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We analyzed and compared two families of intermediate-band materials derived from indium thiospinels:
MgIn2S4, having an inverse spinel structure, and CdIn2S4, a direct spinel. First-principles studies of the
electronic structures of these two parent semiconductors were carried out to understand the nature of their band
gaps. Optical properties were also analyzed and we found good agreement with experiments. As derivatives of
these semiconductors, alloys where transition metals �M =Ti and V� substitute for In atoms at octahedral sites
are presented as a class of intermediate-band materials. First, the effect of the substitution on structural
parameters is assessed. Then, electronic structures are determined for Mg2MIn3S8 and Cd2MIn3S8 to show that
the t2g d states of the transition metal form a partially filled localized band within the band gap of the host
semiconductor. The suitability of these compounds as photovoltaic high-efficiency absorbers is discussed. An
increase in absorption is assessed by studying the contribution of the transition-metal band toward their optical
properties, in the range of higher solar emission, and comparing them with those of the host semiconductors.
An analysis of transmittance spectra is carried out to predict the range of optimum thicknesses for samples of
this type of thin film absorber. We compare, by means of structural, electronic, and optical behavior, Ti and V
as substituents, to evaluate the resulting alloys for potential photovoltaic applications.
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I. INTRODUCTION

The great effort to achieve more efficient lower-cost pho-
tovoltaic solar cells has led to the combination of the
intermediate-band �IB� concept and thin-film technology. A
compromise between the two could be the answer to the
present high-efficiency low-cost challenge.

The intermediate-band concept was proposed as a solu-
tion to the efficiency problem. This is because a partially
filled narrow band that is isolated from the valence and con-
duction bands of a host semiconductor would allow the ab-
sorption of subband-gap energy photons. For a solar cell, this
would result, in the creation of additional electron-hole pairs
and, in principle, in an increase in photocurrent without a
decrease in open-circuit voltage. A cell based on such an
approach could reach theoretical efficiencies up to 63.2%.1

However, a greater absorption of photons does not neces-
sarily mean a greater photocurrent, as very localized levels
could favor nonradiative recombination. Therefore, in order
to be efficient, an intermediate band has to fulfill some re-
quirements. It has to have a small dispersion and must not be
a discrete level; however, at the same time, it has to be nar-
row enough to be well isolated from the valence and conduc-
tion bands, to avoid thermalization to the IB. It also has to be
partially filled, to allow comparable rates for the two pos-
sible absorption processes involving the IB. In addition, ma-
terials presented here have advantage of spin polarization, as
the spin selection rules for electronic transitions can improve
the enhancement in lifetimes for the generated electron-hole
pairs.2

The first materials proposed to combine the intermediate-
band concept with thin-film technology �intended to reduce
the costs� were derivatives of chalcopyrites. Studies of
intermediate-band materials based on CuGaS2 have already

been presented,3 showing a potential suitability for enhanced
photovoltaic applications. In these materials, Ga atoms were
replaced by Ti or Cr �at tetrahedral sites�. It is well known4

that the octahedral environment is thermodynamically more
stable for these transition metals. This is because there is a
preference to be surrounded by six atoms, rather than by
four. This necessitates a deeper study of the intermediate-
band formation by transition metals at octahedral sites, thus
motivating the present study of thiospinel derivatives.

Very recently, we presented the ab initio optical properties
of the spinel semiconductor In2S3, where octahedral In atoms
were replaced by V or Ti.4 V-substituted In2S3 was synthe-
sized later, due to our promising predictions. This was the
first time that a partially filled intermediate-band material,
absorbing across the full solar spectrum range, was synthe-
sized. Its optical properties were later measured, showing
very good agreement with our theoretical results.5 Thus, the
prediction capabilities of our methodology were confirmed.

