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A variational treatment of the Gutzwiller—renormalized t-J Hamiltonian combined with the mean-field
�MF� approximation is proposed, with a simultaneous inclusion of additional consistency conditions. Those
conditions guarantee that the averages calculated variationally coincide with those calculated from the self-
consistent equations. This is not ensured a priori because the effective Hamiltonian contains renormalization
factors which depend explicitly on the mean-field averages. A comparison with previous mean-field treatments
is made for both superconducting �d-RVB� and normal states and encompasses calculations of the supercon-
ducting gap and the renormalized hopping amplitudes, as well as the electronic structure. The C4v-symmetry
breaking in the normal phase—the Pomeranchuk instability—is also analyzed.
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t-J model1 is regarded to reflect some of the essential
physics of strongly correlated copper 3dx2−y2 states in high-
temperature superconductors.2 In this model, the correlated
hopping of electrons reduces strongly their band energy, so
the latter, for the doping x�0.1, becomes comparable to the
real-space pairing part induced by the kinetic exchange.3

However, the analytical solutions of t-J model are limited to
the special cases for the one-dimensional system.4 Under
these circumstances, we have to resort to either exact
diagonalization,5 which is limited to small cluster systems or
to the approximate methods. The latter include renormaliza-
tion group,6 variational approach based on the Gutzwiller—
projected wave functions �either treated within Monte Carlo
techniques or by Gutzwiller approximation�7 and various
versions of the slave—boson approach.2 Each of these meth-
ods seizes some of the principal features of these quasi-two-
dimensional correlated states, although no coherent picture
has emerged as yet.

In this Brief Report, we concentrate on the Gutzwiller-
renormalized mean-field �MF� theory for the t-J Hamiltonian
and formulate a variational procedure, with the additional
conditions ensuring the self-consistency of the whole ap-
proach. Implementing such procedure is essential �if not in-
dispensable� for obtaining reliable results of the MF type. It
is reassuring that some of the quantities such as the resonat-
ing valence bond �RVB� gap magnitude or the hopping cor-
relations �bond parameter� do not change appreciably with
respect to the earlier results,8 whereas the others, such as the
single-particle electronic structure, are altered remarkably.
Furthermore, we illustrate the basic nontriviality of our ap-
proach on the example of the so-called Pomeranchuk insta-
bility discussed recently.9

We start with the t-J model in its simplest form,1,2

ĤtJ = P̂��
i,j,�

tijci�
† cj� + �

�ij�
JijSi · S j − ��

i,�
n̂i��P̂ , �1�

where P̂ labels the Gutzwiller projector which guarantees
that no doubly occupied sites are present. The projected op-
erators and the model parameters have the standard
meaning.1

To proceed further, effective mean-field renormalized
Hamiltonian is introduced7,8,10–13,15,16 which is taken in the
following form

Ĥ = �
�ij��

�tijgij
t ci�

† cj� + H.c.� − ��
i�

ci�
† ci�

− �
�ij��

3

4
Jijgij

J �� jici�
† cj� + H.c. − ��ij�2�

− �
�ij��

3

4
Jijgij

J ��ijcj�
† ci−�

† + H.c. − ��ij�2� . �2�

In the above expression, ci�
† �cj�� are ordinary fermion

creation �annihilation� operators, �ij = �ci�
† cj��, and

�ij = �ci−�cj��= �cj−�ci�� are respectively, the hopping ampli-
tude �bond parameter� and the RVB gap parameter, both
taken for nearest-neighbors �ij�. The renormalization factors
gij

t and gij
J result from the Gutzwiller ansatz. The exchange

part �Si ·S j� has been decoupled in the Hartree-Fock-type ap-
proximation and incorporates as nonzero all above bilinear
averages obtained according to the prescription

Ô�Ô	 → ÂsAt + AsÂt − AsAt, �3�

where t= t�� ,	�, etc. and for any operator Â

A = �Â� 	 Tr
Â
̂� , �4�

with 
̂ being the density matrix for the mean-field Hamil-
tonian to be determined. By taking the step from Eq. �1� to
Eq. �2� one introduces essentially a non-Hartree-Fock-type
of approximation, which differs from Eq. �3� due to the pres-
ence of gij

t and gij
J factors. Therefore, we may not be able use,

e.g., the density operator of the form 
̂=Z−1e−��Ĥ� and

Z=Tr
e−��Ĥ��, as a proper grandcanonical trial state in the
frame of variational principle based on the Bogoliubov
inequality,18 since then the self-consistency of the approach

expressed by Eq. �4�� may be violated. This is the reason,
why in most of the previous mean-field treatments, e.g.,8,11–13

the standard procedure encompasses diagonalizing of the bi-
linear Hamiltonian �2� and subsequently solving of the self-
consistent �sc� Bogoliubov–de Gennes �BdG� equations for
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�ij, �ij, and �. In effect, this procedure does not refer to any
variational scheme.

