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We conduct a comparative study on various kinoform lenses (KLs) for x-ray nanofocusing by using the
geometrical theory, the dynamical diffraction theory, and the beam propagation method. This study shows that
the geometrical theory becomes invalid to describe the performance of a KL for nanofocusing. The strong edge
diffraction effect from individual lens element, which distorts the desired wave field, leads to a reduction in the
effective numerical aperture and imposes a limit on how small a focus a KL can achieve. Because this effect
is associated with a finite thickness of a lens, larger lens thickness depicts a stronger distortion. We find that a
short KL where all lens elements are folded back to a single plane shows an illumination preference: if the
illuminating geometry is in favor of the Bragg diffraction for a focusing order, its performance is enhanced and
vice versa. We also find that a short KL usually outperforms its long version where all lens elements do not lie
in a single plane because the short one suffers less the wave field distortion due to the edge diffraction.
Simulation results suggest that for a long KL, an adaptive lens design is needed to correct the wave field

distortion in order to achieve a better performance.
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I. INTRODUCTION

The difficulty in fabricating x-ray focusing lenses with
high numerical aperture (NA) is the major obstacle of ad-
vancing the resolution of x-ray microcopy into the nano-
meter scale. In the last decade, a variety of optics utilizing
reflective, refractive, and diffractive properties of x-rays has
been explored to achieve a small focus and has yielded up to
date a focal size ranging from 15 to 50 nm.'~” Among them,
diffractive optics are most promising to deliver true nano-
meter focus since their NA is not limited by the critical angle
of the lens material for x rays. Theoretical studies have
shown that multilayer Laue lens (MLL), a type of diffractive
optics, is in principle capable of achieving even atomic res-
olution (<1 nm).® Recently, Kinoform lenses (KLs) re-
ceived increasing attentions for x-ray nanofocusing due to
their ability of bending all incoming photons (assuming no
absorption) into one single focus.’~'* Because a KL is a hy-
brid optic possessing both refractive and diffractive proper-
ties, a question arises whether KLs are capable of achieving
nanometer focus. Most of the prior theoretical studies on
KLs were carried out in the framework of the geometrical
optics,'>17 which does not take into account the diffraction
effect inside the optic and fails when the lens is thick or the
diffractive element of the lens is small. Obviously, a full-
wave theory must be employed to evaluate the performance
of thick KLs with high NA. This knowledge not only tells us
the theoretical focusing limit of KLs, but also the way to
optimize their performance.

In this paper, we applied the geometrical theory, the dy-
namical diffraction theory, and the beam propagation method
to perform a comparative study on various KLs. The latter
two methods are both wave theory based. Applicability and
limitations of these methods are discussed. We find that for a
short KL where all the elements are folded back into a single
plane, it can be treated as a blazed zone plate; it has multiple
foci and possesses a similar focusing limit with MLLs with
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flat zones. In such cases, the diffractive property of the KL is
dominant and the Bragg condition plays a critical role in
determining the lens’ effective NA. An interesting phenom-
enon revealed by simulations is that the short KL exhibits an
orientation preference for illumination: when its sawtooth-
like surface is illuminated by a plane wave, the focusing
performance is much better than that when its flat surface is
illuminated. This phenomenon is a result of the Bragg dif-
fraction and will diminish as the NA decreases.

For a long KL where lens elements do not lie in a single
plane, we find it has only one single focus, a great advantage
compared to its short version. However, the strong diffrac-
tion from steep edges will cause a severe aberration on the
wave field propagating through the lens and leads to a sig-
nificant reduction in the effective NA. The focusing perfor-
mance of a long KL is usually worse than its short counter-
part because of this effect. This study suggests that in order
to achieve a smaller focus, a subsequent element in a long
KL has to be designed adaptively to compensate the phase
aberration of the wave front caused by the edge diffraction in
a preceding element.

II. GEOMETRICAL THEORY

An x-ray plane wave can be focused by a concave refrac-
tive lens as shown in Fig. 1, in which the optical path differ-
ence for different rays to its focus is compensated by the
phase advance they experience inside the lens material. The
emerging wave from the lens, therefore, interferes construc-
tively at its focus. For such a concave-plano lens, if we ne-
glect the refraction that occurs on the concave surface, the
thickness profile of the lens is simply written as

Az(x) = (N2 + 2= )16, (1)

where f is the focal length and ¢ is the difference of the
refractive index of the lens material from unity. In general,
the refractive index is a complex number
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FIG. 1. A concave-plano refractive lens with parabolic profile to
focus a plane wave (left), the corresponding KL with excessive
materials removed (middle), and the periodic triangle array after a
variable transform (right).

n=1-38+in, 2)

where the imaginary component, 7, corresponds to the ab-
sorption. We can also write

x=-28+2in, 3)

where y is the susceptibility function.