The two thiospinel host semiconductors presented here
were chosen as potential candidates for intermediate-band
formation because their band gaps lie in the region of opti-
mum gaps for the implementation of an IB material.1

MgIn2S4 has a band gap ranging from 2.1 to 2.28 eV,6,7 but
vacancies of Mg can significantly affect this value. In addi-
tion, Ref. 8 assumes it is a direct gap, but this is not clear.6,7,9

Therefore, further study is needed. In the case of CdIn2S4,
the direct band gap shows a wide range of values in the
literature: it varies from 2.35 to 2.62 eV. Yet, there is also
some controversy as to whether this gap is direct8,10 or
indirect.11–13

Both thiospinels are photoactive in the visible region of
the spectrum and are currently used for optoelectronic appli-
cations as photoconductors. They crystallize in the cubic spi-
nel structure, where Mg or Cd atoms occupy tetrahedral
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sites, whereas In has octahedral coordination. However, for
the two compounds presented here, the structures found in
nature have some degree of inversion. In other words, some
cations interchange their positions in the cell structure. At-
tempts to determine this degree of inversion theoretically
have failed.14 This may be related to the fact that this param-
eter is very dependent on temperature15 and most ab initio
calculations are limited to zero temperature.

The main purpose of the present work is to compare, in
detail, the effect of the structural degree of inversion in spi-
nel compounds on the formation of the intermediate band, by
studying a direct and an inverse structure and comparing
them. The effect of two promising transition-metal substitu-
ents �Ti and V� on the formation and characteristics of the
intermediate band will be studied, as well as the enhance-
ment of optical absorption properties in the resulting com-
pounds. In Sec. II, we describe the approaches followed.
Section III shows the results of structural, electronic, and
optical properties. Finally, Sec. IV summarizes our conclu-
sions.

II. METHOD

In this work, the electronic ground state of each material
was calculated with spin-polarized density functional theory
�DFT� in the generalized gradient approximation �GGA�
with the Perdew-Wang 1991 functional,16 using the plane-
wave code VASP.17 Projector augmented wave
pseudopotentials18,19 were used to describe electron-ion in-
teractions. The valence configurations used in this work were
3s2 for Mg; 5s24d10 for Cd; 5s25p1 for In; 3s23p4 for S;
4s13d3 for Ti; and 4s13d4 for V.

In all cases, the cells and ions were fully relaxed with a
tolerance for atomic forces of 0.01 eV /Å.

Concerning the optical properties, we obtained the imagi-
nary part of the dielectric tensor as a sum over independent
Kohn-Sham transitions, as given by Fermi’s golden rule. Fur-
ther details of this method are described in Ref. 20 and
implemented in the OPTICS code.21 This approach is an
independent-particle approach, such that it neglects electron-
electron and electron-hole interactions. The local-field effects
�i.e., the off-diagonal elements of the dielectric matrix� are
also neglected. However, this method has been tested suc-

cessfully on an intermediate-band material,5 showing good
agreement with experiment within the limits of the approach.
Nevertheless, as we will see in Sec. II, a shift of the
conduction-band energies will be needed to correct the un-
derestimation of the band gap given by DFT methods.

The real part of the dielectric tensor was obtained from
the imaginary part by using the Kramers-Krönig relations. To
get converged electronic properties and a frequency-
dependent dielectric tensor, a 280 eV energy cutoff
was used for the basis set and the following grids were
needed to sample the Brillouin zone: MgIn2S4:
10�10�10; Mg2TiIn3S8 and Mg2VIn3S8: 8�8�8;
CdIn2S4: 16�16�16; Cd2TiIn3S8 and Cd2VIn3S8:
10�10�10. All grids including the � point.

For both families, the pure semiconductors need more k
points than their corresponding intermediate-band deriva-
tives. This is because the dependence of the bottom conduc-
tion band, with the k points around �, is more pronounced
for the pure compounds. Thus, we need more k points to
accurately sample it �see Figs. 1, 2, 5, and 6 in Sec. II�. For
the three compounds with Mg, around 35 empty bands were
needed to obtain convergence in the range of photon energies
from 0 to 5 eV, whereas for the compounds with Cd we
needed 45 empty bands.