The solution based solely on the sc BdG equations, al-
though acceptable, may not be fully satisfactory. This is be-
cause in the present situation we build up the entire descrip-
tion on the basis of MF Hamiltonian and hence we should
proceed in a direct analogy to the exact �non-MF� case.
Namely, our approach is based on the maximum entropy
principle.19 Such starting point provides us with a general
variational principle, which may differ from that of Bogoliu-
bov and Feynman.18 In other words, the value of the appro-
priate functional is minimized, with the self-consistency of
the whole approach being preserved at the same time.20

To tackle the situation, we define an effective Hamiltonian

Ĥ� containing additional constraints, that is of the form

Ĥ� = Ĥ − �
i

�i
�n���

�

ci�
† ci� − ni�

− �
�ij��


�ij
��ci�

† cj� − �ij� + H.c.�

− �
�ij��


�ij
��ci−�cj� − �ij� + H.c.� , �5�

where the Lagrange multipliers �i
�n�, �ij

� , and �ij
� play the role

of molecular fields. Moreover, the parameters �ij, �ij, and
ni=���ci�

† ci�� coincide with those which appear in the renor-
malization factors gij

t and gij
J , and which are taken in the

form8,13

gij
t =� 4xixj�1 − xi��1 − xj�

�1 − xi
2��1 − xj

2� + 8�1 − xixj���ij�2 + 16��ij�4
,

gij
J =

4�1 − xi��1 − xj�
�1 − xi

2��1 − xj
2� + 8xixj�ij

−�2� + 16�ij
+�4�

, �6�

with xi	1−ni and �ij

�n�= ��ij�n
 ��ij�n.

When solving the model on a square lattice and in the
spatially homogeneous case, there appear thus five mean-
fields, A� 	�n ,�x ,�y ,�x ,�y�, with ��=�ij, ��=�2�ij, ��ij� 
��,
and �=x ,y, as well as the same number of the corresponding
Lagrange multipliers, �� 	�� ,�x

� ,�y
� ,�x

� ,�y
��, where

��
�=�ij

� ,��
�=�2�ij

�. Both A� and �� are assumed to be real.
Apart from that, for given n we have to determine the chemi-

cal potential �. The first step is the diagonalization of Ĥ� via
Bogoliubov-Valatin transformation, which yields

Ĥ� = �
k

Ek�	̂k0
† 	̂k0 + 	̂k1

† 	̂k1� + �
k

��k − Ek� + C , �7�

with Ek=��k
2 +Dk

2, Dk=�2��D� cos�k��, and
�k=−2��T� cos�k��−�−�. Also,

T� = − t1�g1�
t +

3

4
J�g�

J�� + ��
�, D� =

3

4
J�g�

J�� + ��
�,

C

�
= �n + �

�
�3

4
J�g�

J�2��
2 + ��

2� + 4����
� + 2����

�� . �8�

For the sake of simplicity, we have included only the hop-
ping between the nearest neighbors, although the generaliza-
tion to the case with more distant hopping does not pose any
principal difficulty. We define next the generalized Landau

functional, F	−�−1 ln�Tr
e−��Ĥ����, which here takes the
form

F�A� ,�� � = C + �
k
���k − Ek� −

2

�
ln�1 + e−�Ek�� , �9�

with inverse temperature �=1 /kBT. The equilibrium values
of A� =A� 0 and �� =��0 are the solution of the set of equations

�AF = 0, ��F = 0, �10�

for which Eq. �10� reaches its minimum. This step is
equivalent to the maximization of the entropy with
the constraints.20 Also, the grand potential � and
the free energy F are defined respectively as ��T ,V ,��
=F
T ,V ,� ;A� 0�T ,V ,�� ,��0�T ,V ,��� and F=�+�N. Note,
that by taking the derivatives with respect to �� only, and
subsequently putting �� =0� , the results reduce to the standard
BdG self-consistent equations.

Even though the present method can be regarded as natu-
ral within the context of statistical mechanics, to the best of
our knowledge, it has not been utilized, in the form presented
here, in the context of condensed matter physics problems.
Also, in this respect, our approach unifies individual features
of the self-consistent variational MF treatments developed
earlier,14–17 which in the T=0 limit can be obtained as par-
ticular cases. Parenthetically, the present method, together
with the Gutzwiller approximation, provides also a natural
justification of some aspects of the slave-boson saddle-point
approach, as some of the constraints coincide in both meth-
ods.

We solve numerically first the system of Eq. �10� on the
lattice of �=128�128 sites, using the periodic boundary
conditions and taking the parameters Jx=Jy =J=1 and
tx= ty =−3J, and for low-temperature kBT /J=0.002 for the
filling n=7 /8=0.875. Both the d-wave superconducting
resonating valence bond �d-RVB� and the isotropic normal
�N� solutions are analyzed. The self-consistent variational
results �denoted as var� obtained here and those obtained
from BdG equations are compared in Tables I and II. One
sees that our value of the low-temperature free energy �per

TABLE I. Comparison of the values of the thermodynamic po-

tentials �per site�. �̃�F� stands for �−�N ��+�N� for var and
�sc��sc+�scN� for sc methods, respectively.

