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Wave propagation control by spatial modulation of velocity has a long history in optics and acoustics. We
address velocity-modulation control of electron wave propagation in graphene and other two-dimensional
Dirac-electron systems, pointing out a key distinction of the Dirac-wave case. We also propose a strategy for
pattern transfer from a remote metallic layer that is based on many-body velocity renormalization.
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I. INTRODUCTION

Control of electromagnetic and mechanical wave propa-
gation by spatial modulation of wave velocity1,2 has been
studied for many decades in optics and acoustics, originally
in relatively simple multilayer structures which have a
wealth of practical applications and more recently in sophis-
ticated two- and three-dimensional photonic and phononic
crystal structures which can have gaps between transmission
bands.

Recent advances3 in the isolation and control of single
and few-layer graphene electron systems motivate a close
examination of velocity-modulation control in this material.
Graphene is an allotrope of carbon atoms tightly packed in a
two-dimensional �2D� honeycomb lattice. At energies near
the Fermi energy of a neutral system, electron waves in
graphene are described by a 2D massless Dirac equation and,
like electromagnetic and mechanical waves, travel with a
velocity that is independent of wavelength. Because of this
property, the analogies of electron transport with both optics4

and acoustics are stronger than in the conventional nonrela-
tivistic electron-wave case.5 In this paper we first consider
the propagation of massless Dirac fermion �MDF� waves
through a medium with a position-dependent velocity, high-
lighting a key distinction between a Dirac wave and electro-
magnetic or acoustic waves. We then discuss a noninvasive
strategy for achieving velocity modulation in graphene with-
out any direct physical contact to the sample, by transferring
a spatial pattern from remote metal layers via many-body
velocity renormalization.

II. SCATTERING OF MDFS AGAINST
A VELOCITY BARRIER

The influence of velocity variation on propagation is best
illustrated by the simplest example, transmission through a
velocity barrier,6 as illustrated in the inset in Fig. 1. We first
solve this scattering problem, highlighting a key distinction
between a Dirac wave and electromagnetic or acoustic
waves. We consider MDFs in a medium in which the Fermi
velocity v changes as a function of the 2D position r :v
=v�r�. The massless Dirac equation in this case reads7

Ĥ��r� = − i��v�r�� · �r��v�r���r�� = E��r� , �1�

where ��r�= ��A�r� ,�B�r��T is a two-component spinor,
�A�r� and �B�r� are the honeycomb sublattice components
of the electron wave, and �= ��x ,�y� is a 2D Pauli matrix
vector. In using the Dirac equation we are assuming that
velocity variations are slow on a lattice constant scale. In this
limit spin and valley degrees of freedom play a passive role.
Note that the Hamiltonian in Eq. �1� does not differ from its

uniform system counterpart ĤMDF=−i�v� ·�r merely by the
replacement v→v�r�: as pointed out by Peres in Ref. 7 this
prescription would lead to a non-Hermitian operator. It is
nevertheless convenient to introduce the auxiliary spinor
��r�=�v�r���r� which satisfies

− i�v�r�� · �r��r� = E��r� . �2�

For the barrier problem illustrated in Fig. 1 v�r�=v�x�
changes only along the x̂ direction and momentum along the
ŷ direction is a good quantum number.

We solve Eq. �2� for a simple velocity barrier

v�x� = �v1, if x � 0

v2, if 0 � x � D

v1, if x � D
� . �3�

This steplike model is justified when the Fermi wavelength �
is much larger than the characteristic width over which v�x�
changes, as discussed at length for the potential-barrier case
in Ref. 8. For a given ŷ-direction wave vector ky we are left
with two coupled one-dimensional first-order differential
equations,

− i�v�x�� d

dx
	 ky	
A�B��x� = E
B�A��x� . �4�

where ��r�=
�x�eikyy and the spinor 
�x�= �
A�x� ,
B�x��T.
The first-order equations for the spinor components can �be-
cause v�x� is piecewise constant� be combined into a second
order equation satisfied by both


 d2

dx2 + � E

�v�x��2

− ky
2
i�x� = 0. �5�

The solutions of Eq. �5� can be written as
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A�x� = ��eikxx + re−ikxx� , if x � 0

�aeiqxx + be−iqxx� , if 0 � x � D

teikxx, if x � D
� , �6�

where the constants a, b, r, and t are to be determined,

�kx =�� E

�v1
	2

− ky
2 = k cos��1�

qx =�� E

�v2
	2

− ky
2 = k� 1

�2 − sin2��1�� , �7�

k=E / ��v1�, �=v2 /v1 is the velocity ratio, and �1 is the angle
of incidence, i.e., tan��1�=ky /kx. The corresponding expres-
sion for 
B�x� can be obtained from Eq. �6� using Eq. �4�. In
Eq. �7� we can identify �2=tan−1�ky /qx� as the angle of re-
fraction and thereby obtain a quantum version of the famous
Snell-Descartes law of geometrical optics,

sin��1�
sin��2�

=
v1

v2
=

1

�
. �8�

For ��1 and �1��c=sin−1�1 /��, the classical total internal
reflection angle, qx is imaginary and we expect negligible
transmission through thick barriers. In this case the classical
correspondence fails and the refraction angle is not well de-
fined.

