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We study the transport properties of a quantum dot driven by either a rotating magnetic field or an ac gate
voltage using the Floquet master-equation approach. Both types of ac driving lead to photon-assisted tunneling
where quantized amounts of energy are exchanged with the driving field. It is found that the differential-
conductance peak due to photon-assisted tunneling does not survive in the Coulomb-blockade regime when the
dot is driven by a rotating magnetic field. Furthermore, we employ a generalized MacDonald formula to
calculate the time-averaged noise spectra of ac-driven quantum dots. Besides the peak at zero frequency, the
noise spectra show additional peaks or dips in the presence of an ac field. For the case of an applied ac gate
voltage, the peak or dip position is fixed at the driving frequency whereas the position changes with increasing
amplitude for the case of a rotating magnetic field. Additional features appear in the noise spectra if a dc
magnetic field is applied in addition to a rotating field. In all cases, the peak or dip positions can be understood
from the energy differences of two available Floquet channels.
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I. INTRODUCTION

Quantum conductors based on single molecules or semi-
conductor quantum dots are promising building blocks for
future electronics and model systems for the study of funda-
mental quantum phenomena.1 However, much information
on quantum conductors is beyond the reach of measurements
of the current or conductance alone. Instead, the understand-
ing of the transport properties calls for a study of the full
counting statistics.2–11 In the past decade, valuable informa-
tion on microscopic details of the charge transport has been
obtained from measurements of the current fluctuations or
current noise.12 Previous studies have shown that one can
extract parameters such as the average backscattered
charge,13 the intrinsic time scales,14,15 and the asymmetry of
the dot-lead coupling16,17 from current-noise measurements.
Most studies of the current noise have focused on the zero-
frequency noise power S�0�.18–20 The zero-frequency noise
reflects the average properties of the tunneling. Since the
finite-frequency current noise S��� is a measure of the cor-
relations between tunneling events with their time difference
conjugate to the frequency �,21 it is interesting to go beyond
the zero-frequency limit. Aguado and Brandes14 have dem-
onstrated that the noise spectra can show dip structures at the
splitting energy of an open quantum two-level system, with
their width controlled by its dissipative dynamics. In many
works, the MacDonald formula22 has been used to study the
current-noise spectra.23–25

Effective in situ manipulation of quantum conductors is a
key step for further development. Using a time-dependent
field to manipulate the dynamics of quantum dots promises
to be advantageous in situations ranging from photon-
assisted inelastic tunneling26 to quantum pumping.27 When
the conductor is driven by an ac field, one expects novel
features due to the interplay of intrinsic oscillation frequen-
cies and the external driving frequency. Several recent

studies28,29 indicate that key information is hidden in the
noise spectra of the ac-driven transport. For instance, Barrett
and Stace28 have proposed to extract the characteristic time
scales such as the inverse dephasing and relaxation rates of a
solid-state charge qubit coupled to a microwave field from
the noise spectrum. Wabnig et al.29 have proposed to esti-
mate the coherence time of the spin in a quantum dot by
measuring its noise spectra under an ac magnetic field. These
results are obtained based on the rotating-wave approxima-
tion and usually in the limit of infinite on-site Coulomb in-
teraction.

For periodically driven systems, an appropriate theoretical
tool to go beyond the rotating-wave approximation is the
Floquet theorem.30,31 Various attempts have been made by
generalizing the existing steady-state transport approaches
such as the scattering matrix32–34 and nonequilibrium
Green’s functions35–37 with the help of the Floquet theorem.
However, these methods are not adequate to fully take the
Coulomb blockade in quantum dots into account, which
dominates the transport properties of small-size quantum
conductors. The quantum master equation38 in its various
manifestations39,40 is able to give a good account of the Cou-
lomb blockade in the weak-tunneling limit. This method has
previously been generalized using the Floquet theorem to
study the current and the zero-frequency noise power in an
ac-driven conductor.38,41–45

In the present study, we employ the Floquet master equa-
tion in the Fock space of an ac-driven quantum dot to study
the transport properties such as the differential conductance
and the full noise spectrum in the sequential-tunneling limit.
As the ac field we consider a rotating magnetic field as well
as an ac gate voltage for comparison. We employ a general-
ized MacDonald formula for the time-averaged noise spectra
in the presence of a periodic ac field. An equivalent form of
the generalized MacDonald formula has been given by Clerk
and Girvin46 without derivation. For completeness, we
present a derivation in the Appendix. Note that the authors
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are concerned with a different case, namely, an ac bias volt-
age and do not employ the Floquet formalism.

Our paper is organized as follows. In Sec. II, a Floquet
master-equation formalism is presented to study the transport
properties of ac-driven quantum dots. Expressions for the
noise spectra are derived based on the full counting statistics
and the generalized MacDonald formula. In Sec. III, the
transport properties of the ac-driven quantum dot are studied.
The ac field is either a rotating magnetic field or an oscillat-
ing on-site energy due to a periodic gate voltage. The char-
acteristic features in the transport properties are presented
and discussed. In Sec. IV, a brief summary is given.

II. FORMALISM

A. Model

In this paper, we study the transport properties of a single-
level quantum dot driven by an ac field. The quantum dot is
coupled to the left �L� and right �R� electron leads. The leads
are assumed to be ideal and free of interactions. The Hamil-
tonian of the model system can be written as

H�t� = HL + HR + Hdot�t� + HT � H0 + HT, �1�

where Hdot is the Hamiltonian of the isolated quantum dot,
which contains the effects of the ac field and the Coulomb
interaction, Hl=�k��lk�clk�

† clk� represents the Hamiltonian
of lead l=L ,R, where clk� �clk�

† � annihilates �creates� an elec-
tron with spin �, crystal momentum k, and energy �lk� in
lead l, and HT=�lk�Vlk�clk�

† d�+H.c. describes the coupling
between the quantum dot and the leads, where d�

† �d�� is the
spin-� electron creation �annihilation� operator in the quan-
tum dot. We note that we do not assume an infinite Coulomb-
interaction strength U→�, in contrast to previous studies.44

Instead, finite Coulomb interaction will be included by tak-
ing the doubly occupied state into account.

