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We study the spatiotemporal pattern of the near-field intensity correlations generated by parametric scatter-
ing processes in a planar optical cavity. A generalized Bogolubov–de Gennes model is used to compute the
second-order field correlation function. Analytic approximations are developed to understand the numerical
results in the different regimes. The correlation pattern is found to be robust against a realistic disorder for
state-of-the-art semiconductor systems.
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I. INTRODUCTION

Quantum correlations in many-body and optical systems
are playing a crucial role in a variety of fields, from the
microscopic study of novel states of matter in quantum
fluids,1,2 to the control and suppression of noise in optical
systems,3–7 to the exploration of analog models of gravita-
tional and cosmological systems.8–10

In this perspective, nonlinear optical systems exhibit a
rich variety of phenomena,11,12 involving the interplay of
parametric scattering with losses, nonlinear energy shifts,
and the peculiar dispersion of light in confined geometries.
As a most significant example of this physics, an example of
phase transition of the Bose-Einstein class has recently
started being investigated in the optical parametric oscilla-
tion in planar geometries.13,14

Theoretical work has suggested that further insight in this
physics can be obtained from the spatial and temporal pattern
of correlations of the emitted light:15,16 as the critical point
for parametric oscillation is approached, the correlation
length and time of the parametric emission show a diver-
gence that is closely related to the one of thermodynamical
phase transitions.

To this purpose, semiconductor microcavities in the
strong coupling regime appear as most favorable
systems13,14,17 as they are intrinsically grown with a planar
geometry, and nonlinear interactions between the dressed
photons—the so-called polaritons—are remarkably strong.
First experiments demonstrating quantum correlations have
recently appeared.18–20

In the present work, we investigate the physics of the
intensity correlations that are generated by parametric scat-
tering processes. Depending on the pump frequency and in-
tensity, different regimes can be identified. In addition to the
usual short-distance correlations that are generally present in
any interacting system, spontaneous parametric emission
processes are responsible for additional long-distance ones,
whose correlation length diverges as the optical parametric
oscillation threshold is approached. In addition to their in-
trinsic interest, an experimental study of intensity correlation
in this simplest system will open the way to the investigation
of more complex geometries that in many aspects mimic the
behavior of quantum fields in curved space-times.21

Our approach is based on a generalized, nonequilibrium
Bogolubov–de Gennes approximation in which weak fluc-

tuations around the classical coherent field are described in
terms of a quadratic Hamiltonian.14,22–24 Solving in fre-
quency space the corresponding quantum Langevin equa-
tions allows to obtain predictions for the spatial and temporal
dependence of the in-cavity intensity correlations. These then
directly transfer to the near-field correlations of the emitted
light. The study of the simplest planar geometry is extended
to the more realistic case of weakly disordered systems: in
this regime, the effect of disorder is shown not to qualita-
tively modify the peculiar correlation pattern.

In Sec. II, we review the theoretical formalism based on
the Bogolubov approximation and we discuss how correla-
tions transfer from the in-cavity field to the emitted radiation.
In Sec. III A we present the numerical results for a one-
dimensional, spatially uniform case. Approximate analytical
calculations are presented in Sec. III B and used to physi-
cally interpret the numerical results. Numerical results for a
two-dimensional disordered system are discussed in Sec. IV.
Conclusions are drawn in Sec. V.

II. FORMALISM

In this section we briefly review the formalism which will
be used to calculate the intensity correlations of the emitted
light. As we are restricting to the case of small fluctuations
around a strong coherent field, a Bogolubov approach is
adapted to describe the dynamics of quantum fluctuations. In
the simplest case of a spatially homogeneous geometry the
Bogolubov equations can be worked out to analytical expres-
sions for the physical observables. In the general case, nu-
merical results can be obtained by inverting the Bogolubov
matrix for the specific geometry under investigation.

A. System Hamiltonian

We describe the exciton and the photon quantum fields

�̂x�r� and �̂c�r� as scalar Bose fields. The Hamiltonian is
the sum of terms describing the free propagation of excitons

and photons Ĥ0, their dipole coupling ĤR, the two-body

exciton-exciton interaction ĤX, saturation of the exciton-

photon coupling Ĥs and the external pumping Ĥp,14,25

Ĥ = Ĥ0 + ĤR + Ĥx + Ĥs + Ĥp. �1�

The free propagation term has the form
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Ĥ0 =� d2r�̂x
†�r��Ex − ��2/2mx��2 + Ux�r���̂x�r�

+� d2r�̂c
†�r���c�− i�� � + Uc�r���̂c�r� , �2�

where Ex is the exciton energy, mx its effective mass, and �c
is the photon dispersion in the planar cavity; Ux,c are the
external potentials acting on respectively the photon and the
exciton. The dipole exciton-photon coupling has the form

ĤR = ��R� d2r��̂x
†�r��̂c�r� + H.c.� �3�

and is quantified by the Rabi frequency �R. The effective
two-body exciton-exciton interaction term

Ĥx =
1

2
gx� d2r�̂x

†�r��̂x
†�r��̂x�r��̂x�r� �4�

models both Coulomb interaction and the effect of Pauli ex-
clusion on electrons and holes.26,27

Ĥs = gs� d2r��̂c
†�r��̂x

†�r��̂x�r��̂x�r� + H.c.� �5�

is the term modeling the saturation of the exciton oscillator
strength.26 The external pump term has the form

Ĥp = �� d2r��̂c
†�r�Fp�r,t� + H.c.� . �6�

In the following of the paper, we assume that the system is
driven by a continuous-wave monochromatic pump with a
plane wave spatial profile

F�r,t� = e−i�pteikp·rF0. �7�

Excitons and photons decay in time with a rate �x and �c,
respectively.