Explicit evaluation of the four coefficients in Eq. �6� re-
quires matching conditions at the two interfaces which we
obtain by the following argument. Dividing both sides of Eq.
�2� by v�x� and integrating across either interface implies

that the auxiliary spinor � is continuous, and therefore that
the physical � satisfies the following matching conditions:

���0+,y� =
1
��

��0−,y�

��D+,y� = ����D−,y�
� . �9�

These discontinuities in � guarantee that the divergence of
the local current J�r�=v�r��†�r����r� vanishes. Using
these matching conditions we are able to obtain an explicit
expression for the transmission9,10 probability T,���1�= �t�2,

T,���1� =
cos2��1��1 − �2 sin2��1��

C,���1�
, �10�

where =kD and C,���1�=cos2��1��1−�2 sin2��1��
+ �1−��2 sin2�qx /k�sin2��1�.

In Fig. 1 we plot the transmission probability T,� as a
function of �1 for =4� at several different values of the
velocity ratio �. Note that a velocity barrier is always per-
fectly transparent, T,��1, for normal incidence ��1=0� as
in the standard Klein problem.8 This property of Dirac-wave
propagation through a velocity barrier establishes a qualita-
tive difference between the present case and the familiar
electromagnetic and acoustic cases, and opens up new
ground for the invention of spatial patterns with desirable
transmission properties. It is also an important addition to the
obvious difference in velocity-wavelength relationship in
distinguishing Dirac-wave propagation from Schrödinger-
wave propagation. In Fig. 2 we plot the integrated transmis-
sion,

v1 v2 v1

0 x̂

ŷ

D

FIG. 1. �Color online� Inset: cartoon of a velocity barrier. The
velocity of the massless carriers changes along the x̂ direction ac-
cording to the simple functional form defined by Eq. �3�. Main
panel: Transmission probability T,���1� as a function of angle of
incidence �1 for velocity ratio �=v2 /v1 equal to 0.2, 0.5, 1.2, and
1.5. The angle of incidence is defined so that �1=0 corresponds to
propagation perpendicular to the interface. These data have been
obtained for kD==4� where k is the incoming wavevector and D
is the barrier thickness. This value is typical8 and corresponds for
example to k=2� /� with �=50 nm and D=100 nm. Note that for
��1, the transmission probability drops rapidly toward zero when
the critical incidence angles, indicated by vertical bars, are ex-
ceeded. ��c�0.99 rad for �=1.2 and �0.73 rad for �=1.5.�

FIG. 2. �Color online� The integrated transmission T��� as a
function of the velocity ratio � for =� �solid �black� line� and 
=4� �dashed �red� line�. The dotted �blue� line shows the classical
limit T���→1+�. The dash-dotted �green� line shows the integrated
transmission for a linearly polarized �along the ẑ-direction� electro-
magnetic wave scattering against a nonmagnetic barrier �in this case
�=��1 /�2, where �i are the dielectric constants of the media com-
posing the barrier, and =�D /c�.
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T��� =
2

�
�

0

�/2

d�1T,���1� , �11�

as a function of the velocity ratio �. A sharp change in be-
havior is visible at �=1 which foreshadows the total internal
reflection properties of classical waves. Indeed, in the 
→� limit it is easy to prove that for �=1+ T���→2�c /�
→1−2�2��−1 /�, which is a nonanalytic function of �. For
this reason even a slight mismatch in velocities can produce
a large electron transport signal.

III. MOLDING ELECTRON FLOW

Doped or gated graphene sheets are normal Fermi
liquids11,12 but have a number of unusual quantitative
features13 in their correlation physics which might provide an
attractive route to velocity modulation, as we now explain.
We first consider a grounded metal plane placed close to a
graphene sheet. The presence of the metal does not directly
shift the chemical potential, like a biased gate would, but
because electron-electron interactions between MDFs are ex-
pected to be substantially screened and thus weaker, has a
rather large impact14 on the renormalized Fermi velocity of
the quasiparticles close to the Fermi energy that are impor-
tant in transport. We show below that quasiparticles under
the screening plane move at a speed v� that is smaller than in
an isolated graphene sheet.15,16 Using a single ground metal
plane located close to a graphene sheet will thus lead to a
very simple realization of the velocity barrier illustrated in
the inset in Fig. 1 with ��1. To realize a velocity barrier
with ��1 one instead needs to use two metal gates located
on top of the regions with x�0 and x�D. The area on top of
the strip 0�x�D must instead be left empty. In order for
our abrupt-interface velocity-barrier calculation to be rel-
evant, the distance to the metal gate d would have to be
smaller than the Fermi wavelength �, but transmission prop-
erties will be similar even if this condition is not satisfied.
Any shape of velocity modulation can be achieved by trans-
ferring a suitable spatial pattern from the remote lithographi-
cally designed metal layer.