In the following, we focus on the limit of weak dot-lead
coupling and investigate the transport properties of the quan-
tum dot using the Floquet master-equation method. For a
small quantum dot, for which the Coulomb interaction can
dominate the transport behavior, the treatment of the Cou-
lomb interaction must go beyond the mean-field level. To
this end, it is convenient to rewrite the dot Hamiltonian in
the electron-number basis of the Fock space.47,48 In this de-
scription, the quantum dot can either be in the empty state
�0�, the singly occupied state ��� with spin �=↑ or ↓, or the
doubly occupied state �↑↓�. In the following, we denote the
states in the Fock space by Latin letters, �a�
= �0� , �↑ � , �↓ � , �↑↓�. Using this orthonormal basis, the dot-
lead coupling can be described naturally with the help of
Hubbard operators,

Xab = �a��b� , �2�

which describes the transition of the quantum dot from state
�b� to state �a�. The second-quantized dot-electron creation
operator can thus be rewritten in terms of the Hubbard op-
erators as

d�
† = ����0� + ���↑↓���̄� , �3�

where �̄ represents the opposite spin of � and the factor
��= �1 for �= ↑ ,↓, respectively, is due to the anticommu-
tation relation of the fermions. In terms of these Hubbard
operators, the Hamiltonian for the dot-lead coupling and the
isolated dot can be rewritten as

Hdot = �
ab

Hab
D �a��b� , �4�

HT = �
ab,lk�

Vlk�
ab clk�

† Xab + H.c., �5�

respectively. Here, we have made the coupling strength Vlk�
ab

depend on the occupancy of the initial and final states of the
transition in the quantum dot. The explicit form of the dot
Hamiltonian depends on the details of the device geometry
and the external ac-driving field. It will be specified in the
following sections.

B. Floquet quantum-master-equation approach

1. Floquet states

Due to the presence of a time-periodic external field, the
dynamics of the quantum dot is governed by a Hamiltonian
that is periodic in time with the frequency �=2� /T, i.e.,
Hdot�t�=Hdot�t+T�, where T denotes the period. The solution
of the time-periodic Hamiltonian can be simplified by the
Floquet theorem,30,31 which states that the solution of the
Schrödinger equation for the dot Hamiltonian can be ob-
tained from �we set 	= �e�=kB=1 in the following�

�Hdot�t� − i
�

�t
	�
�t�� = �
�
�t�� , �6�

where �
 is the time-independent Floquet quasienergy and
�
�t�� is the corresponding Floquet state, which has the same
period T, �
�t��= �
�t+T��. Here, Greek letters are used to
denote the Floquet states. Further simplification is possible
by decomposing the Floquet states into a Fourier series,

�
�t�� = �
k

e−ik�t�
k� �7�

with the reverse transformation

�
k� =
1

T
0

T
dteik�t�
�t�� �8�

and analogously for Hdot�t�. The Fourier transform of Eq. �6�
then reads

�
k�

Hdot,k−k��
k�� − k��
k� = �
�
k� . �9�

The quasienergy �
 can evidently be restricted to the first
Brillouin zone �0,�� of the Floquet space while the Floquet
index k can assume any integer value. Equivalently, we can
view �
+k� as the quasienergy in the extended zone
scheme.

We also introduce the Hubbard operator in the Floquet
states to describe the transition between the Floquet states as
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X
��t�= �
�t�����t��. For the time-dependent transport, it is
more convenient to work with these Floquet states. This is
most advantageous in transformations of the following form,
which we will use in the derivation below,

X̃
��t�,t� = U0
†�t�,t�X
��t��U0�t�,t� = ei���−�
��t−t��X
��t� ,

�10�

where

U0�t�,t� = Tc exp�− i

t

t�
dt��HL + HR + Hdot�t��
� �11�

denotes the time-evolution operator due to the Hamiltonian
in the absence of tunneling. Here, Tc is the time-ordering
operator and the dot Hamiltonian is explicitly time depen-
dent.

2. Floquet quantum master equation with counting fields

For a quantum dot coupled to external leads, the exact
quantum master equation can be written in the interaction
picture as38,39

d

dt

I�t� = − i�HT,I�t�,
I�t0�
 − 


t0

t

dt��HT,I�t�,�HT,I�t��,
I�t��

 ,

�12�

where AI�t�=U0
†�t , t0�A�t�U0�t , t0� denotes an operator in the

interaction picture and 
�t� is the density matrix in the Fock
space of the full system.

A complete description of the electronic transport through
the quantum dot is provided by the full counting statistics.
Properties such as the noise spectrum are determined by the
counting statistics of the electrons arriving at and departing
from the leads. All information on the counting statistics is
contained in the moment-generating function ���L ,�R�
= �exp�i�LNL+ i�RNR��. Here, �l represents the counting field
in the lead l, which counts how many electrons have tun-
neled into or out of the lead. Nl=�k�clk�

† clk� is the electron-
number operator in lead l. We introduce the operator

F��L,�R,t� = Trleads ei�LNL+i�RNR
�t� . �13�

In this we follow Kaiser and Kohler,44 except that we intro-
duce two counting fields. In the limit of �L→0 and �R→0,
F becomes the reduced density matrix of the quantum dot,

dot=Trleads 
. Moreover, the moment-generating function
���L ,�R , t� can be obtained by tracing out the dot degrees of
freedom, �=Trdot F. We decompose F into a Taylor series,

F = �
m=0

�

�
n=0

�
�i�L�m�i�R�n

m!n!
Fm,n, �14�

where the coefficients

Fm,n =� �m+n

�m�i�L��n�i�R�
F�

�L,�R→0
= Trleads NL

mNR
n
 �15�

provide a direct access to the moments �NL
mNR

n�=Trdot Fm,n.
In particular, we obtain the reduced density matrix of the
quantum dot, 
dot=F0,0.