III. RESULTS AND DISCUSSION

A. Structural properties

MgIn2S4 and CdIn2S4 crystallize in the cubic spinel struc-
ture �space group Fd-3m�. This structure is characterized by
a FCC sublattice of the sulfurs with Mg or Cd atoms occu-
pying the tetrahedral sites, while In occupies the octahedral
sites �this is the so-called direct spinel structure�. In nature,
however, partial situations can be found. Some cations can
interchange their positions in the cell structure. In the limit-
ing case, all of the Mg �or Cd� atoms occupy octahedral sites.
Thus, half of the In atoms occupy the tetrahedral sites �this is
called the inverse spinel structure�. We can thus define the
degree of inversion x as the number of Mg or Cd atoms at
tetrahedral sites per chemical formula �0 for the inverse
structure, 1 for the direct one, and values in between for
partial situations�.14

MgIn2S4 is assumed to have a degree of inversion of
x=0.16 in nature �thus, almost inverse�,22,23 while the ac-
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FIG. 1. �Color online� Projection of the band diagram of CdIn2S4, where the circles size is proportional to the orbital projections of the
�a� In 5s, �b� Cd 5s, and �c� S 3p states divided by the number of atoms of each species. The contribution of other orbitals is comparatively
negligible in this energy range. As a guide to the eye, the band diagram containing all the states is represented as a thin dashed line.
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cepted value of x for CdIn2S4 is 0.80 �practically direct�.24

For the representation of these accepted values of the inver-
sion, very large supercells would be needed. Therefore, we
will study, for simplicity, the direct structure for CdIn2S4 and
the inverse one for MgIn2S4, which are the closest to the
experiments. By contrast, previous works only studied the
direct structure for the Mg compound.4

Even for perfect direct spinels, there is always a distortion
parameter that has to be taken into account. The internal
anion distortion parameter �u� represents the distortion of
the sulfur FCC sublattice, owing to the fact that each anion
has three In and one Cd �or Mg� as nearest neighbors. Thus,
the equilibrium position of the sulfurs is closer to one of the
species. For our case, it is closer to Cd �or Mg�.

In all cases, the transition metal �Ti or V� substitutes an In
atom at octahedral sites, as it has been said that this coordi-
nation is normally more stable for these transition metals.
The cell geometry, lattice parameters, and internal anion dis-
tortion u were determined by theoretical relaxation, by mini-
mization of forces and total energy. In Tables I and II, we
summarize the structural parameters obtained after this relax-
ation.

For pure CdIn2S4 direct spinel �see Table I�, the relaxed
lattice parameter is slightly overestimated with respect to the
experimental one. However, the error is within an order of
magnitude of usual GGA calculations.27

Once the substitution with the transition metal M has been
made, a small tetragonal distortion appears due to the aniso-

tropic environment of the octahedral sites.15 The final struc-
tures have a lattice parameter c that is smaller by an amount
on the order of 0.05 Å �see last two columns in Table I�. The
lattice parameters of both substituted alloys decrease with
respect to that of the host semiconductor. This is due to the
fact that Ti and V atoms are smaller than In and so the M-S
distances are found to be shorter than those of In-S in the
pure compound. The internal anion distortion remains prac-
tically equal to that of the parent semiconductor, which is in
good agreement with experiment. Substitution with the tran-
sition metal generates two different environments for the S
atoms and, thus, two values of u. For comparison with the
host semiconductor, the u displayed in the table is that of
sulfurs that retain the environment they had in the pure com-
pound �i.e., three In and one Cd as neighbors�.