B. Bogolubov–de Gennes formalism

To make the problem analytically tractable, we perform
the Bogolubov approximation:24 the two quantum fields are
split into a strong coherent—classical—component and weak
quantum fluctuations

�̂x�c��r,t� = e−i�pt��x�c��r� + 	
̂x�c��r,t�� . �8�

This decomposition is then inserted into the Hamiltonian �1�
and all terms of third and higher order in the fluctuations are
neglected. This leads to a quadratic Hamiltonian for the fluc-
tuation field that can be attacked with available theoretical
tools.

The classical component �x�c��r� is obtained from the

Heisenberg equations of motion of the quantum field �̂x�c��r�
by factorizing out the multioperator averages. This leads to
the following pair of generalized Gross-Pitaevskii equations:

��p�x�r� = �−
�2�2

2mx
+ Ux�r� − i��x/2 + gx��x�r��2

+ 2gs Re��x
��r��c�r�	
�x�r�

+ ���R + gs��x�r��2��c�r� , �9�

��p�c�r� = ��c�− i�� � + Uc�r� − i��c/2��c�r�

+ ���R + gs��x�r��2��x�r� + �F0eikp·r,

�10�

Note that the classical field �c,x�r� that is obtained from this
equation does not include the correction due to the back
action of fluctuations onto the coherent component.28 To take
this effect into account, one should include the contribution

�	
̂x
†�r�	
̂x�r�� of the fluctuating fields to the density and

then iteratively solve Eqs. �9� and �10� up to convergence. As
in the present paper we are interested in the correlation prop-
erties of the field fluctuations, this effect can be safely ne-
glected in what follows.

Within the input-output formalism,12 the quantum dynam-
ics of fluctuations can be written in terms of quantum Lange-
vin equations of the form22,23,29

i��t	��r,t� = M̂	��r,t� + �f�r,t� , �11�

where

	� = �	
x,	
x
†,	
c,	
c

†�T �12�

is the four-component quantum fluctuation field. The matrix

M̂ is obtained by linearizing the Heisenberg equation of mo-
tion for the quantum field around the classical component. In
our case, it has the form

M̂ =

T̂x − i

��x

2
�12

xx
�̃R �12

xc

− ��12
xx�� − T̂x − i

��x

2
− ��12

xc�� − �̃R

�̃R �12
xc T̂c − i

��c

2
0

− ��12
xc�� − �̃R 0 − T̂c − i

��c

2

� ,

�13�

with

T̂x�r� = −
�2�2

2mx
+ Ux�r� − ��p + 2gx��x�r��2

+ 4gs Re��x
��r��c�r�	 , �14�

T̂c�r� = �c�− i�� � + Uc�r� , �15�

�12
xx�r� = gx�x

2�r� + 2gs�x�r��c�r� , �16�

�̃R�r� = ��R + 2gs��x�r��2, �17�
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�12
xc�r� = gs�x

2�r� . �18�

The quantum Langevin force

f = �fx, fx
†, fc, fc

†�T �19�

describes the zero-point fluctuations in the input field. As the
field dynamics takes place in a small frequency window
around �p and the input field is assumed to be in the vacuum
state, the spectrum of quantum Langevin force can be ap-
proximated by a white noise in both space and time,

�f��r,t�f

†�r�,t��� = �
	�,
	�r − r��	�t − t�� . �20�

This approximation is accurate in the present case where no
other radiation is incident onto the cavity in addition to the
driving at �p and the light-matter coupling ��R is small as
compared to the natural oscillation frequencies Ex and �c.

30,31

C. Evaluation of the correlation functions

In the present case of a monochromatic pump, temporal
homogeneity guarantees that the correlation functions only
depend on the time difference t− t� and different frequency
components are decoupled,

��	��r,�� = M̂	��r,�� + �f�r,�� . �21�

The two-operator averages of the fluctuation fields can be
written as

g̃x�c�
�1� �r,t;r�,t�� =� d�e−i��t−t��g̃x�c�

�1� �r,r�,�� , �22�

and

m̃x�c�
�1� �r,t;r�,t�� =� d�e−i��t−t��m̃x�c�

�1� �r,r�,�� . �23�

where we have defined

g̃x�c�
�1� �r,r�,�� =� d���	
x�c�

† �r,��	
x�c��r�,���� , �24�

m̃x�c�
�1� �r,r�,�� =� d���	
x�c��r,��	
x�c��r�,���� . �25�

By introducing the frequency-domain correlation functions

�f��r,��f

†�r�,����f = 2��
	�,
	�r − r��	�� − ��� �26�

and making use of Eq. �21�, simple expressions for the two-
operator averages are obtained

g̃x
�1��r,r�,�� = �

l=1

4 � ds�s,l�M̂�
−1�r�,1���s,l�M̂�

−1�r,1��l,

�27�

g̃c
�1��r,r�,�� = �

l=1

4 � ds�s,l�M̂�
−1�r�,3���s,l�M̂�

−1�r,3��l,

�28�

m̃x
�1��r,r�,�� = �

l=1

4 � ds�s,l�M̂�
−1�r�,2���s,l�M̂�

−1�r,1��l,

�29�

m̃c
�1��r,r�,�� = �

l=1

4 � ds�s,l�M̂�
−1�r�,4���s,l�M̂�

−1�r,3��l.