To find the solutions for F, we first transform the equation
of motion for the density matrix in the interaction picture,
Eq. �12�, back to the Schrödinger picture,

d
�t�
dt

+ i�H0�t�,
�t�
 = − i�HT,U0
†�t0,t�
�t0�U0�t0,t�


− 

t0

t

dt��HT,U0
†�t�,t�

��HT,
�t��
U0�t�,t�
 . �16�

Then, we multiply by ei�LNL+i�RNR from the left and take the
trace over the lead degrees of freedom to obtain

dF��L,�R,t�
dt

+ i�Hdot�t�,F��L,�R,t�


= − i Trleads ei�LNL+i�RNR�HT,U0
†�t0,t�
�t0�U0�t0,t�


− 

t0

t

dt� Trleads ei�LNL+i�RNR�HT,U0
†�t�,t�

��HT,
�t��
U0�t�,t�
 , �17�

which is still exact.
We now assume that the full density operator is of product

form at the initial time t0, 
�t0�=
dot�t0� � 
leads
0 , where 
leads

0

describes the leads in separate thermal equilibrium. This as-
sumption is reasonable since we are not interested in tran-
sient effects coming from the initial state. Such effects have
been studied by Flindt et al.49 The first term on the right-
hand side of Eq. �17� then vanishes. Furthermore, we make
the sequential-tunneling approximation appropriate for weak
tunneling, i.e., we treat the tunneling perturbatively to sec-
ond order in HT. Since two powers of HT are already explicit
in the second term on the right-hand side of Eq. �17�, we can
express 
�t�� in terms of the unperturbed time evolution,

�t���U0

†�t , t��
�t�U0�t , t��. This makes the master equation
local in time, i.e., Markovian. For details, see, e.g., Ref. 39.
We thus do not include non-Markovian effects as studied by
Flindt et al.49 This is valid if the relaxation time in the leads
is short compared to the typical time scales of the dot, which
in our case include the period of the ac field. Since relaxation
times in metallic leads are on the order of femtoseconds, this
is easily satisfied.

Finally, we send t0→−� and obtain

dF��L,�R,t�
dt

+ i�Hdot�t�,F��L,�R,t�


= − 

0

�

d� Trleads ei�LNL+i�RNR�HT,�H̃T�t − �,t�,
�t�

 ,

�18�

where H̃T�t� , t�=U0
†�t� , t�HTU0�t� , t�.

To obtain the Floquet master equation, we write Eq. �18�
in the basis of Floquet states �
�t�� and ���t��. By making use
of the relation Eq. �10� and tracing out the lead degrees of
freedom, we arrive at the equation of motion for F,
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d

dt
F
���L,�R,t� = ��L + �ei�L − 1�JL+ + �e−i�L − 1�JL− + �ei�R − 1�JR+ + �e−i�R − 1�JR−
F��L,�R,t��
�, �19�

where the superoperators are given by

�LF�
� = − i��
 − ���F
� +
1

2�



0

�

d�
 d� �
ab;mn

�
��

�
l=L,R;�

�− �f l���ei���ab;mn
l� ��� + f̄ l���e−i���mn;ab

l� 


�ei���−�����
�t��a��b���t�����t − ���m��n���t − ���F����L,�R,t�

+ � f̄ l���ei���ab;mn
l� ��� + f l���e−i���mn;ab

l� 
ei���−�����
�t��a��b���t��F����L,�R,t����t − ���m��n���t − ���

+ � f̄ l���e−i���ab;mn
l� ��� + f l���ei���mn;ab

l� 
ei���−�
���
�t − ���a��b���t − ���F����L,�R,t����t��m��n���t��

− � f̄ l���ei���mn;ab
l� ��� + f l���e−i���ab;mn

l� 
ei���−����F
���L,�R,t����t − ���a��b���t − ������t��m��n���t��� , �20�

�Jl+F�
� =
1

2�



0

�

d�
 d� �
ab;mn

�
��

�
�

f̄ l����ab;mn
l� �ei��ei���−�����
�t��a��b���t��F����L,�R,t����t − ���m��n���t − ���

+ e−i��ei���−�
���
�t − ���a��b���t − ���F����L,�R,t����t��m��n���t��
 , �21�

�Jl−F�
� =
1

2�



0

�

d�
 d� �
ab;mn

�
��

�
�

f l����mn;ab
l� �e−i��ei���−�����
�t��a��b���t��F����L,�R,t����t − ���m��n���t − ���

+ ei��ei���−�
���
�t − ���a��b���t − ���F����L,�R,t����t��m��n���t��
 . �22�

Here, we have defined the tunneling rate �mn;ab
l� ���

=2�
l���Vl,k,�
ab Vl,k,�

mn� , where 
l��� is the density of states in
lead l.

Inserting the Taylor expansion of F in Eq. �14� into its
equation of motion �Eq. �19�
, one obtains a hierarchy of
equations for the expansion coefficients,

d

dt
F0,0 = LF0,0, �23�

d

dt
F1,0 = LF1,0 + �JL+ − JL−�F0,0, �24�

d

dt
F0,1 = LF0,1 + �JR+ − JR−�F0,0, �25�

d

dt
F2,0 = LF2,0 + 2�JL+ − JL−�F1,0 + �JL+ + JL−�F0,0,

�26�

d

dt
F0,2 = LF0,2 + 2�JR+ − JR−�F0,1 + �JR+ + JR−�F0,0,

�27�

d

dt
F1,1 = LF1,1 + �JL+ − JL−�F0,1 + �JR+ − JR−�F1,0,

�28�

etc. As described above, these coefficients contain the full
counting statistics. The charge current out of lead l is defined
as the negative of the time derivative of the charge in lead l,
Il�t�=edNl /dt. The final expression for the current out of the
left lead is given by44

�IL�t�� = e Trdot�Ḟ1,0� = e Trdot�JL+ − JL−�F0,0. �29�

The dc component of the current then gives the time average

Ī. In order to find F0,0, we have to solve a set of linear
equations with the help of the normalization condition of
probability Trdot F0,0�t�=1.

3. Generalized MacDonald formula for time-averaged
noise spectra

We are interested in the frequency-dependent current
noise of the quantum dot driven by an ac field. The zero-
frequency current noise for nonadiabatical driving has been
investigated in Ref. 44 using the Floquet master-equation
approach in the Coulomb-blockade regime. The symmetrized
current-current correlation function is defined by

Sll��t,t�� = �Îl�t�Îl��t��� + �Îl��t��Îl�t�� − 2�Îl�t���Îl��t��� , �30�

where Îl�t� represents the current operator at the time t from
the lead l. The current-noise spectra are defined as the Fou-
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rier transform of Sll��t , t��. Since our system is driven by an
ac field, the current noise is a double-time function. How-
ever, the periodicity of our problem makes it possible to
characterize the spectra by averaging over one driving pe-
riod.