In Table II we show the structural properties of MgIn2S4
and its intermediate-band derivatives. For the pure Mg semi-
conductor, as for the Cd one, relaxations lead to lattice pa-
rameters slightly above the experimental ones. However,
these are still within the errors of typical GGA calculations.
As the cell for this compound was constructed in an inverse
spinel structure, the octahedral sites are anisotropically sur-
rounded. This can be seen from Inoct-S and Mg-S bond
lengths in Table II. This slightly lowers the symmetry of the
cell from perfect cubic to tetragonal, as has been found for
other spinels.15,28 This distortion makes the lattice parameter
c shorter than a and b. Additionally, in the inverse structure,
there are different environments for the sulfurs and, thus, the
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FIG. 2. �Color online� Projection of the band diagram of MgIn2S4, where the circles size is proportional to the orbital projections of the
�a� In 5s, �b� Mg 3s, and �c� S 3p states divided by the number of atoms of each species. The contribution of other orbitals is comparatively
negligible in this energy range. As a guide to the eye, the band diagram containing all the states is represented as a thin dashed line.

TABLE I. Lattice parameters a �in Å� and c /a, internal distortion u, and atomic distances �in Å� for
CdIn2S4 and its derivatives. Comparisons with experiments, when available, are shown in brackets. In braces,
the number of neighbors at each distance is shown.

CdIn2S4 Cd2TiIn3S8 Cd2VIn3S8

a 11.014�10.797,a10.838–10.860�b 10.918 10.867

c /a 1 0.994 0.996

u 0.384�0.386�a 0.385 0.384

d�In-S� 2.65�6��2.59�a 2.62�2�–2.67�4� 2.62�2�–2.66�4�
d�Cd-S� 2.56�4��2.54�a 2.55�1�–2.56�3� 2.54�1�–2.56�3�
d�M-S� 2.51�6� 2.47�6�
aExperimental result of Hahn et al. �Ref. 25�.
bExperimental result of Lee et al. �Ref. 26�.
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value of the internal anion distortion u is not unique.
As we can see, we have four different values for the In-S

distance, owing to the different environments of indium and
sulfur atoms. The average of this distance is in very good
agreement with the experimental value reported by Hahn et
al.25 The Mg-S bond lengths are slightly overestimated
�around 0.11 Å� with respect to the experiment. These dif-
ferences may be due to the degree of inversion of the experi-
mental samples: the value of 2.48 Å in Ref. 25 may have a
contribution from a percentage of tetrahedral In, and the
value of 2.58 can be also affected by the presence of octahe-
dral Mg.

Substitution with the transition metal M implies that the
lattice parameters decrease by around 0.1 Å, with respect to
those of the host semiconductor. The M-S distances are also
found to be shorter than those of In-S in the pure compound
because of the sizes of Ti and V.

B. Electronic properties

1. Pure host semiconductors

For the pure semiconductors, the GGA band gaps were
found to be 0.90 eV for inverse MgIn2S4 �it was previously
obtained elsewhere4 only for the direct spinel structure as
1.65 eV� and 1.05 eV for CdIn2S4. The first one was pre-
dicted as direct, in agreement with the work of Ruiz-Fuertes
et al.8 The gap of the Cd-compound was obtained as indirect,
in agreement with predictions by other authors,11–13 and we
found the top of the valence band along the X-W direction
�see Fig. 1�. The difference between the indirect and direct
�1.16 eV� band gaps of CdIn2S4 may be relevant for the
study of optical properties, as indirect transitions will not be
taken into account. Nevertheless, the contribution of indirect
transitions is expected to be much lower than that of the
direct ones. The fact that the difference between the direct
and indirect band gaps is so small �0.11 eV in our calcula-
tion� may be responsible for the controversy between differ-
ent authors.8,10–13 These band-gap results should be com-
pared to experimental values: 2.1–2.28 eV for MgIn2S4 and
2.0–2.2 eV for CdIn2S4. In any case, our GGA gaps are
underestimated, as expected from a DFT approach �see, e.g.,
Ref. 29 and references therein�. This will make it necessary

to shift the excited states, in order to obtain appropriate op-
tical spectra.