A major factor that limits the achievable NA of a refrac-
tive lens is its absorption: the outer part of the lens quickly
becomes too thick to allow x rays to penetrate. The impact of
absorption can be reduced by removing excessive materials
where the corresponding phase variation is an integer mul-
tiple of 27, so that the emerging waves still add up in phase
at the focus. The lens is then divided to many sawtoothlike
elements (zones) known as KLs.

If all elements are folded back to a single plane, forming
a short KL as shown in Fig. 1, the thickness profile of a zone
is then determined by the equation

Azj(x) = (N + 2 =\ + )15, (4)

where x; corresponds to the start position of the jth zone.
Because an integer multiple m of 27 phase shift occurs at
each Xj, We can derive

j(m2m) =2mAz(x;) 6N, (5)

where \ is the wavelength of the incident x ray. Substituting
Eq. (1) into Eq. (5), we obtain

JmN) =N + - f (6)
or
X3 =2j(mN)f + j2(m\)>. (7)

One may recognize that Eq. (7) is essentially the zone plate
law. Thus, a short KL possesses both refractive and diffrac-
tive properties and can be treated as a blazed zone plate with
a special zone structure. Instead of having alternating layers,
a short KL has zones shaped to match the exact phase change
needed for forming a spherical wave front. Each zone serves
as a refractive lens while the way the zones are arranged
follows the zone plate law. For a short KL with high NA and
a large number of zones, one expects that the diffractive
property prevails since the waves emerging from all zones
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have to be in phase at the focus; the arrangement of zones is
more important than the shape of the zone. An interesting
question arises as to how small a beam a short KL can focus
x rays to since the diffraction effect may impose a limit on its
achievable NA.

Most of prior theoretical studies on KLs were carried out
in the framework of the geometrical theory, which assumes
the transmission function of the lens can be calculated di-
rectly from its thickness profile. Following the method de-
scribed in Ref. 15, here we give a brief derivation of the
efficiency equation. For an incident plane wave, the exit
wave field from a short KL is

Epoo) = expliknexplik(n - DA )], (8)

where k=27r/\ is the wave number and 7 is the thickness of
the KL (see Fig. 1). The constant phase factor, exp(ikz), is of
no importance and will be neglected in the following discus-
sion. Applying the variable transform

x =+ f, 9

we can see that the exit wave field becomes periodic in terms
of x',

Egeo(x") =explik(n — 1)(x" = x/)/8], x;=j(m\). (10)

One then expands E,,,(x") into a Fourier series

©

Eyoo(x') = 2 Ej explihkx'/m),

h=—0o

exp(—2mme) — 1
h=" . 5 &= 7ﬂ(5
i2m(—m—h+ime)

h=0,+1,+2,+3, ... (11)

Consequently, we can express the exit wave field as

Egeo(x) = E Ey eXP[i¢h(x)], ¢h(x) = hk(\"x +f2 _f)/m

h=—x

(12)

Each wave component, Ej, expli¢,(x)], corresponds to a
spherical wave with constant amplitude converging to (or
diverging from) the hth order focus of the short KL. It is
evident that when the focusing order has ~A=—m, it reaches a
maximum efficiency

2

exp(—2mme) — 1 ’ (13)

Com=

2ame

which is one if there is no absorption (£=0). Thus the
negative-mth order focus of a short KL is its principal focus-
ing order. One shall note here a focusing order has a negative
sign, different from the usual convention where a positive
sign corresponds to a focusing order. The focusing efficiency
of an arbitrary order can be written as
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[exp(—2mme) — 117
cp= .
T4 (m+ h)? + m2e?]
We want to emphasize that in deriving Eq. (13), the thickness

t is assumed to be mA/ 8 and the maximum phase variation in
one zone is m2.

(14)

III. TAKAGI-TAUPIN DESCRIPTION OF DYNAMICAL
DIFFRACTION THEORY

The geometrical theory neglects the diffraction effect and
is invalid when the zone becomes very small or the thickness
t is large. In the following, we employ the recently devel-
oped Takagi-Taupin description of dynamical diffraction
theory® (thereafter denoted TTD) for diffractive optics to in-
vestigate the possible focusing limit for short KLs.