At finite frequencies, the total current I�t� measured by a
measurement device depends on both the particle and the
displacement currents in the lead-dot-lead junction. If one
expresses the displacement currents by the particle currents
IL and IR, one obtains the Ramo-Shockley theorem,12,50,51

I�t� = aIL�t� − bIR�t� . �31�

Here the coefficients a and b, which satisfy a+b=1, are
specified by the device geometry. It is straightforward to
show that the total time-averaged noise spectrum is given by

S̄��� = a2S̄LL��� + b2S̄RR��� − ab�S̄LR��� + S̄RL���
 ,

�32�

where S̄ll���� �l , l�=L ,R� represents the frequency-
dependent time-averaged current correlation between Il and
Il�,

S̄ll���� =
1

T
0

T
dt
 dt�ei��t−t��Sll��t,t�� . �33�

In this study, we used two counting fields to derive the noise
spectra. An alternative approach is to calculate the charge
fluctuation on the dot employing the quantum regression
formula.3,14,52,53 The two approaches are physically equiva-
lent due to the charge conservation condition in the transport.

The formula for the zero-frequency noise has been pre-
sented in Ref. 44. For the two-terminal device, it is adequate
to find the time-averaged zero-frequency noise from the fluc-

tuations of the current flowing out of a chosen lead, S̄�0�
= S̄ll�0�. The solution for S̄�0� resulting from the Floquet
quantum master equation reads

S̄�0� =
2

T
0

T
dte2 Trdot�2�Jl+ − Jl−�F�

�lL,�lR + �Jl+ + Jl−�F0,0
 ,

�34�

where the prefactor of 2 is inserted to make the noise for-
mula consistent with Ref. 12. For Poissonian noise, we then

obtain S̄�0�=2eĪ. �ij is the usual Kronecker symbol. Follow-
ing Ref. 44, the new function F�

�lL,�lR in the noise expression
is defined as

F�
�lL,�lR = F�lL,�lR − F0,0 Trdot�F�lL,�lR� , �35�

and satisfies the equation of motion

Ḟ�
�lL,�lR = L�t�F�

�lL,�lR + �Jl+ − Jl− −
1

e
�Il�t���F0,0. �36�

An efficient method to find the noise spectrum is provided by
the MacDonald formula,22 which has been widely used in
quantum transport.21,23–25 The validity of this formula re-
quires that the current correlation function �I�t1�I�t2�� is only
a function of the time difference t1− t2 and that, therefore, the

transport is in the stationary regime. A direct application of
the MacDonald formula to the present time-dependent trans-
port problem is thus not possible. However, in the present
study the driving field is time periodic. The discrete temporal
translation symmetry H�t+T�=H�t� makes it possible to gen-
eralize the MacDonald formula for the noise spectra time
averaged over one period as

S̄ll����

�
=

2e2

T 

0

T dt

2i
Trdot�S�− i��F�lL+�l�L,�lR+�l�R�− i��

− S�i��F�lL+�l�L,�lR+�l�R�i��
 , �37�

where the components of the superoperator S�s� are given by

�S�s�
lmk;l�m�k� = �s − ik���ll��mm��kk�. �38�

To clarify the meaning of this definition, we note that the
superoperator S�s� acts on an arbitrary operator A with
Fourier-transformed matrix elements Alm;k in our standard
basis �l� , �m�= �0� , �↑ � , �↓ � , �↑↓� as

�S�s�A
lm;k = �
l�m�

�
k�

�S�s�
lmk;l�m�k�Al�m�;k�. �39�

The derivation of the generalized MacDonald formula is out-
lined in the Appendix. In evaluating the current noise from
the generalized MacDonald formula, we encounter the
Laplace transforms Fm,n�s� of the moments of the electron-
number operators in the leads. These moments are nothing
but the expansion coefficients of F defined in Eq. �15�.

Taking the trace over the dot degrees of freedom and the
average over one period makes only the matrix elements
Fll;k=0

m,n of Fm,n that are diagonal in the dot basis and have
Floquet index k=0 contribute to the final result. We arrive at
the expression

S̄ll����

�
= − e2� Trdot�Fk=0

�lL+�l�L,�lR+�l�R�− i��

+ Fk=0
�lL+�l�L,�lR+�l�R�i��
 . �40�

Now we require the charge moments in the left and right
leads. They can be obtained from the equation of motion for
F �Eq. �19�
. Suppose we switch on the counting fields at
some time t1, before that time the system can be described by
the density matrix without the counting fields in the �quasi�
stationary limit. Since we have assumed t0→−� above, any
initial correlation have died out at time t1.49 We set the num-
ber of electrons having tunneled into lead l up to time t1 to
zero, Nl�t1 , t1�=0. After time t1, the system evolves under the
influence of the counting fields. Then, we solve the equations
for Fm,n�t� by means of Laplace transformation. For ex-
ample, the solution of Eq. �23� reads

F0,0�s� = �S�s� − L
−1F0,0�t1� , �41�

where F0,0�t1� can be found from the stationary master equa-
tion LF0,0=0 in the absence of counting fields. Analogously,
we find expressions for the other expansion coefficients after
the Laplace transformation as

F1,0 = �S − L�−1�J1+ − J1−�F0,0, �42�
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F0,1 = �S − L�−1�J2+ − J2−�F0,0, �43�

F2,0 = �S − L�−1�2�J1+ − J1−�F1,0 + �J1+ + J1−�F0,0
 ,

�44�

F0,2 = �S − L�−1�2�J2+ − J2−�F0,1 + �J2+ + J2−�F0,0
 ,

�45�

F1,1 = �S − L�−1��J1+ − J1−�F0,1 + �J2+ − J2−�F1,0
 ,

�46�

where we have omitted the arguments s. The solutions for
these coefficients together with the generalized MacDonald
formula �Eq. �37�
 give the desired time-averaged current-
noise spectra of the ac-driven quantum dot. The approach
presented in this study can easily be generalized to take more
complex structures with multiple levels and interlevel transi-
tions into account.