Owing to a lack of results for the band structures of Mg
�Ref. 9� and Cd �Refs. 11, 30, and 31� spinels, a deeper study
into the character of the bands and the origin of the gap is
valuable. For CdIn2S4, we find that the topmost valence band
�see Fig. 1� has mainly S 3p character, and the lowest con-
duction band is formed by mostly In 5s and Cd 5s states.
This indicates that the value of the band gap is determined
mainly by the In-Cd interaction, because the dispersion of
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FIG. 3. �Color online� Total �solid line� and transition-metal
projected �dotted line� densities of states �DOS� of the �a� MgIn2S4

semiconductor, �b� Ti-substituted alloy and �c� V-substituted com-
pound �up and down spins�, aligned at the valence-band maximum.
Black vertical lines indicate the Fermi energy.

TABLE II. Lattice parameters a �in Å� and c /a, as well as atomic distances �in Å� for MgIn2S4 and its
derivatives. Comparisons with experiments and other theoretical work, when available, are shown in brack-
ets. In braces, the number of neighbors at each distance is shown.

MgIn2S4 Mg2TiIn3S8 Mg2VIn3S8

a 10.869�10.50,a10.71�b 10.769 10.741

c /a 0.997 0.992 0.992

d�Inoct-S� 2.63�2�–2.66�4��2.58�c 2.59�2�–2.66�4� 2.60�2�–2.66�4�
d�Intet-S� 2.50�2�–2.54�2��2.58�c 2.50�1�–2.51�1�–2.55�2� 2.49�1�–2.52�1�–2.55�2�
d�Mg-S� 2.59�4�–2.60�2��2.48�c 2.53�2�–2.61�4� 2.53�2�–2.60�2�–2.62�2�
d�M-S� 2.49�2�–2.51�4� 2.45�2�–2.48�4�
aOther theoretical work �Ref. 14�.
bExperimental work of Gastaldi et al. �Ref. 23�.
cExperimental result of Hahn et al. �Ref. 25�.
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the bottom conduction band depends on this interaction. This
is in agreement with Ref. 8, where conclusions have been
extrapolated from the spinel CdIn2O4. However, these results
cannot be extrapolated for the Mg-spinel because, as can be
seen in Fig. 2, the top valence band still has mainly S 3p
character, but there is almost no contribution from the Mg
states to the bottom of the conduction band, which is formed
mainly by In.

2. Intermediate-band materials

Transition metals Ti and V were chosen as the best sub-
stituent candidates because, in an octahedral environment,
their 3d t2g-type states can form the partially filled interme-
diate band.

Figures 3 and 4 show the resulting density of states before
and after the insertion of the transition metal. The projection
on the transition-metal states is also displayed. The elec-
tronic structure of the substituted alloys presents a spin-
polarized partially filled intermediate band formed by the
majority-spin t2g states, whereas the eg and minority-spin d
states appear highly hybridized with the conduction band.
Figures 3�a� and 4�a� represent the electronic structure of the
two parent semiconductors for comparison with their deriva-
tives.

Figures 3�b� and 4�b� show the effect of Ti substitution. In
both cases, due to the similar electronic structure of the two
parent semiconductors, the resulting intermediate band is
similar in width and position. The main difference is due to
the fact that the MgIn2S4 pure semiconductor has a slightly

smaller band gap than CdIn2S4. Thus, the intermediate band
in the case of Mg2TiIn3S8, slightly overlaps with the conduc-
tion band.

If we now focus on the compounds with vanadium �see
Figs. 3�c� and 4�c��, they also share similar features. How-
ever, in this case the main difference is that, for Cd2VIn3S8,
the IB is narrower than that of Mg2VIn3S8. This effect is due
not only to the differences between Cd and Mg, but also to
the fact that the first one is a direct spinel and the second one
is an inverse spinel. This means that, in the second case, the
octahedral environment of the transition metal is distorted in
one direction �see the bond lengths in Table II� and, thus, one
of the three t2g bands is separated from the others, making
the intermediate band appear thicker.