Similar to Eq. (12), we write the wave field in the lens as
a superposition of many diffraction orders

Egy,(x.2) = 2 Ej(x.2)expliksy + iy (x)], (15)
)

where s, is a unit vector along the incident wave direction
and ¢,,(x) is defined in Eq. (12). The amplitude of the hth
order is now a function of positions satisfying the following
central differential equation (assuming o polarization):

2i . Vo -
n VEh(SO"' Th) +BiEp+ 2 xniE=0,

[=—o0

_ Ve,

\Y Vo, \?
,Bh—l k2 ¢h_<ﬂ> . (16)

_o5. Th
"k k

In Eq. (16), x; is the pseudo-Fourier coefficient of the sus-
ceptibility function of the short KL

X (1,2) = 2 xp(@explich(x)]. (17)
h

Utilizing the same variable transform in Eq. (9), we can
transform a short KL into a periodic structure with period m\
and triangle zones as shown in Fig. 1. For this periodic struc-
ture, we can deduce the expression of x,(z),

xlexp(i2hmz/t) — 1]

18
2ih (18)

Xo(2) = f)(, Xn#0(2) =
Substituting Eq. (18) into Eq. (16), we can calculate the am-
plitude function for all orders.

To explore the possible focusing limit, we start by consid-
ering a short KL made of silicon. It has a radius of 40 wm in
x direction and a focal length of 10 mm, illuminated by a
plane wave with unity amplitude at 11.3 keV. We assume the
thickness of the KL corresponds to a 27 phase shift. There-
fore, one has m=1 and r=28.8 wm. Because of the plane
wave illumination, the boundary conditions are

E()(X,O) = 1, Eh¢0(x,0) =0. (19)

By solving Eq. (16), we show in Fig. 2 the variation of the
local diffraction intensity of the principal focusing order
(h=-1) as a function of radius x on the exit surface,
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FIG. 2. (Color online) Local diffraction intensity of the

negative-first order and its phase on the exit surface of the KL.

|E_,(x,#)|*. It can be seen that only in the close vicinity of the
center (x~0) TTD agrees with the geometrical theory. In-
stead of being a constant over the radius, which is predicted
by the geometrical theory, the local diffraction intensity cal-
culated by TTD declines quickly as x is away from the cen-
ter. In this particular case, for positions with zone width
smaller than 30 nm (x>35 um), we can see that the local
diffraction intensity drops down to nearly zero; beyond this
position, the lens does not contribute to focusing anymore.
Therefore, the effective NA of this lens is smaller than its
physical NA. More specifically, we expect a focusing limit
for this type of KLs since increasing their physical radius
will not increase the effective NA. In addition to the diffrac-
tion intensity variation, a phase variation of the amplitude
function across the radius can also cause significant aberra-
tions on the focus and result in a decrease of the effective
NA, so we plotted it in Fig. 2 as well. A phase change over 7
is observed around x=29 um, which indicates that dif-
fracted waves emerging from positions beyond this point will
interfere destructively with those from inner positions, re-
sulting in a further reduction in the effective NA.

For a better understanding of how the diffraction physics
changes from the regime where the geometrical theory is
valid to the regime where a full-wave dynamical theory has
to be applied, the two-dimensional (2D) intensity distribu-
tions of the actual wave field (superposition of all diffraction
orders) inside the short KL around x=2 and 22 um are de-
picted on the top panel of Figs. 3(a) and 3(b), respectively.
The bottom panel shows the one-dimensional (1D) intensity
variation of the wave field on the exit surface calculated by
TTD and the geometrical theory, together with the zone pro-
file. Near the center (x=2 um), the zone width is large and
the structure is less periodic. In the middle of such broad
zones, the difference between two calculation methods is
negligible. However, an interesting phenomenon is observed
from the TTD calculation: near these steep edges of the
zones, the wave field intensity oscillates significantly, show-
ing a deep valley on one side and a strong peak on the other
side of the edge. The oscillation diminishes with the distance
to the edge. This is very different from what the geometrical
calculation predicts, which assumes a sharp change of the
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FIG. 3. (Color online) 2D intensity distribution of the wave field
inside the KL (top) and the 1D wave field intensity variation on the
exit surface at z=t (bottom) around (a) x=2 wm and (b)
x=22 pm. The 1D curves are the zone profile (blue dash-dotted),
the wave field intensity variation calculated by the geometrical
theory (red dashed), and by the dynamical diffraction theory (black
solid).

intensity across the edge. These interference fringes are
caused by the wave-guide effect of a slit with finite thick-
ness. We note that similar effect was widely studied in prox-
imity x-ray lithography.'3-2! In general, the edge diffraction
distorts the desired converging wave field and degrades the
focusing performance of a lens. Because it is associated with
a finite thickness, we expect that this effect becomes more
pronounced as the thickness ¢ increases.

