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Semiconductor quantum dots coherently driven by pulsed laser are fundamental physical systems which
allow studying the dynamical properties of confined quantum states. These systems are attractive candidates for
a solid-state qubit, which open the possibility for several investigations in quantum-information processing. In
this work we study the effects of a specific decoherence process, the spontaneous emission of excitonic states,
in a quantum dot molecule. We model our system considering a three-level Hamiltonian and solve the corre-
sponding master equation in the Lindblad form. Our results show that the spontaneous emission associated
with the direct exciton helps to build up a robust indirect exciton state. This robustness against decoherence
allows potential applications in quantum memories and quantum gate architectures. We further investigate
several regimes of physical parameters, showing that this process is easily controlled by tuning of external
fields.
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I. INTRODUCTION

The advance on the manipulation and dynamical control
of quantum states under the action of coherent radiation has
recently become a subject of intense research in condensed-
matter physics. Dynamical control is a necessary step for the
implementation of any protocol associated with quantum-
information processing.1 In this sense, semiconductor quan-
tum dots �QDs� have been proved to be an ideal candidate.
Using strong resonant laser pulses and different probe tech-
niques, several different groups have successfully demon-
strated coherent manipulation of the exciton population of a
single QD.2–7 They demonstrated a process known as Rabi
oscillation which is indeed a proof of the exciton qubit rota-
tion. Unlike atoms, however, QDs suffer from unavoidable
variation in their size, and the presence of a surrounding
environment with which they may interact strongly, making
the entire system to lose its phase quickly.8–10 The main in-
terest in QDs arises from their characteristic discrete-energy
spectrum, and its great flexibility in change it, not only by
manipulation of their geometric structure but also with the
application of external gates. A natural next step for the de-
velopment of such system is to put two quantum dots to-
gether and allowing them to couple. A lot of work has been
done in this direction, where beautiful examples of a mol-
ecule formation have been achieved.11–22 However, the co-
herent dynamics of such objects under strong laser pumping
remains largely unexplored experimentally, and our work can
give further insight to help the experimental development.

In this paper, we study the effects of the spontaneous
decay in the excitonic states of a self-assembled semiconduc-
tor quantum dot molecule �QDM� coupled by tunneling and
under the influence of an external electromagnetic field. We
use a standard density-matrix approach in the Lindblad form
to describe the system dynamics and our results indicate that
the spontaneous decay of the direct exciton helps to build up
a coherent population of the indirect exciton �electron and
hole in different dots�, which has a longer lifetime due to its
spatial separation with small overlap of the wave function.
This effect is robust to the changes in external parameters

and in order to describe it we describe the physical system
and the detailed theoretical model in Sec. II, then in Sec. III
we show the results of numerical calculations, followed by
our conclusions in Sec. IV.

II. THEORY AND MODEL

The physical system we consider here is an asymmetric
double quantum dot coupled by tunneling. Electrons and
holes can be confined in either dot and we can use a near-
resonant optical pulse to promote electrons from the valence
to the conduction band, creating an electron-hole correlated
state known as exciton. Electrons or holes can then tunnel to
the other dot, creating an indirect exciton. An external elec-
tric field, applied in the growth direction, brings the indi-
vidual levels of electrons or holes into resonance, favoring
the tunneling. Nevertheless, in asymmetric QDM structures
it is even possible to control which type of carrier, electron
or holes, tunnels.23 In this situation, we can safely neglect the
tunneling of holes as the electric field brings one level �con-
duction band� more into resonance while makes the other
�valence band� more out of resonance. With this assumption,
the dynamics of the QDM can be modeled by a simple three-
level system, where the ground state �0� is a molecule with-
out any excitation, �1� is the system with one exciton in the
left dot, while �2� is the system with one indirect exciton,
after the electron has tunneled. The schematic configuration
of levels and physical parameters are shown in the Fig. 1,
where we also include the decoherence channels associated
with spontaneous emission of excitonic states ��0

1 ,�0
2�.