III. RESULTS AND DISCUSSION

In the following, we present our numerical results based
on the Floquet master-equation method and discuss the trans-
port properties of the single-level quantum dot with time-
dependent fields. An additional dc magnetic field along the z
or x direction is taken into account; it splits the energy levels
of the singly charged quantum dot due to the Zeeman effect.
In the present study, we choose the ac field to be either a
rotating magnetic field in the xy plane or an ac gate voltage.
The ac gate voltage and the rotating magnetic field will affect
the quantum conductor in quite different manners. An ac gate
voltage only changes the eigenvalues of Hdot�t� periodically,
which in the adiabatic limit of large T become the eigenen-
ergies. The ac gate voltage will not induce any transition
between different eigenstates of Hdot�t� �no spin flip is pos-
sible� because the eigenstates are unaffected by the gate volt-
age. The electron is trapped in one spin state. The situation is
different for a rotating magnetic field. A rotating magnetic
field does not change the eigenvalues of Hdot�t� but does
change the eigenstates and thus can flip the spin of the elec-
tron. The spin polarization of the dot will thus evolve with
the rotating magnetic field. The two types of ac fields show
drastically different behaviors in the transport properties as
we will show below.

The full Hamiltonian of the quantum dot is written as �we
reiterate that we choose �e�=	=kB=1�

Hdot = �
�

�eVG + Vac cos �t + �Bz�d�
†d� + Ud↑

†d↑d↓
†d↓

+ Bx�d↑
†d↓ + d↓

†d↑� + Bac�d↑
†d↓e

i�t + d↓
†d↑e

−i�t� , �47�

where eVG is the on-site energy of the quantum dot due to
the dc component of the gate voltage VG, Vac is the amplitude
of the oscillating gate voltage, U represents the intradot Cou-
lomb interaction, and Bx and Bz are half the Zeeman energies
of the singly occupied dot due to the dc magnetic fields in
the x and z direction, respectively. Half the Zeeman energy
of the rotating magnetic field is given by Bac. Note that while

it is customary to talk about photon-assisted processes in this
context, the treatment of the electromagnetic field in the
Hamiltonian is completely classical.

We work in the sequential-tunneling regime and choose a
symmetric-coupling geometry with a=b. We assume that the
bias voltage Vdc symmetrically shifts the chemical potentials
by �L,R= �eVdc /2. In the framework of wideband approxi-
mation, the tunneling rate is given by �mn;ij

l� ���
=2�Vl,k,�

ij Vl,k,�
mn� , where we have assumed the coupling

strength Vl,k,�
ij =V to be a constant and have set the density of

states of lead l to unity. In the present study, we have as-
sumed the tunneling matrix to be independent of the energy
and the occupation number on the dot. An inclusion of state-
dependent tunneling is straightforward. We assume that the
electrons tunneling in and out of the dot with an energy-
independent rates �=�mn;ij

l� ��� and set �=1 as the energy
unit.

A. Differential conductance

We start our discussion with the differential conductance.
The gray-scale plot Fig. 1 shows the differential conductance
dI /dVdc vs the dc bias voltage Vdc and the gate voltage VG
with or without an ac field. The calculations are for the Cou-
lomb interaction strength U=24 and the temperature kBT
=0.32. The frequency of the ac field is �=8.

Without an ac field, Fig. 1�a� gives the familiar diamond
structure due to the Coulomb blockade. Numerical results for
the differential conductance when the quantum dot is modu-
lated by an ac gate voltage are presented in Fig. 1�b�. Figure
1�c� gives the results when the quantum dot is modulated by
a rotating magnetic field. Figure 1�d� shows the differential
conductance when the quantum dot is modulated by a rotat-
ing magnetic field in the xy plane while a dc magnetic field is
applied in the x direction, i.e., in the plane of the rotating
magnetic field.

When there is an ac field, several striking features emerge
in the differential conductance: �1� at the edge of the Cou-
lomb diamond, the sharp differential-conductance peak for
the dc transport shown in Fig. 1�a� is partially suppressed by
the ac gate voltage or the rotating magnetic field. Note the
different gray scales in Figs. 1�a�–1�d�. This can be attributed
to the suppression of the elastic resonant peak by the photon-
assisted processes. �2� In the presence of an ac field, there are
lines parallel to the edges of the Coulomb diamond. The
distance of these lines to the peak position is approximately
the frequency of the ac field, indicating a photon-assisted
tunneling process. �3� An interesting feature of these lines
can be observed inside the Coulomb diamonds. For the ac
gate voltage, the Floquet quasienergies are spin degenerate.
Therefore, the main lines in the differential-conductance plot
in Fig. 1�b� are not split. However, satellites due to photon-
assisted inelastic tunneling events appear in which an energy
quantum of � is absorbed from or emitted into the driving
field. We see from Fig. 1�b� that these additional lines remain
distinct inside the Coulomb diamond. On the other hand,
when the quantum dot is driven by a rotating magnetic field,
the quasienergies are not degenerate. Therefore, the main
elastic lines are split into two at the edge of the Coulomb
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diamond in Fig. 1�c�. Interestingly, the lines due to the
photon-assisted tunneling now only appear outside of the
Coulomb diamond, as can be seen in Fig. 1�c�, indicating
that the photon-assisted tunneling is forbidden inside the
Coulomb diamond. When the quantum dot is modulated by a
rotating magnetic field and a dc magnetic field is applied in
the plane of the rotating field, these lines in the Coulomb-
blockade regime revive. This can be clearly seen in Fig. 1�d�.

The disappearance of the photon-assisted tunneling inside
the Coulomb diamond for a pure rotating magnetic field can
be understood as follows. In the Coulomb diamond, the Flo-
quet quasienergies corresponding to the singly occupied
states are far below the Fermi energies of the two leads. A
direct tunneling between the dot and the leads is forbidden
due to the Pauli principle and Coulomb blockade. Therefore,
an electron is effectively trapped in one quantum state on the
dot. According to our previous discussion, only the spin di-
rection of this quantum state can evolve with the rotating
magnetic field. However, its eigenvalues of Hdot�t� remain
unchanged. Therefore, the electron cannot gain extra energy
from the ac magnetic field. As a consequence, we cannot
observe lines due to photon-assisted tunneling inside the
Coulomb diamond. Outside of the Coulomb diamond, the
tunneling between the dot and the leads becomes possible.

When an electron is injected from the lead into the dot, the
system can absorb or emit photons, i.e., the Floquet index k
can change. One could say that transport happens via several
Floquet channels. Such photon-mediated tunneling can then
give rise to the photon-assisted differential-conductance
peaks.