To see the effect of the concentration of transition metal
on the intermediate-band formation, we performed calcula-
tions at different dilution levels. Cells of 14, 28, and 56
atoms were studied �1/4, 1/8, and 1/16 replacement of In by
the transition metal, respectively�. We found that the inter-
mediate band appears at the same position and with similar
widths and features for the different concentrations.

To better understand the formation of the IB, band dia-
grams of the derivatives of CdIn2S4 and a projection of the
transition-metal states were obtained, as shown in Figs. 5 and
6 �the features are very similar for the derivatives of
MgIn2S4�. From these figures, it can be more precisely seen
how the spin-up t2g states form the intermediate band inside
the gap of the host semiconductor, which is isolated from the
valence and conduction bands. In addition, it can be seen
how, as mentioned above, the eg states hybridize with the
conduction band.
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the orbital projection of the Ti d states.
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grams of Cd2VIn3S8. The size of the red circles is proportional to
the orbital projection of the V d states.
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C. Optical properties

1. Pure host semiconductors

As we have already mentioned, it is well known that stan-
dard DFT significantly underestimates the band gap of semi-
conductors. A correction to the conduction band is thus nec-
essary for the proper determination of excited states
characteristics such as optical properties. There are several
facts demonstrating that this, although simple, is a reason-
able correction. The good agreement with experiment of the
absorption coefficient of the IB material V-substituted In2S3,
when a rigid shift is applied to the conduction eigenvalues5

and previous exact exchange calculations for other IB
materials,32 show that the correction is appropriate. In addi-
tion, this shift between the intermediate and conduction
bands has also been found by other authors to be the most
reasonable in these cases.2

First of all, the absorption coefficient and reflectance of
the host semiconductors were computed to be used as a ref-
erence for the substituted materials, and they are displayed in
Fig. 7. The similar character of the bands for both semicon-
ductors gives rise to similar optical properties.

These optical properties were compared with the few
available experimental results in the literature.6–8,13,33 There
is a lack of a complete description of the optical properties of
these compounds, as most of optical studies focus on the
absorption edge and not on overall spectra in the visible
range.

In the case of CdIn2S4, when a larger energy range has
been studied in the literature,33 results are highly dependent
on the sample because of the very different qualities of the
reflecting surface of the samples. This is one of the reasons
why our reflectance spectrum is higher in intensity than those

of the experiments. In spite of this fact, the main features of
our calculations �peaks around 5.5 and 7.5 eV in Fig. 7�b��
agree in energy with those peaks found experimentally in
Ref. 33.

For the Mg compound, one of the very few available ex-
perimental optical results is the refractive index.22 The
corrected-band-gap value agrees better with the experiment,
within the typical precision of DFT, as can be seen in Table
III.

2. Intermediate-band materials

Let us first focus on the absorption coefficients obtained
for the derivatives of MgIn2S4. Figures 8 and 9 show the
absorption coefficients of Ti and V-substituted MgIn2S4,
compared to that of the pure semiconductor. The solar spec-
trum is displayed as a background to show the enhancement
in absorption due to the IB in the main part of the solar
spectrum.

As the optical absorption properties are calculated as a
sum over independent transitions, we can obtain the indi-
vidual contribution of a given set of bands. To reveal the
specific effect of the transition-metal band on the optical

TABLE III. Calculated and experimental refractive index n of
the two spinel host semiconductors.

n
�GGA�

n
�gap-corrected GGA�

n
�experimental�

MgIn2S4 2.906 2.624 2.41a

CdIn2S4 2.893 2.625

aExperimental result of Wakaki et al. �Ref. 22�.
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spectra, we have indicated on the figures the transitions that
mainly contribute to each peak. For all intermediate-band
materials, the first peak in the absorption is due to transitions
between different states of the IB. These transitions contrib-
ute indirectly to the overall dynamic process of absorption,34

but they are not used in the generation of photocurrent in the
cell. This is because one requirement of the intermediate
band is to be isolated from the contacts of the cell. Thus, the
creation of electron-hole pairs in the IB will not directly
increase the photocurrent of the device.