Using the rotating wave approximation and dipole ap-
proximation, the system Hamiltonian is written as24

Ĥ�t� = �
j=0

2

�� j�j��j� + Te��1��2� + �2��1�� + ���ei�Lt�0��1�

+ e−i�Lt�1��0�� , �1�

where � j are the frequencies of �j�th states �j=0,1 ,2�, Te is
the tunneling coupling, �L is the frequency of the applied
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laser, and the dipole coupling is �= �0��� ·E� �1� /2�, where ��
is the electric dipole moment and E� is the amplitude of inci-
dent field. The intensity of incident field can be easily con-
trolled to provide available conditions for the coherent con-
trol of the system quantum state. We also assume a low-
intensity incident pulse, so the Rabi frequency is
significatively smaller than the intraband excitation energy,25

���10=�1−�0 and �L��10. Under this assumption, we
might consider that only the ground-state exciton can be
formed in our system.

Applying the unitary transformation24

Û = exp� i�Lt

2
��1��1� − �0��0� + �2��2��	 �2�

and using the Baker-Hausdorff lemma,26 we obtain a time-
independent version of Hamiltonian �1� written as follows:

Ĥ� =
1

2
− �1 2�� 0

2�� �1 2Te

0 2Te �2
� , �3�

where �1=���10−�L� is the detuning between the frequency
of optical pulse and exciton transition, �2=�1+2��21 and �ij
is the optical transition between i and j energy states.

To taking into account the effects of decoherence, we
used the Liouville-Von Neumman-Lindblad equation given
by27

� �̂�t�
�t

= −
i

�
�Ĥ, �̂�t� + L̂��̂� . �4�

Here, �̂�t� is the density-matrix operator. The Liouville op-

erator, L̂��̂�, describes the dissipative process. Assuming the
Markovian approximation, Liouville operator can be written
as28

L̂��̂� =
1

2�
i

� j
i�2�j��i��̂�i��j� − �̂�i��i� − �i��i��̂� , �5�

where � j
i corresponds to the decoherence rates due spontane-

ous decay from the state �i� to the state �j�. In order to inves-
tigate the dynamics associated with this physical system, we
solve the Eq. �4�, and found the density-matrix coefficients at
certain time t. Writing Eq. �4� in the basis defined by �0�, �1�,
and �2� states, we obtain a set of nine coupled linear differ-
ential equations written as

�̇00 = − i���10 − �01� + �0
1�11 + �0

2�22,

�̇01 =
i

�
��1�01 + ����00 − �11� + Te�02 −

1

2
�0

1�01,

�̇02 =
i

�
��02

2
��1 + �2� − ���12 + Te�01	 −

1

2
�0

2�02,

�̇10 =
i

�
�− �1�10 + ����11 − �00� − Te�20 −

1

2
�0

1�10,

�̇11 =
i

�
�����10 − �01� + Te��12 − �21� − �0

1�11,

�̇12 =
i

�
��12

2
��2 − �1� − ���02 + Te��11 − �22�	

−
1

2
��0

1 + �0
2��12,

�̇20 =
i

�
�−

�20

2
��2 + �1� + ���21 − Te�10	 −

1

2
�0

2�20,

�̇21 =
i

�
��21

2
��1 − �2� + ���20 + Te��22 − �11�	

−
1

2
��0

1 + �0
2��21,

�̇22 =
i

�
Te��21 − �12� − �0

2�22. �6�

In order to solve the set of Eqs. �6�, we rewrite as �̇
=A�, considering � as a column vector and A being a square
matrix associated with the coefficients of the coupled system
above. The solution can be written as

�ij�t� = �
j=0

8

Sije
	jt�Sij

−1�ij�0� , �7�

where, 	 j and Sij are the eigenvalues and the matrix formed
by the eigenvectors of matrix A, respectively. �ij�0� are the
elements of the density-matrix operator at t=0.

III. RESULTS AND DISCUSSION

For our calculations, we consider the following values of
physical parameters: ��10�1.6 eV,3,29 ��0.05
–1.0 meV,25,30 �0

1�0.33–6.6�eV,30,31 and �0
2�10−4�0

1.32

The tunneling coupling, which depends on the barrier char-
acteristics and the external electric field, was selected as:
Te�0.01–0.1 meV �Ref. 33� or Te�1–10 meV,34 for
weak and strong tunneling regimes, respectively. The system
dynamics depends also from the detunings �1 and �2. Experi-
mentally, �1 is controlled by varying the frequency of exter-
nal laser. The value of �2 is changed by varying �1 and the

FIG. 1. Scheme of energy levels with physical parameters on
Hamiltonian �1�.
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frequency transition �21, which can be done by manipulation
of external electric field that changes the effective confine-
ment potential. By varying this set of parameters we are able
to perform a coherent manipulation of the wave function of
the system. For all simulations, we consider �
�0��= �0� as
initial condition.