The situation becomes different when a dc magnetic field
is applied in the plane of the rotating magnetic field as shown
in Fig. 1�d�. In that case, the eigenstates and the eigenvalues
of Hdot�t� change periodically. Electrons can gain extra en-
ergy from the ac field by absorbing or emitting a photon. In
the Coulomb diamond, electrons on the dot are able to tunnel
out via the photon-assisted tunneling and we again find the
lines due to the photon-assisted differential-conductance
peaks inside the Coulomb diamond as shown in Fig. 1�d�.

B. Zero-frequency Fano factor

In the following, we show numerical results for the time-
averaged zero-frequency noise of the quantum dot. The zero-
frequency noise has been studied by the quantum-master-
equation method in the stationary12,16,23 and also in the time-
dependent case.44 Without ac field and at zero temperature,
the zero-frequency Fano factor S�0� /2eI describes the devia-

FIG. 1. Gray-scale plots of the differential conductance dI /dVdc as a function of the dc bias voltage and the dc gate voltage for a quantum
dot �a� without any ac fields, �b� modulated by an ac gate voltage, �c� modulated by a rotating magnetic field, and �d� modulated by a rotating
magnetic field and with an additional dc magnetic field applied in the plane of the rotating field. Dark regions represent low differential
conductance. The frequency of the ac field is �=8. The amplitude of the ac gate voltage in �b� and of the rotating magnetic field in �c� and
�d� are Vac=6.4 and Bac=3.2, respectively. The dc magnetic field in �d� is Bx=1.6.
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tion of the shot noise from its Poissonian value. We choose
the parameters T=0.32, U=8, eVG=8, and �=4.8. We as-
sume that a dc magnetic field in the z direction, Bz=1.6, is
applied to the quantum dot. The finite value of U and the
Zeeman splitting make it possible to see plateaus in the Fano
factor at different occupation numbers on the dot.16 Figure 2
shows the zero-frequency Fano factor as a function of the dc
bias with or without an ac gate voltage.

Without an ac gate voltage, Vac=0, the results reproduce
the main features reported in Ref. 16. At very low bias volt-
age Vdc→0, the main contribution to the noise is the finite
thermal noise while the current as well as the shot noise are
suppressed. Therefore, the Fano factor diverges at Vdc=0.
For low dc bias voltage, the quantum dot operates in the
Coulomb-blockade regime. With further increasing dc bias
voltage, the energy levels of the quantum dot one by one
enter the transport window defined by the dc bias. This can
be clearly identified in the Fano factor by the plateaus at
different values. The edges of the plateaus are broadened by
the finite temperature. For very large dc bias, where all the
energy levels of the quantum dot lie in the transport window,
the Fano factor approaches the well-known limit of 1/2 for
our symmetric-coupling case.16

The results for the dc case demonstrate that the plateaus
of the Fano factor can give a good account of the transport
channels.16 In the presence of an ac field, we now consider

the time-averaged Fano factor S̄�0� /2eĪ. We can see from
Fig. 2 that for small Vdc the Fano factor becomes larger as we
increase the amplitude of the ac gate voltage. On the other
hand, additional photon-assisted transport channels are avail-
able due to the ac field, which will modify the Fano-factor
curve. With increasing ac field, the Fano factor will thus
deviate from the plateau behavior seen in dc case due to the
opening of these photon-assisted transport channels. When
the ac gate voltage is large enough, the Floquet eigenstates
that lie outside of the transport window can contribute to the
current via photon-assisted tunneling. As a consequence, the
plateaus in the Fano-factor curve become vague. For very
large bias voltages, all the Floquet levels are well inside the
transport window. The Fano factor then will approach the
same value 1/2 as for the time-independent transport. In Fig.
3, we present our results for the zero-frequency current noise
in the presence of a rotating magnetic field. As in the case of

an ac gate voltage, the Fano factor deviates from the dc
behavior with increasing ac field. Additional plateaus can be
observed in the Fano-factor curve when we vary the dc bias
voltage. Transitions between plateaus result from additional
Floquet channels becoming available.

C. Frequency-dependent Fano factor

Now we present our results for the full current-noise spec-
tra of a quantum dot under an ac field. The noise spectra
have previously been studied in the stationary-transport re-
gime. An analytical expression for the noise spectrum of a
single-level quantum dot can be found in Ref. 23. Unless
stated otherwise, the following calculations assume U=24,
Vdc=12.7, T=1.6, �=8, and eVG=−8. We introduce the

frequency-dependent Fano factor S̄��� /2eĪ to characterize
the time-averaged noise power. As discussed previously, the
ac gate voltage and the rotating magnetic field will modulate
the quantum conductor in different ways. In the following,
we show that the noise spectra are also strikingly different.

In Fig. 4, we present the results for the frequency-

dependent Fano factor S̄��� /2eĪ as a function of the fre-
quency � for different amplitudes Vac. No dc magnetic field
is applied. Without an ac field �Vac=0�, the noise spectrum
shows a peak at zero frequency and approaches a constant
value for large �. The peak in the noise spectrum is due to

FIG. 2. �Color online� Fano factor of the quantum dot as a
function of dc bias voltage Vdc in unit of VG for different amplitudes
Vac of the ac gate voltage. The parameters of the device are given in
the text.

FIG. 3. �Color online� Fano factor of the quantum dot as a
function of dc bias voltage Vdc in unit of VG for different amplitudes
Bac of the rotating magnetic field. The other parameters are the
same with those of Fig. 2.

FIG. 4. �Color online� Noise spectra for different gate-voltage
amplitudes Vac. Independent of Vac, the main peak position is fixed
at �. The inset shows an enlarged view of the noise spectra around
2 �.
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the elastic processes in the transport.29 When an ac gate volt-
age is applied, additional structures in the noise spectra are
expected due to photon-assisted processes. For the present
set of parameters, one can clearly see that with increasing
amplitude of the ac gate voltage, an additional peak appears
in the noise spectrum. While the height and width of this
peak vary a lot with increasing amplitude, its peak position
�p remains almost unchanged at the external driving fre-
quency �.

Now we turn to the rotating magnetic field in the xy plane.
In Fig. 5, we plot the Fano factor as a function of the fre-
quency � for different amplitudes Bac of the rotating mag-
netic field. Similarly to the results presented in Fig. 4, a peak
is generated and the width and height of this peak depend on
the amplitude. However, the peak position is not fixed at �
in contrast to what we have observed in Fig. 4 for the ac gate
voltage. Instead, its position shifts with increasing amplitude,
as shown in Fig. 5.