�30�

where �=2��2�0,�x ,0 ,�c�T and the matrix

M̂� = M̂ − ��1 �31�

is evaluated in the basis ��r , j��. Here, �r� spans the real space
and the label j=1, . . . ,4 refers to the block form of the
Bogolubov matrix �13�.

D. Intensity correlations

The present paper is focused on the spatiotemporal corre-
lations of the intensity fluctuations of the in-cavity photon
field. As usual in generic planar microcavities, the in-cavity
intensity correlations directly reflect into the near-field inten-
sity correlation of the emitted light outside the cavity. An
explicit calculation of the relation between the in cavity and
the emitted fields in the specific case of semiconductor DBR
microcavities is given in the Appendix.

The four-operator correlation function describing the cor-
relation of the intensity fluctuations of the in-cavity photon
field is defined as usual as

G�2��r,t;r�,t�� = ��̂c
†�r,t��̂c

†�r�,t���̂c�r�,t���̂c�r,t�� .

�32�

At the level of the Bogolubov approximation, three- and
four-operator averages of the fluctuation field can be ne-
glected and the correlation function �32� can be written in
terms of two-operator averages as

G�2��r,r�,t� = ��c�r��2��c�r���2 + ��c�r���2�
̂c
†�r�
̂c�r��

+ ��c�r��2�
̂c
†�r��
̂c�r���

+ 2 Re��c�r����c�r��
̂c
†�r,t�
̂c�r�,0��	

+ 2 Re��c�r����c�r���
̂c�r,t�
̂c�r�,0��	 .

�33�

A particularly useful quantity is the reduced correlation func-
tion,

Ḡ�2��r,t;r�,t�� =
G�2��r,t;r�,t��

nc�r�nc�r��
− 1, �34�

scaled by the intensity of light

nc�r� = ��c�r��2 + �	
̂c
†�r�	
̂c�r�� , �35�

which can be written in the following simple form:
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Ḡ�2��r,r�,t� � 2 Re��c�r����c�r��
̂c
†�r,t�
̂c�r�,0��

+ �c�r����c�r���
̂c�r,t�
̂c�r�,0��	

� ���c�r��2��c�r���2�−1. �36�

In the next section, we will study the spatial and temporal
features of this quantity in the most relevant cases.

III. ONE-DIMENSIONAL UNIFORM SYSTEM

A. Numerical results

In this section we investigate the case of a spatially uni-
form system under a plane wave monochromatic pump. Spa-
tial homogeneity guarantees that the correlation functions
only depend on the relative spatial coordinate r=x−x�.

We use typical parameters for a GaAs microcavity
with N=10 quantum wells. In particular, we choose
��R=10 meV, ��c=��x=��=0.1 meV, and we take zero
exciton-photon detuning at k=0, Ex=�c�k=0�. For the sake
of simplicity, in the present section we focus our attention on
a quasi-one-dimensional geometry where polaritons are
transversally confined to a length l1D�1 �m. This
corresponds to effective one-dimensional �1D� nonlinear
coupling constants gx=1.5�10−3 meV �m and
gs=0.5�10−3 meV �m. Such geometries are presently un-
der active experimental investigation.32 Extension to the two-
dimensional �2D� case does not qualitatively affect the phys-
ics and will be discussed in Sec. IV in connection to disorder
issues.

We consider a configuration where the pump wave vector
kp=2.2 �m−1 is close to the magic wave vector, and the
pump energy is ��p−�c�0�=−8.7 meV. This configuration
allows to study the most significant regimes by simply vary-
ing the pump intensity. In Fig. 1�i�, we plot the correspond-
ing exciton field intensity as a function of the pump intensity
�F0�2: the hysteresis cycle typical of bistable systems is
apparent.25,33,34

In the following, we will consider four different density
regimes, marked on the bistability loop by the points A-D.
Two of them �A ,B� correspond to low-density conditions far
from any instability, the point C is very close to the OPO

threshold, and point D is in the stable region above the bi-
stability and parametric oscillation region.

In the present uniform system, the elementary excitations
on top of the steady state of the pumped system can be clas-
sified in terms of their wave vector k. Examples of their
Bogolubov dispersion25 are shown in Fig. 1�a�–1�h� for the
four different regimes marked in Fig. 1�i� by the points A-D.
In the figure, we restrict the field of view to the lower-
polariton region that is involved in the physics under inves-
tigation here.

For increasing intensities, we observe: �i� the low-density
parametric regime A �panels a, b�, where the Bogolubov
modes reduce to the single-particle dispersion; �ii� the re-
gime B corresponding to moderate densities �panels c, d�,
where the imaginary parts are modified and a small region of
flattened dispersion appears at the crossing of the Bogolubov
modes; �iii� the regime C close to OPO threshold �panels e,
f�, where the imaginary part of one mode tends to zero and a
flat region in the Bogolubov dispersion is apparent; �iv� the
nonparametric configuration D, for intensities larger than the
bistability threshold, where the normal and the ghost disper-
sions are well separated and the eigenmodes of the system
tend again to the single-particle dispersion, yet blueshifted
by interactions �panels g, h�.

For each of this A-D regimes, we have computed the
spatiotemporal pattern of intensity correlations with the
model described in the previous section. The results are pre-
sented in the next subsections. An analytical interpretation
will be given later on in Sec. III B.