As we can see, near the center of a short KL, the geo-
metrical theory is a good approximation to the more rigorous
dynamical diffraction theory, except for regions close to
steep edges. In other words, in the vicinity of the center, the
KL behaves more like a refractive lens and its diffractive
property is minor. However, this does not hold as the zone
width shrinks. The 2D intensity distribution around
x=22 um shown in Fig. 3(b) looks completely different
from that shown in Fig. 3(a), although based on the geo-
metrical theory the two patterns should resemble each other.
This indicates that around this position, diffraction becomes
dominant and the simple geometrical theory is no longer
valid. The 1D intensity variation of the wave field on the exit
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FIG. 4. (Color online) The local diffraction intensity variation of
the positive-first and the negative-first orders of the short KL in
concave-plano and planoconcave (flipped) geometries. For a com-
parison, the values calculated by the geometrical theory are also
shown.

surface clearly shows the difference between two calcula-
tions. These two results deviate significantly not only near
steep edges but also in the middle of the zones. Obviously,
there would be enormous errors if one employs the geometri-
cal theory to calculate the wave field in this region.

Another interesting question one may ask is whether the
performance will be different if the flat surface of the short
KL is illuminated, i.e., flip it horizontally. From the view-
point of the geometrical theory, there should be no difference
since the optical path is not changed after flipping, but it may
not be the case if we take into account the diffraction effect.
Since the structure is not symmetric about the x axis, intu-
itively we will expect a difference. For the flipped geometry,
Eq. (18) is rewritten as

expli2hm(1 -z/t)] -1
2ihr

Xo(2) = (1 - %)X’ Xn=0(2) =

(20)

Substituting into Eq. (16), one can solve all diffraction or-
ders. As a comparison, in Fig. 4 we plot the local diffraction
intensity of diffraction orders 2= %1 in both concave-plano
and planoconcave (flipped) geometries. We can see in the
former case the positive-first order, which corresponds to a
divergent spherical wave, has a negligible intensity com-
pared to that of the negative-first order. In the latter case,
however, the situation is reversed; the negative-first order in
the outer part is significantly suppressed while the positive-
first order is strongly enhanced. Since the optical path is not
changed when the short KL is flipped, this change is solely
due to the diffraction effect. We attribute this phenomenon to
the Bragg diffraction after the speculation on the geometry.
In the concave-plano case, the sawtoothlike surface of the
short KL is facing to the incident plane wave. The incidence
angle with respective to this surface is in favor of the Bragg
diffraction for the negative orders, which is desirable. On the
other hand, in the planoconcave case, this angle is in favor of
the Bragg diffraction for the positive orders, which is not
wanted. For the negative orders, they deviate from the Bragg
condition further and are suppressed. Clearly, for a better
focusing performance, the former geometry is preferred. One
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FIG. 5. (Color online) Focus profiles in the concave-plano (red
dashed) and planoconcave (blue dash-dotted) geometries. The
diffraction-limited focus is also plotted (black solid) for compari-
son. Intensity is normalized. Inserts show the intensity distribution
around the focus in the concave-plano (left panel) and planocon-
cave (right panel) geometries.

may notice that in the vicinity of the center where the dif-
fraction effect is weak, there is no much difference for these
two geometries. Figure 5 shows focus profiles in these two
cases together with the diffraction-limited focus. It can be
seen that the concave-plano geometry yields a focus of 14.7
nm (full width at half maximum, FWHM), smaller than that
of 19.2 nm for the planoconcave geometry. However, it is
still larger than the diffraction-limited focus of 11.6 nm due
to the fact that the effective NA is smaller than the physical
NA as we discussed earlier.

It has been shown that there can be an integer multiple
(m) of 27 phase variation in each zone since the phase rela-
tionship of the emerging wave front is still preserved. Be-
cause the zone width is proportional to m, a large m number
will greatly alleviate the difficulty of fabricating small zones
in practice, but with a price of efficiency; the thickness is
also proportional to m so the absorption increases as well.
From the viewpoint of the geometrical theory, no other ad-
verse effect is foreseen. However, it may not be true because
the diffraction effect has to be taken into account.