By comparing Figs. 4 and 5, we see that the peak position
of the noise spectra behaves differently when we increase the
ac strength, depending on the type of the ac field. Recalling
that when electrons tunnel through a time-independent quan-
tum two-level system, its current-noise spectra show addi-
tional structure at the energy difference of the two transport
channels of the system due to its internal coherent
dynamics,14 we will show that the peak position of the noise
spectra for ac transport can be understood from the interfer-
ence between two possible Floquet transport channels. If the
quantum dot is modulated by a rotating magnetic field, the
last term in the dot Hamiltonian �Eq. �47�
 shows that the ac
magnetic field couples one spin state with the quasienergy �
with a state with the opposite spin and the quasienergy �
−� �in the extended zone scheme�. The coupling strength is
given by Bac. The corresponding Floquet Hamiltonian then
decomposes into 2�2 blocks of the form

hFl = � � Bac

Bac � − �
� . �48�

The resulting quasienergies in the first Brillouin zone �0,��
are

�1 = � −
�

2
+

��2 + 4Bac
2

2
, �49�

�2 = � +
3�

2
−

��2 + 4Bac
2

2
�50�

with the difference

�p = �2 − �1 = 2� − ��2 + 4Bac
2 �51�

�these expressions hold if Bac��3� /2�.
If now an electron tunnels into the dot, the system ends up

in a superposition of the two Floquet states, the phases of
which change with different angular frequencies, corre-
sponding to spin precession with the difference frequency
�p. When the electron tunnels out again, the superposition is
projected onto the spin direction of the original electron
since lead electron creation and annihilation operators are
paired with identical quantum numbers in the master equa-
tion. This leads to interference with a typical frequency �p,
which enhances the current-current correlation function
Sij�t , t�� in Eq. �30� for t− t� being a multiple of the period
2� /�p and thus leads to a peak in the noise spectrum at �p.
The peaks seen in Fig. 5 are indeed centered at �p given by
Eq. �51�.

Comparing with the stationary transport through a station-
ary two-level system,14 the transport through a quantum dot
with rotating magnetic field can be understood as another
type of two-level quantum system. The significant difference
here is that our two levels are defined by the Floquet chan-
nels due to a periodic ac field and not by the true eigenener-
gies of an time-independent Hamiltonian.

When an ac gate voltage is applied to the quantum dot,
the ac field will not couple the different spin states. Only the
eigenvalues of Hdot�t� will be modulated, see Eq. �47�. The
corresponding Floquet Hamiltonian decomposes into two in-
finite blocks for the two spin directions, where each block
has the tridiagonal form

hFl =�
�

� + � Vac/2 0

Vac/2 � Vac/2
0 Vac/2 � − �

�

� . �52�

Therefore, the electrons can tunnel through the quantum dot
via infinitely many Floquet channels with the same quasien-
ergy in the first Brillouin zone �0,�� but all possible Floquet
indices k. The quasienergies in the extended zone scheme
thus differ by integer multiples of �. These quasienergy dif-
ferences define the peak positions in the noise spectra. In
Fig. 4, a peak at � appears, corresponding to two channels
with their Floquet indices �photon numbers� differing by
unity. One should also expect peak structures at n�, n�1.
However, to observe these peak structures, one may need a
stronger ac field to enable multiphoton-assisted transport. In
the inset of Fig. 4, a small shoulder emerges at 2� for the
largest amplitude, Vac=8.

So far in our discussion, no dc magnetic field has been
considered. For the quantum dot with an ac gate voltage and
a dc magnetic field in the z direction, our results of the noise
spectra for different voltage amplitudes are displayed in Fig.

FIG. 5. �Color online� Noise spectra with a rotating magnetic
field in the xy plane with various amplitudes Bac. The peak position
shifts with increasing Bac.
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6. The parameters are the same as those used in Fig. 4 except
that the strength of the dc magnetic field in the z direction is
Bz=1.6. For the present set of parameters, the peak at � is
replaced by a dip. We observe that the appearance of the
peak or the dip depends on the detailed parameters used in
our calculation. The peak or dip position remains unchanged
as we increase the voltage amplitude. We have checked that
the noise spectrum does not depend on the direction of the dc
magnetic field. This is because the full SU�2� symmetry is
preserved since we have included the time evolution of the
off-diagonal elements of the reduced density matrix within
our quantum-master-equation approach.

Contrary to the quantum dot with an ac gate voltage, for
the case of a rotating magnetic field, the noise spectra do
depend on the direction of the additional dc magnetic field.
When the dc magnetic field is perpendicular to the plane of
the rotating magnetic field, the noise spectra behave much
like those for a pure rotating magnetic field. Only one peak
appears at a nonzero frequency and the peak position shifts
with the amplitude of the rotating magnetic field. Numerical
results for the noise with a rotating magnetic in the xy plane
and a dc magnetic field in the z direction are displayed in
Fig. 7. The parameters are the same as in Fig. 5 and the dc
magnetic field is Bz=1.6. It is easy to verify that the peak
position can again be determined by the difference between
two Floquet quasienergies.

When a nonzero dc magnetic field Bx is applied in the
plane of the rotating magnetic field, the Floquet Hamiltonian

cannot be reduced to a 2�2 matrix form as for the previ-
ously discussed situation of vanishing dc magnetic field
since the Bx term in Eq. �47� mixes spin-up and spin-down
states. Together with the rotating magnetic field this couples
all Floquet states with the same quasienergy in the first Bril-
louin zone and different Floquet indices. Thus the electrons
can tunnel through the quantum dot via infinitely many Flo-
quet channels. The interference between these Floquet chan-
nels then gives rise to much richer behavior in the noise
spectra. Numerical results for the noise spectra of a quantum
dot driven by a rotating magnetic field in the xy plane and
with a dc magnetic field in the x direction are presented in
Fig. 8. The parameters used in the calculation are the same as
in Fig. 5 and the dc magnetic field in Bx=1.6. In Fig. 8, more
peaks are observed than for vanishing dc magnetic field in
Fig. 5. One can see that besides the peak determined by Eq.
�51�, there are both peaks �dips� fixed at � and structures at
positions depending on the ac-field amplitude Bac. All peak
�dip� positions correspond to the differences of available Flo-
quet quasienergies.