1. Low-density parametric luminescence

In Fig. 2�a�, we show the spatiotemporal pattern of the
intensity correlation in the low-density regime A correspond-
ing to Figs. 1�a� and 1�b�: this is characterized by a system of
parallel fringes and a butterfly-shaped envelope. The fringe
amplitude is almost vanishing inside the cone delimited by
the group velocities of the signal and the idler modes �rep-
resented by the thin solid lines in the figure� and largest on
the edges of the cone. Further away in space and time, it
decays back to zero as a consequence of the finite polariton
lifetime. At zero delay t=0, the central bunching peak around
r=0 shows a weak narrow dip �Fig. 2�b��. At larger delays
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FIG. 1. �Color online� Real �a-g� and imaginary parts �b-h� of the Bogolubov dispersion as a function of the wave vector k, for the four
regimes A-D marked in panel �i�. The exciton interaction energy is g��x�2=10−4 meV �a, b�, g��x�2=0.04 meV �c, d�, g��x�2=0.08 meV
�e, f� and g��x�2=0.61 meV �g, h�. �i� Bistable loop in the in-cavity exciton field intensity as a function of the incident pump intensity. The
red dashed line represents the unstable solutions. The points labeled with the letters A-D mark the four regimes considered in panels �a-h�.
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�Fig. 2�c��, the correlation signal is weaker in between the
dot-dashed lines indicating the edges of the cone.

2. Moderate-density parametric luminescence

In Fig. 3�a�, we show the spatiotemporal pattern in the
moderate density regime B corresponding to the energy dis-
persion shown in Figs. 1�c� and 1�d�. As compared to the
low-density case, the qualitative shape of the correlation pat-
tern is qualitatively modified: the system of parallel fringes

extends in a significant way into the interior of the butterfly
shape and the exponential decay in the external region takes
place at a slower rate. This latter effect is a direct conse-
quence of the increased lifetime of the Bogolubov modes in
the parametric region �see Fig. 1�d��.

3. OPO critical region

In Fig. 4�a�, we show the spatiotemporal pattern for the
regime C very close to the OPO threshold. In this case, the
system of parallel fringes extends to the whole �r , t� space
and correlations are nonvanishing even at very long time and
space separations. This is a consequence of the diverging
correlation length of fluctuations in the critical region.15 The
zero-delay t=0 cut of the correlation pattern is shown in Fig.
4�b� and is characterized by a system of fringes centered at
r=0 with a central bunching peak. The weak dip that was
visible in the weak intensity regime is no longer present.

4. Nonparametric regime

For even larger values of the pump intensity beyond the
bistability threshold, the system is pushed into an higher den-
sity D regime, where the blueshift induced by interactions
brings parametric scattering processes far off-resonance
�Figs. 1�g� and 1�h��. As a consequence, the system of par-
allel fringes due to parametric correlations almost completely
disappears, as it can be seen in Fig. 5�a�. The remaining
correlation pattern has an opposite shape, with substantial
correlations limited to the region inside the cone delimited
by the maximal group velocity of the polariton dispersion. At
zero delay t=0 �Fig. 5�b�� no spatial fringe is visible and the
only feature is an antibunching dip at r=0. At finite time
delays �Fig. 5�c��, some spatial fringes appear, but they do
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line. In panels �b� and �c�, the analytical prediction Eq. �45� is
shown as a dashed line. In panel �c�, the two vertical dash-dotted
lines delimit the region where the analytical result �45� predicts
vanishing correlations.
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not show any dominating periodicity. This suggests that a
continuum of processes at different k’s are simultaneously
taking place, each of them characterized by a different phase
velocity.

B. Analytic model and interpretation

To physically understand the numerical results presented
in the previous section, approximate analytic formulas for

the behavior of Ḡ�2� can be extracted for the most significant
limiting cases. To simplify the analysis, we restrict our atten-
tion to the lower polariton branch. This approximation is
accurate as long as the Rabi splitting is much larger than all
other energy scales, e.g., ��R��, ��R�gx��x�2 , gs��c�x�,
and is safely fulfilled in all the cases that we are considering
here. In this regime, the dynamics of the system can be de-
scribed by a single polariton field. Its dispersion, linewidth �
and nonlinear interaction coefficient g are immediately ob-
tained from the linear eigenmodes of the Gross-Pitaevskii
Eqs. �9� and �10� once interactions are neglected.14 At the
same level of approximation, also the k-dependence of the
photon Hopfield factor Ck�C can be neglected. As a result,
the same Hopfield coefficient �C�4 appears in both the nu-
merator and in the denominator of the intensity correlation
function �34� of the photon field, which then reduces to the
corresponding quantity for the lower-polariton field.

For a spatially homogeneous system under a monochro-
matic plane wave pump, equations can be written in the mo-
mentum space and the reduced second-order correlation
function reads

Ḡ�2��r,t� = G1
�2��r,t� + G2

�2��r,t�

=
2

���2
Re�� ddk

�2��de−i�k−kp�·r�	
k
†�t�	
k�0���

+
2

���4
Re���2� ddk

�2��dei�k−kp�·r�	
k�t�	
k�0���
�37�

where k=2kp−k. In the presence of quantum fluctuations
only,14,22 the normal correlations are

�	
k
†�t�	
k�0�� = 2��2�g2���4� d�

ei�t

�k���
, �38�

and the anomalous correlations are36

�	
k�t�	
k�0�� = − 2��2�g�2� d�e−i�t

�̃k + �� + i
��

2

�k���
.