The effect of a metal gate on the quasiparticle velocity v�

can be estimated quantitatively by evaluating the quasiparti-
cle self-energy � of an interacting MDF system near the
quasiparticle pole. We have generalized the GW theory17 cal-
culations described in Ref. 15, replacing the bare Coulomb
interaction with the corresponding expression18 appropriate
for a 2D electron system close to a perfect metallic screening
plane: Vd�q�=2�e2�1−exp�−2qd�� /q.

In Fig. 3�a� we report numerical results for v� /v as a
function of electron density n for several values of d, and in
Fig. 3�b� as a function of d for fixed density. We see that a
substantial velocity contrast can be induced by metallic gates
that are tens of nanometers from the graphene plane. The
effect of the gate can extend much further if it is separated
from the graphene by a dielectric with �r�1.

In addition to the velocity modulation the remote metallic
layer will produce a shift in chemical potential. The reason
lies in the fact that the Fermi energy quasiparticles whose
transmission properties we study here satisfy, strictly speak-

ing, a Dyson equation,15 not a single-particle massless Dirac
equation. The chemical potential shift acts on the quasiparti-
cles exactly like an external potential acts on a free particle.
These shifts are small however, and can be compensated by
the use of two gates: a large area overall back-gate far from
the graphene is used to set the chemical potential, as in con-
ventional graphene devices. A smaller velocity-modulation
gate is located much closer to the graphene, appropriately
shaped and biased so that the chemical potential is uniform
throughout the graphene sheet.

IV. DISCUSSION

Most of the considerations outlined in this paper apply
equally well to any system in which matter waves satisfy a
massless Dirac equation, for example to the surface states of
topological insulators.19 Recently it has been proposed20–22

d

air

air

air

metal
graphene

ẑ

(b)

(a)

FIG. 3. �Color online� Panel a� Renormalized quasiparticle ve-
locity v� �in units of the bare velocity v� in graphene as a function
of the electron density n �in units of 1012 cm−2� in the presence of
a ground perfect-metal plane located at a distance d from the sheet
�see inset�. The �red� filled circles refer to an isolated sheet �in the
absence of the perfect-metal plane�. The other data refer to finite
and increasingly larger �from top to bottom� values of d. Note how
v� /v is largely affected by the presence of the ground metal plane.
Panel b� shows v� /v as a function of d �in nm� for different values
of n: v� /v is largely suppressed even when the gate is quite far
away from the graphene sheet.
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that MDFs can also be realized in any standard 2D electron
gas �2DEG�, when appropriately nanopatterned. Similar pro-
posals to realize the Dirac spectrum have been discussed in
the contexts of ultracold atoms in optical lattices23 and pho-
tonic crystals.24 Velocity modulation can be realized in these
systems as well: a miniband structure is imprinted on a
2DEG subjected to a long-wavelength periodic external po-
tential �i.e., a lateral superlattice� with hexagonal symmetry.
If suitable conditions are satisfied,21 isolated Dirac points
described by simple MDF Hamiltonians can appear in this
miniband structure. As shown in Ref. 21 the Fermi velocity
in these systems is quite sensitive to the strength of the pe-
riodic potential. By patterning the surface of a 2DEG in such
a way to create three regions along a given direction in
which the strength of the external periodic potential changes

one can achieve a velocity barrier similar to the one sketched
in the inset in Fig. 1.

In summary, we have calculated the transmission prob-
ability of massless Dirac fermions through a model “velocity
barrier” and showed how electrons flowing through it obey
the Snell-Descartes law of optics. We have also discussed a
practical strategy for achieving substantial velocity modula-
tion without damaging the graphene by exploiting the influ-
ence of a remote metallic layer on many-body renormaliza-
tion of the quasiparticle velocity.

A.R. and M.P. acknowledge useful conversations with Di-
ego Rainis. M.P. and A.R.H. acknowledge support from the
Gordon Godfrey bequest and the ARC APF scheme respec-
tively. A.H.M. acknowledges support from SWAN and the
NSF-NRI program.

*Present address: Formation Interuniversitaire de Physique, Dépar-
tement de Physique de l’École Normale Supérieure, 24 rue
Lhomond, 75231 Paris Cedex 05, France.