Fot Ti as the substituent, the two transitions involving the
IB contribute mainly to the peak around 2 eV �see Fig. 8�.
This is the main effect; however, there is a small contribution
from these transitions across the whole solar spectrum. The
principal difference with the case of vanadium as substituent
�see Fig. 9� is that, in this latter case, the two additional
transitions, from valence band �VB� to IB and from IB to
conduction band �CB�, contribute at different energies. This
situation is better, in principle, as the aim of the intermediate
band is to cover with these additional peaks the maximum
range of energies of solar emission. In Fig. 9, the first peak
around 1.2 eV is due to transitions between the VB and IB,
while the second peak around 2.2 eV is principally due to
transitions between the IB and CB �apart from the contribu-
tion between valence and conduction bands, which was al-
ready present in the pure semiconductor�. The position of the
intermediate band inside the band gap becomes an important
factor to be taken into account, as it will determine the onsets
of contributions toward the total absorption coefficient.

In analogy with the interpretation for the MgIn2S4 deriva-
tives, Figs. 10 and 11 show analysis of the absorption coef-
ficients of Ti and V-substituted CdIn2S4. Again, due to the
similar electronic properties between the compounds with
Mg and those with Cd, the optical properties present a simi-
lar behavior. In the case of Ti in Fig. 10, the main peak at 2
eV is formed by transitions between the VB and IB, even
though the onset at 1.4 eV is determined by transitions be-
tween the IB and CB. Features of the last two peaks around
3 and 3.5 eV are determined principally by transitions from
the VB to CB but with small contributions from the other
two possible transitions �VB to IB and, to a lesser extent, IB

to CB�. V-substituted CdIn2S4 is analyzed in Fig. 11, where
the main contribution of the intermediate band is the peak
around 1.2 eV. This is not in the region of higher solar emis-
sion, compared to the Ti peak, but at least there is some
absorption below 1 eV that was missing in the Ti alloy.
Therefore, for Ti, we have an intermediate band that does not
allow absorption below 1 eV but favors the absorption of the
main range of the solar spectrum. In contrast, the IB of the V
alloy allows the absorption of photons of all energies, but in
the main part of the spectrum the absorption is weak.

To assess which of these two situations is better for
absorption, we analyzed the factor given by the integral of
the product of ���� and the solar spectrum I���:
F=�0

������ I���d�. This factor can be interpreted as an
efficiency of the absorption of the sun’s light, which is an
additional parameter that is taken into account to determine
the most suitable intermediate-band absorber.

The values of this parameter are shown in Table IV. The
fact that this factor is bigger for the two compounds with Ti
can be attributed to the wider intermediate bands, compared
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to those of the V compounds �see Figs. 3 and 4� and to the
better position of the IB inside the gap. It should also be
noticed that the Mg-based compounds �including the semi-
conductor� have bigger factors than the Cd-based com-
pounds. This is also due to the wider intermediate band, but
mainly because of the better position of the absorption edge
of the host semiconductor. From these numbers we can con-
clude that the best absorber would be Mg2TiIn3S8. Neverthe-
less, other factors should be taken into account to make the
final decision: for example that the two transitions involving
the IB occur at approximately the same rate, or the recombi-
nation processes and electron-hole mobilities.

3. Transmittance

The transmittance of the different compounds can be de-
rived from their absorption coefficient and reflectance. It has
been studied here as a function of the thickness of the sample
w to reveal and highlight the importance of this parameter.
The thicknesses have been chosen in the range of typical
widths of thin-film absorbers in solar cells.