Our first task is to analyze the effect on population dy-
namics of the decoherence process associated with spontane-
ous emission of direct exciton. In Fig. 2, we plot the prob-
ability of occupation associated with each of the three levels
considering different values of spontaneous emission rate �0

1.
For the physical parameters considered here, the nondissipa-
tive dynamics ��0

1=0� shows that there are Rabi oscillations
between the three levels of the system. This is illustrated in
Fig. 2�a�. The population of indirect exciton, state �2�, de-
pends directly on the parameter Te, although the value of the
coupling � and detunings �1 and �21, has important effects
on dynamics.24 The situation changes when spontaneous
emission is taken into account. As we expected, the Rabi
oscillations become damped. This can be seen in Figs.
2�b�–2�d�. For long times and values of �0

1 high enough, as
shown in the inset of Fig. 2�d�, the Rabi oscillations are
suppressed and the electron wave function tends to an
asymptotic state.

Now we focus our attention on the formation of a station-
ary state with high population of indirect excitonic level, �2�.
With a lifetime significatively longer �about 104 times the
direct exciton�,32 this particular state shows more potential
for quantum-information processing than the direct exciton,
�1� state. In order to study the effects of several physical
parameters on Hamiltonian �1� and the decoherence, we
study the behavior of average occupation of state �2�, defined
as

P2 =
1

t�
�

0

t�

P2�t�dt .

In Fig. 3, we plot our results for P2, as function of laser
detuning �1 and frequency �21, considering two different
values of the direct exciton spontaneous emission rate, �0

1.
Bright colors are associated with high values of P2, which
means an efficient transference of the electron from the first
to the second dot. From our results, it is possible to conclude
that a large occupation probability of �2� is obtained if the
detuning �1 is balanced with the applied electric field so that
�1+�21�0. We will named this condition as balanced de-
tuning. The behavior considering full resonance between the
three levels ��1��21�0� deserves more attention. Let us
define an area associated with the full resonance condition
��1� , ��21��50 �eV: when spontaneous emission is not
considered ��0

1=0�, the average population P2 is near to zero,
as shown in Ref. 24 and in the inset of Fig. 3�a�. Thus, full
resonance condition is not a good experimental choice for an
optimal creation of indirect excitonic state. Considering the
effects of spontaneous emission �0

1, we can observe a differ-
ent behavior: the values of P2 at point ��21,�1�= �0,0� in-
crease from 0.05 �for �0

1=0� to �0.6 �for �0
1=4.4 �eV� and

�0.2 �for �0
1=0.66 �eV�. This shows that for realistic direct

excitons, with a nonzero spontaneous emission rate, the
transfer of the electron between dots is more efficient.

In Fig. 4, we show our results for average population, P2,
as a function of both, frequency �21 and dipole coupling �,
for different choices of �0

1 considering �1=0 �eV, Figs.
4�a�, 4�c�, and 4�e�, and �1=100 �eV, Figs. 4�b�, 4�d�, and
4�f�. For all cases, we are able to populate the indirect exci-
ton state, evidenced by bright regions with values of P2
larger than 0.3. At resonance condition, Figs. 4�a�, 4�c�, and
4�e�, this bright area have a V-like form, with higher values
of P2 concentrated on a small area associated with low val-
ues of � and �21. For nonresonant condition, the symmetry
between negative and positive values of �21 is broken. Still,
the large values of P2 are obtained when the condition �1
+�21�0 is fulfilled. The action of spontaneous emission can
be analyzed by comparing the different situations shown in
Fig. 4. Higher values of parameter �0

1 are connected with
higher values of average population P2. For example, in Fig.
4�a� when �0

1=0 the maximum value of P2�0.36. Consid-
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1 with parameters �1=0, �21=0, �=50 �eV, and Te=10 �eV.
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ering decoherence, the maximum value of P2 goes from 0.6
for �0

1=0.66 �eV �Fig. 4�c� to �0.8 for �0
1=4.4 �eV �Fig.