�39�

Here we have introduced the notation �̃k=�k+2g���2−��p
for the shifted single-particle dispersion of polaritons, kp and
�p, respectively, indicate the wave vector and the frequency
of the pump. The denominator �k is defined in terms of the
eigenvalues Ek

�1,2� of the Bogolubov matrix

Mk = ��̃k − i��/2 g�2

− g��2 − �̃k − i��/2 
 , �40�

as

�k��� = ��� − Ek
�1����� − Ek

�1��

���� − Ek
�2����� − Ek

�2��

� .

�41�

To better compare to the numerical results, we now restrict
our attention to one-dimensional case and we extract analytic
formulas for the most significant regimes considered in the
previous subsection.

1. Low-density parametric luminescence

In the low-density limit ���→0 the Bogolubov eigen-
modes tend to the single-particle energies with a negligible
blueshift �Figs. 1�a� and 1�b��. Comparing the expressions
�38� and �39� for, respectively, the normal and the anomalous
correlations, it is immediate to see that the former is a factor
g���2 /�� smaller and therefore negligible in this limit. By
performing the frequency integral in Eq. �37� with the
method of residuals, the spatial correlation function can be
written as

Ḡ�2��r,t� � − 4�g Sgn�t�e−��t�/2

� Re�� dkei�k−kp�r e−i�kt/�

�k + �k̄ − 2��p − i��� .

�42�

In the parametric configuration �see Figs. 1�a� and 1�b��,
the dominating contribution to the integral over k is
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FIG. 5. �Color online� �a� Pattern of the intensity correlations

Ḡ�2��r , t� for the high-density regime D, corresponding to Figs. 1�g�
and 1�h�. In this regime, the large blueshift of the polariton modes
prevents the parametric oscillation. The two thin lines r= �vg

maxt
mark the maximal group velocities. �b� Cut of the previous figures
along the zero delay t=0 line. �c� Cut along the t=5 ps line. In
panels �b� and �c�, the analytical prediction Eq. �52� �red dashed
line� and Eq. �53� �green dash-dotted line� are also shown. In panel
�c�, the two vertical thin dash-dotted lines delimit the region where
both the numerical result and the analytical result �52� predict van-
ishing correlations.
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given by the wave vectors around the signal ks and the idler

ki= k̄s=2kp−ks modes, where the normal and the ghost dis-
persions intersect and parametric processes are resonant. We
can then approximate the integrand by replacing the energies
by their first-order expansions around k=ks,i

�k � �ks,i
+ �vg

�s,i��k − ks,i� , �43�

with group velocities

vg
�s,i� =� 1

�
�k��k��

ks,i

. �44�

In this way, we obtain

Ḡ2
�2��r,t� � 8�2 g

��vg
Sgn�t�e−��t�/2S sin�Kr − �t�

� ���tSRs�e−�Rs − ��− tSRi�r,t��e�Ri�r,t�� ,

�45�

where S=Sgn��vg� and �vg=vg
�s�−vg

�i�.
From this expression, it is immediate to see that the sys-

tem of parallel fringes has a frequency ��=�ks
−��p and a

wave vector K=ks−kp determined by the interference of the
signal/idler and the pump mode. The analytic form of the
zero delay t=0 fringe pattern resulting from the combination
of sin and � functions is responsible for the dip at r=0 that is
visible in Fig. 2�b�. The temporal decay of the correlation
occurs on the same time scale as the bare polariton decay
rate �. The spatial decay away from the butterfly edges �we
have set Rs,i�r , t�=r−vg

�s,i�t� occurs on a length scale
�−1= ��vg� /�.

Furthermore, the analytical formula �45� shows that no
correlation is present inside the cone marked by the thin lines
in the Fig. 2 and defined �for t�0� by the condition Rs�0
and Ri�0 �for t�0 the signs are exchanged�. The physics
behind this fact is illustrated by the simple geometric con-
struction shown in Fig. 6: pairs of entangled signal/idler po-
laritons are generated at all times and positions by the para-
metric conversion of quantum fluctuations into real
excitations. Signal and idler polaritons then propagate with
group velocities, respectively, vg

s,i and transport the correla-
tion to distant pairs of points. It is easy to see that the shaded
region inside the cone can never be reached by such a pro-
cess. An analogous reasoning was used in Ref. 9 to explain
the correlation signal observed in numerical calculations of
Hawking radiation from acoustic black holes. As polaritons
decay at a rate �, the same construction shows that the cor-
relation signal has to decay in space with the characteristic
length �−1=�vg /�.

The perfect agreement between this analytic approxima-
tion and the numerical result is highlighted in Figs. 2�b� and
2�c�. The lower polariton parameters g, �, �k are calculated
from the linear eigenmodes of the GP equations �9� and �10�.
As expected for a Bogolubov theory,24 for a given blueshift
g���2 the rescaled correlation function is proportional to the
nonlinear coupling constant g.

Before proceeding, it is interesting to note that for a pump
at normal incidence kp=0, one has ks=−ki and a vanishing
relative frequency �=0. The spatial fringes are then inde-

pendent on time. From an experimental point of view, this
configuration appears to be the most suitable one to observe
the predicted features as it is less subject to the finite time
resolution of photodetectors.