In Fig. 6 we plot the local diffraction intensity of the
principal focusing order (h=-m) when m is equal to 1, 2, 3,
4, and 8, corresponding to a thickness ¢ of 28.8, 57.6, 85.6,

1.0

0.84:

0.6

0.4

Local Diffraction Intensity

0.2

0.0

FIG. 6. (Color online) The local diffraction intensity variation of
the principal focusing order when m=1, 2, 3, 4, and 8. The hori-
zontal flat lines correspond to the values calculated by the geometri-
cal theory.
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FIG. 7. (Color online) Focus profiles for m=1, 2, 3, and 4. Inset
shows the intensity distribution (on logarithm scale) after the KL
for m=1 and 2.

115, and 230 wum, respectively. One shall bear in mind that a
short KL has both refractive and diffractive properties. Ac-
cording to Eq. (7), it can be seen that the nominal focal
length for a short KL is mf, so we expect foci at mf/h. Only
at these positions do the waves from individual zones add up
in phase. For individual zones serving as refractive lenses,
however, the transmitted wave only converge to the focus at
f. As a result for a short KL, the negative-mth focusing order
is the principal one, different from other diffractive optics
where usually the first-order focus achieves the maximum
efficiency.

From the simulation results shown in Fig. 6, we can see
that the performance of the KL degrades as m increases. Not
only the local diffraction intensity drops down as expected,
but also the effective NA is reduced. For a large m value, the
local diffraction intensity decreases to nearly zero much
faster than that for a small m value, i.e., qualitatively speak-
ing, the effective NA is inversely proportional to m. This
may be due to a stronger wave-guide effect as ¢ increases.
We notice that the diffraction intensity near the center suffers
less change in comparison to the value calculated by the
geometrical theory as m increases. Thus if we only utilize the
central part of the KL with a small NA, using a large m
reduces the focusing efficiency but it has little effect on the
focal size because the effective NA is barely affected. When
the diffraction property becomes dominant as the NA in-
creases, however, a large m that corresponds to a larger out-
most zone width will lead to a broader focus.

Another adverse effect of using a large m is the presence
of additional foci. The insets in Fig. 7 show the intensity
distribution after a short KL in the cases of m=1 and 2.
When m=1, there is no other foci between f and f/2. In the
case of m=2, an additional focus appears at the position of
2f/3. Due to the fact that a short KL can be treated as a
blazed zone plate, foci at mf/h will show up. Figure 7 de-
picts the principal focus line profiles for different m values.
When m is increased, the principal focus suffers not only a
reduction in intensity but also a broadening in the peak
width, changing from 14.7 nm for m=1 to 22.8 nm for
m=4. As a result, it is not desirable to increase m number if
one wants to achieve a small beam size.
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IV. BEAM PROPAGATION METHOD

The TTD described in Sec. III is in favor of Bragg dif-
fraction, i.e., the more periodic the structure is, the easier a
solution can be found. A KL, like all other diffractive optics,
is least periodic in the center. For the inner zones and a large
m number, the TTD starts to lose its computational advan-
tage compared to other modeling methods because a great
number of high orders of diffraction have to be included in
the calculation in order to achieve a high accuracy. In addi-
tion, for long KLs where zones do not lie in a single plane,
the TTD becomes difficult to apply. To tackle these prob-
lems, in the following, another wave-propagation-based
modeling approach, the beam propagation method (BPM),??
will be employed. BPM has been widely used to study the
edge diffraction effect in x-ray proximity lithography.!®?
Here we will give a brief description of this method.

Consider that the optic consists of many thin slices with
small thickness Az. If the wave field on the front surface of a
slice, E(x,y,z), is known, the zero-order approximation of

the wave field on its back surface, E(x,y,z+Az), can be
calculated by free-space propagation (vacuum, y=0)

E(x,y,z+Az) = #J {exp[i(kxx +kyy) + ikZAz]f E(x,y,2)

Xexp[— i(kx + kyy)ldxdy } dk dk,,

k =Nk =k - k. (21)
Then the correction on the wave field due to the presence of
the optic can be written as

E(x,y,z+ Az) = E(x,y,z + Az)exp[ikx(x,y,z)Az/2].
(22)

Repeating this computation process for all slices, we can
propagate the wave field from the entrance surface of an
optic to its exit surface. One shall note the paraxial approxi-
mation is applied in BPM and y has to be small. The latter is
easy to be satisfied in the x-ray domain. Another approxima-
tion made in BPM is that the back reflection is negligible.
Thus, BPM is suitable to calculate the wave field in an x-ray
optic with an arbitrary structure in the forward propagation
scheme and with a small NA.