†m.polini@sns.it
1 J. D. Joannopoulos et al., Photonic Crystal: Molding the Flow of

Light �Princeton University Press, Princeton NJ, 1995� and work
cited therein.

2 See for example M. M. Sigalas and E. N. Economou, Solid State
Commun. 86, 141 �1993�.

3 A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 �2009�.
4 See for example V. V. Cheianov et al., Science 315, 1252

�2007�; C. W. J. Beenakker et al., Phys. Rev. Lett. 102, 146804
�2009�.

5 For a review see B. J. LeRoy, J. Phys.: Condens. Matter 15,
R1835 �2003�.

6 While this work was being written we learned that scattering of
MDFs against a velocity barrier has also been studied by A.
Concha and Z. Tešanovic, arXiv:0912.0493 �unpublished�.

7 N. M. R. Peres, J. Phys: Condens. Matter 21, 095501 �2009�; a
position-dependent velocity has also been considered by F. de
Juan et al., Phys. Rev. B 76, 165409 �2007� in the context of
curved graphene.

8 M. I. Katsnelson et al., Nat. Phys. 2, 620 �2006�; for recent
experimental studies of Klein tunneling see A. F. Young and P.
Kim, ibid. 5, 222 �2009�; N. Stander et al., Phys. Rev. Lett.
102, 026807 �2009�.

9 The reflection coefficient r in Eq. �6� is given by r,���1�= ��
−1�exp�i�1�sin�qx /k�sin��1� /D,���1�, with D,���1�
= ��qx /k�cos�qx /k�cos��1�− i sin�qx /k��1−� sin2��1��.

10 The expression for the transmission probability in the presence
of a potential barrier �Ref. 8� of height V0 can be obtained from
Eq. �10� by changing �i� �→E / �E−V0� and �ii� �1−��2→ �1
−s��2 in the function C,���1�, with s=sgn�E�sgn�E−V0�. This
implies that for any velocity v2 we can find a value of the barrier
height, V0=E− �E� /�, which gives the same transmission prob-
ability. On the other hand, not every problem of scattering
through a potential barrier can be mapped into a velocity-barrier
problem: the mapping exists only if s=1.

11 M. Polini et al., Phys. Rev. B 77, 081411�R� �2008�.
12 E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 081412�R�

�2008�.
13 Y. Barlas et al., Phys. Rev. Lett. 98, 236601 �2007�.
14 The impact of screening due to metal gates or high-density 2D

electron gases on Fermi-liquid parameters has been recently
studied experimentally in the context of the metal-insulator tran-
sition: L. H. Ho et al., Phys. Rev. B 77, 201402�R� �2008�.

15 M. Polini et al., Solid State Commun. 143, 58 �2007�.
16 G. Li et al., Phys. Rev. Lett. 102, 176804 �2009�.
17 See, e.g., G. F. Giuliani and G. Vignale, Quantum Theory of the

Electron Liquid �Cambridge University Press, Cambridge,
2005�, Chap. 8.

18 Note that Vd�q� is simply the Fourier transform of Vd�� ,z�
=−e��� ,z�=e2��2+z2�−1/2−e2��2+ �z−2d�2�−1/2 evaluated at z
=0 �where the graphene sheet is located�. The electrostatic po-
tential ��� ,z� can be simply obtained from the method of image
charges and satisfies the boundary condition ��� ,d�=0. This
simple form of Vd�q� is true if no dielectric media other than air
are located underneath or above the graphene flake �see inset in
Fig. 3�a��. For the sake of simplicity the data reported in Fig. 3
have been obtained for such suspended sheets �K. I. Bolotin et
al., Solid State Commun. 146, 351 �2008�; X. Du et al., Nature
Nanotech. 3, 491 �2008��. In this case, apart from electron den-
sity n and metal-graphene distance d, the only parameter that
controls v� /v is the fine structure constant3 �ee=e2 / ��v��2.2.

19 J. Moore, Nat. Phys. 5, 378 �2009�; Y. Xia et al., ibid. 5, 398
�2009�; H. Zhang et al., ibid. 5, 438 �2009�.

20 C.-H. Park and S. G. Louie, Nano Lett. 9, 1793 �2009�.
21 M. Gibertini et al., Phys. Rev. B 79, 241406�R� �2009�.
22 See also C. Flindt et al., Nano Lett. 5, 2515 �2005� for a discus-

sion of antidot lateral superlattices for quantum computation.
23 S. L. Zhu et al., Phys. Rev. Lett. 98, 260402 �2007�; B. Wunsch

et al., New J. Phys. 10, 103027 �2008�.
24 F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904

�2008�; R. A. Sepkhanov et al., Phys. Rev. B 78, 045122 �2008�.

BRIEF REPORTS PHYSICAL REVIEW B 81, 073407 �2010�

073407-4