Therm. pot. var RVB sc RVB var N sc N

� /� −5.75856 −6.25862

�̃ /� −1.07648 −1.03575 −1.11823 −1.08025

F /� −1.36614 −1.36471 −1.2955672 −1.2955671
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site�, �cf. Table I� in the d-RVB phase is slightly better than
the previous estimates,8,13 albeit not much �−1.3661 for var,
as compared to −1.3647 for sc�. It is slightly higher than that
of the variational Monte Carlo, which is EVMC /J=−1.3671,
cf. Ref. 13. Also the isotropic staggered-flux �SF� phase has
been found unstable against N state within both methods at
this filling. In Table II we display microscopic quantities
characterizing each solution in that case and compare them
with those obtained within standard sc treatment. The differ-
ences are more pronounced for the RVB state.

For the parameters listed in Tables I and II we have com-
puted the quasiparticle energies in both the d-RVB and the N
states. Those are shown in Figs. 1�a� and 1�b�. The solid
circles represent our results, whereas the previous ones8 are
drawn as triangles. The energy-dispersion reduction in our
case is connected with presence of the constraints and results
in a decrease in the bandwidth, which in turn, is regarded as
a sign of enhanced electron correlations.

After testing the feasibility of our approach for fixed dop-
ing x, we now discuss systematic changes appearing as the
function of x, as shown in Figs. 2 and 3.

We emphasize, the chemical potential � is the first deriva-
tive of F /� with respect to n �cf. Fig. 2�, unlike in some of
the previous mean-fields treatments8,11–13 �cf. however Refs.
10 and 14�. This is also the reason why we differentiate
between � and �̃	�+�, even in the case of the spatially
homogeneous solution. The doping dependence of other rel-

evant MF quantities is shown in Fig. 3. The results are again
close to those obtained from the BdG procedure, except for
T�, 
Fig. 3�b��, which enter the quasiparticle energies.

So far we have focused on MF solutions with the symme-
try between x and y directions on the square lattice.21 How-
ever, a spontaneous breakdown of this equivalence of the x-
and y-directed correlations is possible already in the normal
phase and is called the Pomeranchuk instability �PI�,9 that
manifests itself by lowering of the discrete C4v symmetry of
the Fermi surface.

In Fig. 4�a� the doping dependence of the bond-order pa-
rameters �x and �y are displayed for the x-y symmetric �N�
and the symmetry-broken �PI� solutions, both within our
���

var� and the standard ���
sc� methods. Within the sc scheme,

PI solution is found up to x�0.091. However, a comparison
of the respective free-energy differences, �Fsc	Fsc

N −Fsc
PI

and �Fvar	Fvar
N −Fvar

PI , 
cf. Fig. 4�a�� reveals that this solu-
tion becomes unstable against N state for x�0.021, thus the
phase transition is certainly discontinuous. On the other
hand, within our variational treatment the PI solution does
not exist for x�xc

var�0.044, where �Fvar�0, in qualitative
agreement with what is expected for the continuous phase

TABLE II. Values of chemical potentials and MF parameters. �̃
stands for �+� �var�, and for �sc sc.

Variable var RVB sc RVB var N sc N

� 5.01989 5.67206

� −5.35094 −5.87473

�̃ −0.33105 −0.37595 −0.20267 −0.24608

�x=�y 0.18807 0.19074 0.20097 0.20097

�x
�=�y

� −0.16985 −0.18369
�x

�2
=−

�y

�2
0.13199 0.12344 0.00000 0.00000

�x
�

�2
=−

�y
�

�2
−0.01111 0.00000
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FIG. 1. �Color online� Dispersion relations along the main sym-
metry lines in the Brillouin zone for a square lattice, of the size
�x=�y =128, and for the filling n=0.875. Left �a�: d-RVB solu-
tions, right �b�: N solutions. Triangles—earlier self-consistent re-
sults, circles—the present method.
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standard sc methods.
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FIG. 3. �Color online� Left: doping dependence of the bond-
order parameters �x=�y, the superconducting order parameters
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transition. From this analysis it is clear that the two methods
of approach �sc, var� yield qualitatively different predictions
for PI.

In summary, we have presented self-consistency con-
straints required within the variational mean-field approach
to the Gutzwiller-renormalized mean-field t-J model. Such
consistency conditions are indispensable from the basic
statistical-mechanical point of view. Undertaking such a step
results in consistent evaluations of the thermodynamic quan-
tities, which in the present method are determined from the
generalized Landau functional. A detailed comparison with
the standard mean-field solution based on Bogoliubov-de
Gennes self-consistent equations �i.e., that without con-
straints� is provided. Our method presents quantitative and,
in some cases, even qualitative corrections to the standard
mean-field results. Other mean-field states such as flux
phases or antiferromagnetism can be treated in the same
manner.
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FIG. 4. �Color online� Doping dependence of bond-order param-
eters �x and �y �left�, and the free-energy differences �F �right�
both for x-y symmetric �n� and the Pomeranchuk �x-y symmetry-
broken� states �PI� within both the present �var, filled circles� and
the standard �sc, triangles� methods, respectively. The vertical line
marks the phase transition within the sc method. For details, see
main text.
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