Figures 12 and 13 display the transmittance of the
transition-metal alloys derived from MgIn2S4 and CdIn2S4,
respectively. We can see that thicknesses below approxi-
mately 2 �m have a large influence on the absorption and
that part of the effect of the IB is lost.

In view of these results, the optimization of w should be
taken into account by finding a compromise between the

absorption and the negative effects of a sample that is too
thick. On the one hand, the thicker the sample, the higher the
absorptivity. On the other hand, a thinner absorber will pre-
vent some recombination effects and reduce the cost of final
devices. It is thus important to combine our transmittance
results with experimental studies of the recombination, to
find the optimum width for absorbers in this kind of solar
cells. However, as no experimental results are yet available
for these intermediate-band alloys, this study is a first step in
the estimation of this ideal width.

IV. SUMMARY AND CONCLUSIONS

We have analyzed and compared two thiospinel-type
semiconductors: MgIn2S4, with an inverse spinel structure,
and CdIn2S4, with a direct structure. The electronic proper-
ties of these semiconductors were obtained, and, to better
understand the origin of their band gap, an analysis of the
band character was carried out. The optical properties of
these compounds have been discussed and we find good
agreement with the few experimental results, measured in the
optical frequency range of interest, found in the literature.

Once the parent semiconductors were well understood, we
proceeded to the substitution of In atoms by transition metals
such as V and Ti. These substituents were chosen among
other transition metals because their t2g states form an iso-
lated spin-polarized partially filled band inside the band gap
of the host semiconductor. The effect of the structural degree
of inversion on the intermediate-band formation has been
assessed, by studying a direct and an inverse-structure com-
pounds and comparing them.

Full relaxation of the atomic structures shows that, in the
case of the inverse structures, some symmetries are lost, and
thus the cell has a small tetragonal distortion. This affects the
octahedral environment of the transition metals as well,
which is contracted in one of the directions, making one of
the t2g states slightly separated from the others. This gives
rise to a thicker intermediate band. For the direct spinel
structures, after the substitution with transition metals, the

TABLE IV. Area of the product of ���� and the solar spectrum
I��� �in arb. units�.

CdIn2S4 Cd2TiIn3S8 Cd2VIn3S8

783 2883 2359

MgIn2S4 Mg2TiIn3S8 Mg2VIn3S8

1155 3855 2879
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FIG. 12. �Color online� Transmittance of the intermediate-band
derivatives of MgIn2S4 as a function of the width of the sample w.
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FIG. 13. �Color online� The same as Fig. 12, but for the deriva-
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symmetry is also lowered from perfectly cubic to tetragonal
due to the nonisotropic environment of the transition metals.
However, values of the internal anion distortion parameter
are retained with respect to that of the host semiconductor.
For all the substituted alloys, the lattice parameter is reduced
by about 0.1 Å with respect to that of the pure semiconduc-
tor, due to the fact that Ti and V atoms are smaller than In.

Due to the suitability of the electronic structure of these
materials for photovoltaic applications, their optical proper-
ties were discussed. Absorption coefficients show additional
peaks due to the transition-metal band, appearing at energies
in the range of higher solar emission, which was a region of
forbidden absorption for the pure semiconductors. From the
absorption coefficient and the reflectance, the transmittance
T of the compounds can be determined as a function of the
width of the absorber. We have thus obtained T for several
widths on the order of magnitude of typical thin-film absorb-
ers in solar cells. By means of these transmittances, we have
gone a step further in trying to determine the optimum width
of these materials, which should be combined with experi-
mental recombination studies as a final step.

In summary, we have considered interband and direct
transitions for the calculation of optical properties, to predict
the best transition-metal substituent in two thiospinel semi-
conductors in the quest for an efficient photovoltaic material.
All the compounds shown here fulfill the desired require-
ments for an efficient intermediate-band absorber, both from
electronic and optical analyses. Experimental preparations of
these materials have been initiated, and we believe that this
work will help in the interpretation and understanding of
future experiments.
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