2. OPO critical region

For pump intensities just below the OPO threshold,
g���2�g��OPO�2=�� /2, the Bogolubov spectrum strongly
differs from the single-particle one �Figs. 1�e� and 1�f��. In
particular, the imaginary part of one of the two eigenvalues
tends to zero in the vicinity37 of k=ks and k=ki=2kp−ks. In
this case, it is easy to see that for wave vectors in the
vicinity of ks,i one has Re�Eks,i+k

�1� �=Re�Eks,i+k
�2� � and

Re�Eki−k
�1� �=−Re�Eks+k

�1� �. In this region, the eigenvalues can be
approximated with the expression

Ek
�1,2� →

k→ks,i

� E0 + �Vg�k − ks,i� −
i�

2
�� � �0 � �1�k − ks,i�2� ,

�46�

where Vg=�kEk �ks
/�=�kEk �ki

/� and ��0=2g���2���, the
equality holding exactly at threshold ���2= ��OPO�2. Follow-
ing the procedure already adopted in the previous subsection,
we perform the frequency integration in Eq. �39� with the
method of residuals and we expand the function in k around
ks,i. Then, by retaining only the dominant contribution
�which, as expected, diverges exactly at threshold �=�0� and
using the relations �46�, we finally obtain the expressions

Ḡ1
�2��r,t� �

2g

�
e−��−�0��t�/2 cos�Kr −

E0t

�



�� dk
cos�kR�e−�1k2�t�/2

� − �0 + �1k2 , �47�

and

FIG. 6. �Color online� Geometric construction to determine the
pairs of points in space-time that are correlated in the low-density
parametric luminescence regime. The shaded area highlights the
region of space-time which is not correlated with the point
�r=0, t=0�. The point �r=0, t=0� is parametrically correlated with
the point �, as a result of the parametric emission event occurring at
the point marked with a star. The same holds for the point �. Solid
lines mark the motion of signal �blue� and idler �red� particles. No
parametric event can instead produce correlations between the point
�r=0, t=0� and the point 	 located inside the shaded region.
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Ḡ2
�2��r,t� � −

4�g

�2�0
e−��−�0��t�/2Re�� dk

eikR−�1k2�t�/2

� − �0 + �1k2

���Ēs + �Vg
�s�k + i��0/2�e−iKr+iE0t/�

+ �Ēi + �Vg
�i�k + i��0/2�eiKr−iE0t/��� , �48�

with R=r−Vgt, Ēs,i= �̃ks,i
�E0, K=ks−kp, and

�Vg
�s,i�=Vg−vg

�s,i�.
This result can be further simplified by introducing the

approximations Ēs� Ēi�0 and �Vg
�s���Vg

�i��0. In this
case, the anomalous correlation disappears

Ḡ2
�2��r,t� �

4�g

�
e−��−�0��t�/2 cos�Kr − E0t/��

�� dk sin�kR�
e−�1k2�t�/2

� − �0 + �1k2 = 0, �49�

as the integrand is odd in k, and the spatial correlations are

dominated by the normal contribution Ḡ�2�� Ḡ1
�2�. The ex-

plicit expression of Ḡ1
�2� is given in Eq. �47�: the Fourier

transform of the product of a Gaussian and a Lorentzian
function corresponds, in real space, to the convolution of an
exponential and a Gaussian function.

At zero delay t=0 �Fig. 4�b��, the Gaussian reduces to a
delta function in space and the correlation signal shows an
exponential decay in space with a characteristic length

� �� �1

� − �0
. �50�

As expected on the basis of general arguments on phase tran-
sition, and previously observed in Monte Carlo
simulations,15 the characteristic length � diverges as the OPO
threshold is approached �0→�. In contrast to the expression
�45� for the weak intensity case, the zero delay t=0 fringe
pattern now has a cos form with a simple bunching peak at
r=0.

At longer times, the spatial width of the Gaussian grows
as �t, so that for short to intermediate distances, the depen-
dence is dominated by the Gaussian factor. This effect is
clearly visible in Fig. 4�c�. The overall exponential decay in
time occurs on a characteristic time

� �
1

� − �0
. �51�

which again diverges as the critical point is approached.

3. Nonparametric regime

The nonparametric regime shown in Figs. 1�g� and 1�h�
corresponds to the case where the polariton and ghost
branches do not intersect, i.e., �̃k+ �̃k̄�0 for all k. This re-
gime is generally realized when the frequency of the pump is
very much red detuned with respect to the renormalized po-
lariton dispersion and, in our configuration, is fulfilled for
pump intensities above the bistability loop.

In this regime, the Bogolubov eigenmodes can be ap-
proximated by the single particle dispersion blueshifted by
the interaction, i.e., Ek� �̃k− i�� /2 and an equation formally
equivalent to Eq. �42� still holds. However, since the de-
nominator remains finite for all k, no pole can be identified.
However, the region of the polariton dispersion that mini-
mizes the denominator gives the dominant contribution. In
the case of Fig. 1�g�, this happens at k=kp. It is therefore
convenient to expand the energy dispersion at second order
in k−kp. Performing this approximation in the denominator,
we obtain the following formula for the correlation function:

Ḡ�2��r,t� � 4g��
g���2

�̃kp

− 2
e−��t�/2

� Re�� dke−ikr ei�̃k+kp
t/�

2�̃kp
+ 2upk2 + i Sgn�t���� .

�52�

To further simplify this expression, we can expand also the
energy exponents, which leads to

Ḡ�2��r,t� � 4g��
g���2

�̃kp

− 2
e−��t�/2

�Re�ei�̃kp
t/�� dke−ikR eiupk2t/�

2�̃kp
+ 2upk2 + i Sgn�t���� .

