the

�	̄	�2 becomes a relevant operator in the scaling region
while it is irrelevant away from the critical line, in accor-
dance with standard renormalization-group approach,32 as its
effects are suppressed by powers of cutoff. On the other
hand, the anomalous dimension �m governs the behavior of
the amputated Bethe-Salpeter wave function �form factor� of
bound states, "�amp��q��
q /��0���m−1, in the range of mo-
menta ��0��q��. The “critical” value �m=1 /2 separates
loose ��m�1 /2� and tight ��m�1 /2� bound states. The
wave functions with large �m��m�1 /2� slowly decrease
with momentum. They describe tight bound states which are
relevant for critical scaling laws of a theory.44 Since such
bound states resemble pointlike particles, the scaling proper-
ties of a theory can be described by an effective Lagrangian
with elementary scalar fields �for recent such an approach,
see, Ref. 45�. The computer simulations of lattice graphene
model may reveal in principle the existence of such tight
bound states.

We see that the additional Gross-Neveu four-fermion in-
teraction plays an important role. First, it changes the order
of a phase transition from the infinite to the second-order
one. Second, the critical coupling becomes lower than in the
model with the pure Coulomb interaction. Third, the critical
exponents stay closer to those obtained in lattice
simulations.25 Further, the critical indices depend on the cou-
pling � along the critical line 0����c and satisfy the hy-
perscaling relations. The phase diagram �5.10� resembles
closely those obtained in the strong coupling QED4 �Ref. 46�
and QED3.47 Since the phase transition is of second order
along the 0����c part of the critical curve, Eq. �5.10�,
resonances should exist on the symmetric side of the curve,
whose masses tend to zero as the critical curve is
approached.48,49 The part of the critical curve with
g̃�1 /4Nf is rather special and is related to the conformal
phase transition.26 It is characterized by a gap function hav-
ing an essential singularity at the transition point and by
abrupt change of the spectrum of light excitations as the
critical point is crossed: light bound states near the critical
line are absent in the symmetric phase, however, they are
present in the phase with broken symmetry �for a discussion
in detail of the CPT in QED3, see Refs. 48 and 50�. The
corresponding effective potential for the order parameter

�	̄	�, unlike the familiar Ginzburg-Landau potential, was
shown to have a branched fractal structure in the region
���c, where the Coulomb interaction is mainly responsible
for the bound states formation.24 We hope that at least some
features of the picture outlined above will be confirmed in
experiments with suspended clean graphene.
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VI. CONCLUSIONS

In this paper, we studied the gap generation in suspended
clean graphene at neutral point. Solving the Schwinger-
Dyson equation with the frequency-dependent polarization
function, we found analytically that the critical coupling con-
stant for onset of a gap equals �c=0.92 which is close to the
value obtained in Monte Carlo simulations. We showed that
the critical coupling �c corresponds to the infinite-order
phase transition in the case of purely Coulomb interaction
with peculiar critical exponents while Monte Carlo simula-
tions point to the second-order phase transition with different
critical exponents.

Adding the Gross-Neveu four-fermion interaction that is
present in the continuum limit of the lattice model, we found
the critical line Eq. �5.10� in the plane of Coulomb and four-
fermion coupling constants separating zero-gap and gapped
phases. We showed that the order of a phase transition
changes from the infinite to the second-order one along the
part 0����c of the critical line and the critical coupling
becomes lower than in the model with pure Coulomb inter-
action. The critical exponents !, �, and � along the line of
second-order phase transition are given by the expressions
�5.13�, �5.16�, and �5.17�, respectively, and the exponent
�=1. These exponents satisfy hyperscaling relations and
characterize the transition between phases with distinct sym-
metry properties and become, in general, functions of the
Coulomb coupling � or the four-fermion coupling g̃. They
are close to the critical exponents obtained in lattice
simulations.25

The other part of the critical curve with g̃�1 /4Nf is
rather special and is related to the conformal phase transition
characterized by an essential singularity at the transition
point and by abrupt change of the spectrum of light excita-
tions as the critical point is crossed. However, the shape of

the last part of phase-transition curve might be strongly in-
fluenced by the finite-size effects which appear to be
nontrivial.28 Also, the running of the coupling �, due to the
running of the Fermi velocity vF, may change the shape of
the vertical part of the critical line. These effects most likely
change the kind of phase transition to the second-order one.
This would indicate that the semimetal-insulator transition in
graphene is likely to be of second order. We expect that the
form of the critical curve in graphene can be checked in
further lattice simulations.

Also, our results maybe important for the proper interpre-
tation of lattice simulations of low-energy field-theory model
for quasiparticles in graphene interacting through the long-
range Coulomb potential25 because local four-fermion terms
are expected to be generated by the lattice regularization pro-
cedure. We showed that in spite of being small �G� lattice
constant�, the induced local interactions can play a signifi-
cant role in the critical behavior observed in lattice simula-
tions. A related aspect of the near-critical behavior is the
appearance of composite electron-hole degrees of freedom
whose form factors slowly decrease with momentum �tight
bound states� and the momentum behavior is governed by
large anomalous dimension. Their dynamics can be studied
similarly to that in strongly coupled QED �Ref. 51� but this
remains a problem for future investigations.
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