4�d�. Also, the total area for highly efficient population of
�2� state increase as spontaneous emission increase: both, the
arms of the characteristic V area and the region with best
values of P2 become progressively large when the value of
�0

1 increase.
It is useful to check the combined effect of both, the tun-

neling and decoherence. It is expected a good transfer of
population associated with higher values of Te parameter.
This can be verified by comparing the results P2 without the
effect of decoherence process with Te=10 �eV, Fig. 4�a�,
with the results considering a higher value of tunneling pa-
rameter Te=50 �eV, Fig. 5�a�. The effect of decoherence
process is illustrated by Fig. 5�b�. Notice that area in Fig. 5
with high P2 increase by the action of decoherence and the
maximum value of P2 goes from �0.4, in Fig. 5�a�, to P2
�0.8, in Fig. 5�b�.

After our analysis of P2, it is necessary to check the actual
behavior of level population P2. In Fig. 6, we plot P2 con-
sidering some choices of physical parameters associated with
our previous analysis �Figs. 2–5�. In all cases, we limit our-
selves to full resonance condition ��1��21�0�. When dy-
namics is associated with stationary states, the value of P2
depends on two aspects: the final value of P2 at stationary
state and the time needed to reach this maximum value. In

Fig. 6�a� we plot P2 for �=50 �eV and Te=10 �eV con-
sidering different values of �0

1. We can conclude that a higher
spontaneous emission rate of the direct exciton is connected
with a faster evolution to the asymptotic value of P2. That
means, the broadening effects �short lifetime� on the direct
exciton are advantageous if we are interested on manipulate
electronic wave function in order to create an asymptotic
state with high values of P2 at short times.

Next, we verify that the exact maximum value of P2 is
related with coupling parameters � and Te and, also, with the
balanced detuning condition �1+�21�0. From our calcula-
tions of average occupation of indirect excitonic state, we
analyze the behavior of P2 considering a set of � and Te
parameters associated with maximum values of P2 for two
different �0

1 rates.
The evolution of population P2 is shown in Fig. 6�b� for

two different values of �0
1=4.4 �eV��0

1=0.66 �eV� situa-
tion. For a fixed value of �0

1, we can define the characteristic
time t0 as the time at which the system reaches the
asymptotic value of P2 �for example, t0�14 ns for �0

1

=0.66 �eV�. This characteristic time, which depends on the
value of �0

1, allows us to distinguish two dynamical regimes:
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�1� for long time, t t0, the population is essentially indepen-
dent of time and its maximum value depends directly on the
� /Te rate value �the population increases when this rate in-
creases�. �2� at short times, t� t0, the dynamics does not
depend on the value of � /Te, being governed mainly by �0

1.
Comparing all cases plotted in Fig. 6�b� we can conclude that
the condition to obtain an asymptotic state with large values
of the occupation P2, associated with short characteristic
times t0, is given by �

Te
�

Te

�0
1 . Thus, it is possible to obtain

experimentally optimized values of P2, by adjusting appro-
priately the laser intensity � for fixed values of Te and �0

1,
which, in turn, can be obtained through optical spectroscopy.

IV. SUMMARY

In this work, we use a standard density-matrix approach
in the Lindblad form to model the dynamics of a quantum
dot molecule under the influences of external electric and
electromagnetic fields, and in the presence of spontaneous
emission. By numerically solving the density matrix we
show that the spontaneous decay of the direct exciton helps
to build up a coherent population of the indirect exciton,

which should have important applications in quantum-
information processing due to its longer coherence time.

We further investigate the efficiency of creation of indi-
rect exciton state as function of physical parameters of our
model. For weak spontaneous emission rate, the system pre-
sents a Rabi oscillation and in the opposite limit the system
rapidly build up a stationary population of the indirect exci-
ton. Our results shown that the population of the indirect
exciton is strongly influenced by the spontaneous emission
of the direct exciton. We demonstrate that the indirect exci-
ton, which has a longer lifetime, is robust against the spon-
taneous emission process. Finally, at maximum average
population conditions, we determined a relation between the
relevant parameters of the system, which allows us to obtain
large populations of indirect exciton P2�0.9.
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