�53�

Here, we have set R=r−vg
�p�t, vg

�p�=�k�̃k �kp
/�, and

up=�k
2�̃ �kp

/2.
The integral over k is of the Fresnel kind and describes

the interference produced at the point �R , t� by the different k
modes with a gapped and quadratic dispersion. For zero time
delay t=0, the correlations have a typical antibunching char-
acter: they are everywhere negative and are strongest at
r=0. Further away, they monotonically tend to zero with an
exponential law of characteristic length �−1=�up / �̃kp

deter-
mined by the gap between the renormalized polariton and
ghost branches.38

The most apparent deviation between the analytical form
�53� and the numerical result shown Fig. 5�c� consists of a
tail in the analytic approximation that extends up to large
distances. This has a simple interpretation: the quadratic ap-
proximation of the dispersion eliminates all bounds in the
group velocity and predicts correlations at any distances. In
contrast, the correct dispersion has an upper bound vg

max to
the group velocity, which restricts the possible correlations to
the �r��vg

max�t� region marked by the thin lines in Figs. 5�a�
and 5�c�: this interpretation is confirmed by the much better
agreement of Eq. �52� prediction where the group velocity is
correctly taken into account.

IV. TWO-DIMENSIONAL AND DISORDERED SYSTEM

In this final section we apply our model to the more gen-
eral case of a two-dimensional inhomogeneous system. In
particular, we wish to investigate how the conclusions of the

DAVIDE SARCHI AND IACOPO CARUSOTTO PHYSICAL REVIEW B 81, 075320 �2010�

075320-8



previous sections are affected by the presence of exciton and
photon disorder.

Realistic system parameters for a GaAs microcavity with
N=2 quantum wells are used, with ��R=3.5 meV,
��c=��x=��=0.2 meV, zero exciton-photon detuning.
For the nonlinear interaction constant we take
gx=1.5�10−3 meV �m2 and gs=0.5�10−3 meV �m2. We
consider a configuration where the pump is orthogonal to the
cavity plane, kp=0 and we take ��p−�c�0�=−3 meV. This
orthogonal pump configuration is the most suitable one in
view of experiments, as it is least affected by the temporal
resolution of the photon detectors.

The correlation pattern for different values of the pump
intensity, corresponding to the low-density limit, the critical
OPO region and the nonparametric configuration are shown
in Figs. 7�a�–7�c� for a two-dimensional system in the ab-
sence of disorder. All the features discussed in the previous
section for the 1D case are still apparent. In particular, in the
low-density case, the correlations disappear for distances
smaller that �rmax�t��=vgt, �vg being the group velocities of
polaritons in the signal and idler modes, and they decay ex-
ponentially. On the other hand, in the vicinity of the OPO
threshold, correlations extend everywhere. In the nonpara-
metric configuration, correlations are nonvanishing only for
distances smaller than r=vg

maxt, vg
max being the largest group

velocity.
We assume white noise disorder for the exciton field of

amplitude 2 meV and a Gaussian-correlated disorder for the
photon field, with amplitude Udis

c =0.5 meV and a correla-
tion length of �c=7 �m. The results of the numerical calcu-
lations are summarized in Figs. 7�d�–7�i�: the profile of the
coherent photon field ��c�r��2 in the three cases is shown in
panels �g�–�i� and the corresponding spatiotemporal patterns
of correlations are shown in panel �d�–�f�. The realization of

the disorder potential is the same for the three values of the
pump intensity.

Even if it is responsible for large density modulations, the
considered disorder is never able to destroy the near-field
correlation pattern. Of course the pattern would eventually
disappear if a much stronger disorder was considered, that is
able to fragment the coherent field in disconnected parts.
However, this latter situation is quite unusual for state-of-
the-art GaAs microcavities.

From the comparison with the corresponding correlation
patterns for a clean system �Figs. 7�a�–7�c��, we can still
appreciate a slight modification in the pattern. Disorder is
responsible for these modifications via three main effects: �i�
the exciton and photon resonances are broadened; �ii� k con-
servation is broken, which softens the condition for paramet-
ric processes; �iii� the group velocity is no longer a well
defined concept, so the contour of the butterfly shape in Fig.
7�d� is smeared out with respect to panel �a�.

V. CONCLUSIONS

We have developed a formalism to compute the second-
order spatial correlation function of polaritons in a planar
microcavity. This quantity directly transfers into the near-
field intensity correlations of the emitted light.

We have computed the spatiotemporal pattern of correla-
tions in different pumping regimes, ranging from the para-
metric luminescence regime, to the critical region just below
the parametric oscillation threshold, and to the strong pump-
ing regime where a large blueshift of the polariton modes is
able to prevent parametric oscillation.

For each regime, we have identified the key features of
the correlation pattern. In the uniform case, we have com-
pared our results to the predictions of approximate analytic
models which provide a physical interpretation to the ob-
served patterns. An orthogonal pump geometry appears as
the optimal choice for the experimental observation as it re-
duces the required temporal resolution of photodetectors. We
have verified that the correlation patterns are not qualita-
tively modified by a realistic disorder as long as the coherent
polaritons remain delocalized in space.