As a comparison, we calculate the wave field on the exit
surface using BPM in a region close to the center of the short
KL studied in Fig. 3(a). The result is shown in Fig. 8. We can
see the BPM and the TTD yield the exactly same result. In
this case, the TTD still outperforms the BMP in terms of
computation time so one gains no benefit by employing the
latter one. For long KLs where zones do not lie in the same
plane, however, the BPM is much easier to be implemented.

In the example below, we apply the BPM to investigate
the performance of a Si KL with a focal length of 10 mm and
aradius of 11 um. It is operated at energy of 11.3 keV and
has m=8, so that each zone has a thickness of 230 um along
the optical axis. Four geometries are studied, shown in Fig.
9. In the first two cases, the different side of a long KL is
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FIG. 8. (Color online) A comparison of the results calculated by
the dynamical diffraction theory (TTD) and the BPM. The KL stud-
ied is the same with the one shown in Fig. 3(a).

illuminated by a plane wave. As a comparison, we also study
in the latter two cases a short KL with its two sides illumi-
nated by a plane wave. Ideally, these four geometries should
give the same diffraction-limited focal size of 41.8 nm
(FWHM) since their physical NAs are the same. But the
simulation indicates it is not the case. Figure 10 depicts the
line focus profiles for all four geometries, together with their
2D intensity distributions around the focus (insets). As can
been seen, in all cases which side of the lens is illuminated
has little effect on its performance. This is because here the
NA is very small (1.1 X 1073) and the Bragg diffraction is not
strongly excited; the preference on illumination shows up
only when the Bragg diffraction becomes dominant. The
short KL in cases iii and iv outperforms the long KL in cases
i and ii, producing a more intense and smaller focus. The
FWHMs of the focus are 83.5, 74.3, 57.0, and 61.5 nm in
cases i, ii, iii, and iv, respectively. We attribute the perfor-
mance degradation of the long KL to the edge diffraction
effect. The top panel in Fig. 11 shows the wave field inten-
sity distribution inside a long KL for case i. Strong interfer-
ence fringes are observed along the steep edge of each dif-
fractive element, distorting the wave propagating to the next
adjacent element. Because the lens is designed to reconstruct
a plane wave front to a converging spherical wave front, any
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FIG. 9. Long and short KLs with the same radius illuminated by
a plane wave.
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FIG. 10. (Color online) Focus profiles and intensity patterns
around the focus (insets, intensity on linear scale) corresponding to
the four cases shown in Fig. 9.

incident wave different from a plane wave will result in an
aberration or shift of the focus. The bottom panel shows the
intensity distribution after this KL. Apparently, the waves
emerging from outer lens elements converge to a position
different from the focus, leading to a much larger focus. This
suggests that for such a long KL, its lens profile has to be
modified to compensate the wave distortion incurred by the
edge diffraction in a preceding element. A detailed discus-
sion will be reported later. Short KLs with all elements lying
in a single plane are much less affected by this effect because
the wave distortion becomes severer as the wave propagates
a longer distance. Regardless of all these drawbacks, the long
KL shows only one single focus, a great advantage compared
to short KLs where multiple foci are presented.

V. SUMMARY AND CONCLUSION

We conduct a comparative study on short and long KLs
using the geometrical theory, the dynamical diffraction
theory, and the beam-propagation method. The applicability
and limitations of each method are discussed. We show that
the result predicted by the geometrical theory deviates
quickly from the one calculated by the more rigorous full-
wave theories as the NA increases. Because of the large
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FIG. 11. (Color online) The wave field intensity distribution
inside (top, intensity on linear scale) and after (bottom, intensity on
logarithm scale) the KL in case i.

thickness needed for an integer multiple of 27 phase shift in
a KL, the edge diffraction effect is more pronounced as com-
pared to other diffractive optics. It is seen that for a KL with
a relatively large physical NA and a large integer m, although
the difficulty of fabrication is alleviated, it suffers not only a
decrease in the efficiency but also a reduction in the effective
NA. The study also shows that short KLs usually outperform
long KLs in terms of efficiency and focal size because they
are less affected by the edge diffraction effect. However,
long KLs have only one focus, a great advantage compared
to their short counterparts. For the conventional KLs studied
in this paper, all show a focusing limit of tens of nanometers,
larger than their diffraction-limited size. Adaptive lens de-
sign is suggested to reduce the wave field distortion associ-
ated with the strong-edge diffraction in a long KL and a
further study is needed to find out the bottom limit.
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