IV. SUMMARY

In this paper, the transport properties of a single-level
quantum dot modulated by either an ac gate voltage or a
rotating magnetic field have been studied within the Floquet
quantum-master-equation approach in the sequential-
tunneling limit. We have employed a generalized MacDonald
formula to obtain the time-averaged current-noise spectra for
both cases. Numerical results for the differential conductance
and the frequency-dependent current noise have been pre-
sented. Besides the usual diamond structure due to the Cou-
lomb blockade in the differential conductance, photon-
assisted tunneling can give rise to additional lines parallel to
the edges of the Coulomb diamond. These lines cannot sur-
vive inside the Coulomb diamond in the case of a rotating
magnetic field. This is due to the fact that the rotating mag-
netic field only periodically rotates the spin direction while
the energy of the electron on the dot remains unchanged. The
frequency-dependent noise spectra of the quantum dot show
additional peaks or dips in the presence of an ac field. The

FIG. 6. �Color online� Noise spectra for a quantum dot modu-
lated by an oscillating gate voltage with various amplitudes Vac in
the presence of a dc magnetic field Bz=1.6 in the z direction. The
dip position is fixed at the driving frequency.

FIG. 7. �Color online� Noise spectra in the presence of a rotating
magnetic field in the xy plane with various amplitudes Bac. A dc
magnetic field Bz=1.6 is applied in the z direction. Only one peak
appears, which shifts with Bac.

FIG. 8. �Color online� Noise spectra with a rotating magnetic
field in the xy plane with various amplitudes Bac. A dc magnetic
field Bx=1.6 is applied in the x direction. New features appear in
the noise spectra since more Floquet channels are involved in the
transport in the presence of an in-plane magnetic field.
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behavior of these additional structures depends on the nature
of the ac-driving field. In the case of an ac gate voltage, the
position of the finite-frequency peak is fixed at the external
ac frequency, independently of the voltage amplitude. On the
other hand, in the case of a rotating magnetic field, the peak
at nonzero frequency moves with changing amplitude of the
rotating magnetic field. An additional dc magnetic field in
the plane of the rotating magnetic field can also drastically
change the noise spectra; it leads to the appearance of both
movable and fixed peak structures in the noise spectra. All
these peak positions are found to be determined by the en-
ergy differences between two Floquet transport channels.

APPENDIX: DERIVATION OF THE GENERALIZED
MACDONALD FORMULA WITH ac FIELD

A derivation of the MacDonald formula for time-
independent transport has been presented in Ref. 24. We
show here that the periodicity of our time-dependent Hamil-
tonian makes it possible to estimate the noise spectra by
generalizing the MacDonald formula. The derivation of the
generalized MacDonald formula for the time-averaged noise
spectra is outlined in the following.

We start from the Fourier-transformed current correlation
function,

S�t,�� = 

−�

�

d�ei�����I�t�,�I�t − ���� , �A1�

where �I�t�= I�t�− �I�t�� and �A ,B�=AB+BA. For simplicity,
we omit the lead index in the noise expressions in this ap-
pendix.

From the definition of the current, we have



t

t+�

dt��I�t�� = 

t

t+�

dt��I�t�� − �I�t���


= eN�t + �,t� − 

t

t+�

dt��I�t��� , �A2�

where N�t+� , t� denotes the number of charges transferred
during the interval from t to t+�. Taking the expectation
value of the square of this equation, we obtain

2e2��N�t + �,t� − 

t

t+�

dt��I�t���/e	�2

=�

t

t+�

dt�

t

t+�

dt���I�t���I�t���I�t���I�t��
�
= 


t

t+�

dt�

t

t+�

dt�

−�

�

d�
1

2�
S�t�,��ei��t�−t��. �A3�

Inserting the Fourier decomposition of the time-dependent
relation

S�t�,�� = S0��� + �
k�0

e−ik�t�Sk��� �A4�

into Eq. �A3�, we obtain

. . . = 

t

t+�

dt�

−�

�

d�
1

2�
�S0��� + �

k

�
e−ik�t�Sk���	e−i�t�� 1

i�
�ei��t+�� − ei�t�	

=

−�

�

d�
1

2�
S0���

1

�2 �e−i�� − 1��ei�� − 1� + 

−�

�

d��
k

� 1

2�
Sk���

1

��� + k��
e−ik�t�e−i��+k��� − 1��ei�� − 1� ,

=

−�

�

d�
1

�
S0���

1

�2 �1 − cos����
 + 

−�

�

d��
k

� 1

2�
Sk���

e−ik�t

��� + k��
�e−ik�� − e−i��+k��� − ei�� + 1
 , �A5�

where we have used the notation �k�=�k�0. Differentiation with respect to � gives

d

d�
2e2��N�t + �,t� − 


t

t+�

dt��I�t���/e	2� = 

−�

�

d�
1

�

S0���
�

sin �� + 

−�

�

d��
k

� 1

2�
Sk���e−ik�t 1

��� + k��
�− ik�e−ik��

+ i�� + k��e−i��+k��� − i�ei��� . �A6�

We next perform a Fourier transformation and take the time average over one period. The second term on the right-hand side
vanishes due to its periodicity. Since the current correlation function is symmetric, S�t , t��=S�t� , t�, it can be shown that

S̄���= 1
T�0

Tdt�−�
� dt�S�t , t��ei��t−t�� has the property S̄���= S̄�−��. We arrive at the generalized formula for the time-averaged

noise spectrum for a periodic driving field,
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1

T
0

T
dt2e2


−�

�

d�ei�� �

����N�t + �,t� − 

t

t+�

dt��I�t���/e	2�
=

1

T
0

T
dt2e2


−�

�

d� sin����
�

����N�t + �,t�

− 

t

t+�

dt��I�t���/e	2� = 2i
S̄���

�
. �A7�

Noting that the integrand of the � integral is even, we obtain
the final result for the generalized MacDonald formula for
the time-averaged noise spectrum,

S̄���
�

= 2e2 1

T
0

T
dt


0

�

d� sin ��
�

����N�t + �,t�

− 

t

t+�

dt��I�t���/e	2� . �A8�

In comparison to the MacDonald formula for steady-state
transport, an integration of t over one period is carried out to
obtain the time-averaged noise spectra. The time average can
also be expressed by an average over the initial phase of the
ac field. Hence, our expression is equivalent to the form
given by Clerk and Girvin.46
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