The conclusions of the present work confirm the expecta-
tion that intensity correlations can be a very powerful tool to
study the dynamics of quantum fields in condensed matter
systems. A study of more complex geometries is presently
under way.
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APPENDIX

In this appendix, we discuss the connection between the
photon field inside the cavity and the emitted light. In par-
ticular, we show that the calculated in-cavity intensity corre-
lations directly transfer to the near-field correlations of the
emitted light.
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FIG. 7. �Color online� Intensity correlation pattern Ḡ�2��r , t� as a
function of the spatial coordinate x and of the temporal delay t
along a y=0 line for a 2D system. Panels �a�–�c� are for a uniform
case, while panels �d�–�f� are for a disordered system. The pump
intensity is varied from a low value �a, d�, to a value close to the
OPO threshold �b, e� and to a value well above the bistability loop
�c, f� where parametric processes are forbidden. Panels �g�–�i� show
the coherent photon field profiles ��c�r��2 corresponding to the dis-
ordered case of panels �d�–�f�.
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We consider a planar cavity along the x-y plane with a
quantum well placed at z=0 and mirrors whose external sur-
face is at z= �zm. In Fourier space, the external field
Eout�k ,��, resulting from the transmission across the mirror
is related to the in-cavity field Ein�k ,�� at the quantum
well position via the complex transmission coefficient
��k ,��=T1/2ei��k,��,

Eout�r,z,t� =� d2k

�2��2� d�

2�
ei�k·r−�t�eikz�k��z−zm�

� ��k,��Ein�k,�� .

For simplicity, we have neglected here the k- and
�-dependence of the transmittivity T as we are restricting to
frequencies well within the stop band of the mirror where T
is almost constant �see Fig. 8�a��.

For frequencies close to the k=0 cavity frequency �0 and
at low wave vectors k, the phase of the transmission coeffi-
cient can be accurately approximated by the expansion

��k,�� = ��0,�0� + �t�� − �0� −
c

2�0
�zk

2, �54�

with

�t =� ��

��
�

�0

�55�

and

�z =
�0

c
� �2�

�k2 � . �56�

The transmitted field thus reduces to

Eout�r,z,t� � B� d2k

�2��2eik·re−ic/2�0�z−�z�k
2
Ein�k,t − �t� ,

�57�

where we have used the relation �valid in the air�

kz�k� = ��0
2/c2 − k2 � �0/c − c/2�0k2, �58�

and we have included the transmittivity T and a global phase
into the multiplicative constant B.

Without the mirror, the field Eout�r ,z , t� would be given
by

Eout�r,z,t� � � d2k

�2��2eik·re−ic/2�0zk2
Ein�k,t� . �59�

Comparison between Eqs. �57� and �59� shows that the only
effect of the mirror on the external field is to give a time shift
of �t and a longitudinal space shift �z.

We now demonstrate that the expansion �54� holds for a
typical high-quality GaAs microcavity with N DBR’s
mirrors.17 To this purpose, we employ the standard transfer
matrix approach35 to compute the k- and �-dependent com-
plex transmission coefficient ��� ,k� across the top mirror
placed between the cavity and the air. We consider
the typical case where the DBR’s mirrors are composed by
two
alternate dielectric layers with index of refraction n1
and n2 and length l1 and l2, respectively, such as
l1 /n1� l2 /n2��0 /4, �0=2�c /�0 being the cavity wave-
length. The transfer matrix for the transmission from the cav-
ity to the air is35
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FIG. 8. �Color online� Transmittivity �a� and transmission phase
�b� across the � /4 DBR mirror between cavity and air as a function
of the frequency �, for a given wave vector k=0 �solid line�,
k=1 �m−1 �dashed�, k=1.5 �m−1 �dot-dashed� and k=2 �m−1

�dotted�. Parameters are l1=65 nm, l2=75 nm, n1=3, n2=3.5,
nc=3.4, Lc=290 nm and N=22. The cavity frequency
�0=�c /ncLc is located at the center of the mirror stop band. �c�
Transmission phase across the same DBR mirror as a function of
the wave vector k, for a give frequency �−�0=0 �thick solid line�
and ���−�0�= �2 meV �thin lines�. Dashed lines are obtained by
fitting the numerical results with Eq. �54�, which gives
�z�140 nm.
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M = Ta2T21
−1M12

N T1c, �60�

where Ta2, T12, and T1c are the matrices describing the trans-
mission across the interfaces between the air and the dielec-
tric 2, between the dielectric 1 and the dielectric 2 and be-
tween the dielectric 1 and the cavity, while

M12 = T21M2T12M1, �61�

is the transfer matrix describing the transmission across the
periodic block formed by the two dielectric layers. Since

M�1

 

 = ��

0

 �62�

the transmission coefficient is given by

� =
det�M�

M22
. �63�

Examples summarized in Fig. 8. In panel �a�, we show the
frequency dependent transmission amplitude T, for in-plane
wave vectors ranging from k=0 and k=2 �m−1. The relative
variation is less than 10% in the interval of frequencies and
wave vectors considered which validates the assumption un-

derlying � �. In panel �b� we display the phase of the trans-
mission coefficient as a function of the frequency. For all
values of the in-plane wave vector k, the linear dependence
assumed in Eq. �54� is accurately verified with the same
�t�5 fs. This result confirms the validity of the expansion
�54�. In panel �c�, we show the dependence of the phase � on
the wavevector k, for different values of the frequency
��=−2,0 ,2 meV. Again the dependence assumed in Eq.
�54� is verified with the same value of �z�140 nm.

It is important to note that this small spatial shift �z does
not scale with the number N of layers in the DBR mirror, as
it could be intuitively supposed. This result originates from
the fact that within the stop band the transfer matrix M12

�and consequently M12
N � has real eigenvalues, and thus does

not induce any extensive phase shift.
The results of this appendix show that the only effect of

the mirror on the near-field correlation pattern is the follow-
ing: the light detected outside of the cavity appears to be
generated at a slightly earlier time and at a slightly displaced
longitudinal position as compared to the quantum well posi-
tion. In the experiments one has therefore simply to focus the
optical detection on this shifted position.
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