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We investigate bound-state solutions of the two-dimensional Schrödinger equation with a dipole potential
originating from the elastic effects of a single edge dislocation. The knowledge of these states could be useful
for understanding a wide variety of physical systems, including superfluid behavior along dislocations in solid
4He. We present a review of the results obtained by previous workers together with an improved variational
estimate of the ground-state energy. We then numerically solve the eigenvalue problem and calculate the
energy spectrum. In our dimensionless units, we find a ground-state energy of −0.139, which is lower than any
previous estimate. We also make successful contact with the behavior of the energy spectrum as derived from
semiclassical considerations.
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I. INTRODUCTION

There has been broad interest over the years in the physics
of solids containing dislocations. In addition to affecting the
mechanical properties of solids, the strain field associated
with dislocations binds charge carriers in metals, or solute
impurities in a generic solid.1 As such, the presence of dis-
locations has a significant effect on the transport, elastic, and
superconducting properties of the solid. In this context, it is
important to know the spectrum of localized states due to a
dislocation.

In this paper, we discuss the spectrum of bound states for
an edge dislocation. Within linear elasticity theory the defor-
mation potential due to an edge dislocation is proportional to
the stress tensor or the divergence of the elastic displacement
field. Considering a straight edge dislocation, oriented along
the z axis, within a continuum model, this potential is given
by

V�r,�� = p
cos �

r
, �1�

where p is the strength of the “dipole” potential, r is the
distance from the dislocation axis, and � is the azimuthal
angle, both defined in the x-y plane.1 The dipole moment p
depends on quantities such as the Fermi energy and the lat-
tice and elastic constants of the solid. In an electrostatics
context this potential can be realized as a dipole built by
bringing two infinite line charges of opposite sign close to-
gether. Here we address the quantum dipole problem by con-
sidering the solution of the corresponding two-dimensional
�2D� Schrödinger equation,

−
�2

2m
�2� + p

cos �

r
� = E� . �2�

For p�0 this potential is attractive for x�0 �thus, allowing
for bound states� and repulsive for x�0. It has parity in y;
i.e., symmetry on reflection about the x axis, which should be
reflected in the eigenfunctions as well. The solution of the
Schrödinger equation is complicated due to the noncentral
nature of the potential.2 The potential being nonseparable
further impairs the applicability of the WKB approximation.

We are particularly motivated by the supersolid problem,3

and a possible interpretation of it which considers superflu-
idity to exist not in the bulk of solid 4He but along a network
of dislocations.4 We would like to solve the full nonlinear
Ginzburg-Landau �GL� theory for such a system, for which
we would first need to know the solution of the linearized
equation. The lowest eigenvalue of the linear equation is
actually a measure of the local enhancement in Tc produced
by a dislocation. Further, the solution of the linear GL theory
can be used to affect a separation of the transverse degrees of
freedom in the full nonlinear time-dependent GL equation,
resulting in a one-dimensional “amplitude equation” of su-
perfluid density along the dislocation. The effective dimen-
sionless coupling constant of this one-dimensional theory is
g=�dxdy��0�x ,y��4, where �0�x ,y� the normalized ground-
state eigenfunction of the linear GL equation. Our numerical
solution of the linear equation allows us to calculate this
parameter which acts as an input to the weakly nonlinear
analysis.5

The problem of finding the ground-state energy of the
quantum dipole problem has a long history, starting from the
work of Landauer in 1954,6 who used a variational approach.
Subsequent authors used a variety of techniques for this es-
timate: semiclassical7 or purely variational8,9 methods, a
combination of variational and perturbative methods10 or an
expansion in terms of known basis functions,11,12 but to solve
this we have used a direct numerical method. Some prior
works9,10 have also studied the spectrum of the bound eigen-
states. The ground-state energies calculated in these works
are shown in Table I, together with the numerical value ob-
tained in this paper.

In the next section, we provide the details of our varia-
tional calculation for the ground-state energy, including our
choice of a suitable trial wave function. Next, we discuss the
results and technical details of the several numerical methods
we have used to calculate the eigenvalue spectrum, and their
relative merits and disadvantages. The methods involve di-
agonalization of the Hamiltonian, carried out both in real
space and in the basis of two-dimensional hydrogenic wave
functions �in contrast with previous calculations with differ-
ent choices of basis expansions, e.g., Refs. 11 and 12�. Here
we also compare the results obtained using different meth-
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ods, which are found to agree in the essential features. In the
final section, we provide a semiclassical argument to justify
our results together with some discussion of the interesting
properties of the classical problem. The semiclassical result
is found to extend to the lower-energy eigenstates as well.

II. VARIATIONAL CALCULATION

Our initial approach to determine the ground-state energy
has been variational because this can be carried out analyti-
cally and provides a rough estimate which can then guide our
more explicit numerical solution. Given a normalized wave
function ��r ,��, we minimized the energy functional,

F��,��� =� d2x� �2

2m
����2 + p

cos �

r
���2	 . �3�

This functional has its extrema at the solutions of the
Schrödinger equation, Eq. �2�. Note that the length and en-
ergy scales which emerge from Eq. �3� �or the Schrödinger
equation� for this problem are �2 /2mp and 2mp2 /�2. In di-
mensionless variables, the normalized trial wave function
used in our calculation is

��r,�� =
2AB

C
�

�1 − r/BC�


�3 − 4B + 2B2�
exp�−

r

C
	

−

1 − A2

C2

 8

3�
r cos � exp�−

r

C
	 , �4�

where A, B, and C are variational parameters. We choose the
trial wave function so as to account for the anisotropy of the
potential. Further, the asymptotic behavior of the potential is
captured by the exponentially decaying factors. The mini-
mum expectation value of the energy occurs when A
=0.803, B=−0.774, and C=2.14 with a ground-state energy
of −0.1199 which was found by Dorsey and Toner.13 This
value is 2.5% lower than the previous lowest variational es-
timate �−0.1196� obtained by Dubrovskii.10 In addition, by

using this normalized trial wave function as the �0�x ,y� we
find the parameter g=�dxdy��0�x ,y��4=0.017.

III. NUMERICAL METHODS

A detailed numerical solution of the two-dimensional
Schrödinger equation with the dipole potential, Eq. �2�, is
likely to provide more accurate ground-state eigenvalues in
addition to determining the rest of the bound-state eigenval-
ues and corresponding wave functions. We do this both by a
real-space diagonalization, where the Schrödinger equation
is discretized on a square grid, and by expanding in the basis
of the eigenfunctions of the two-dimensional Coulomb po-
tential problem. Two special features of this dipole potential
make it a numerically difficult problem: the singularity at the
origin and the long-range behavior of the potential. It is ex-
pected that the Coulomb wave functions would be better
suited to capturing this long-range behavior and convergence
would consequently be faster. Our results show that the Cou-
lomb basis method is more accurate for the higher bound
states �which are expected to extend more in space�, as the
real-space methods are limited by size issues. However, the
real-space method works better for the ground state.

A. Real-space diagonalization method

For numerical purposes the Schrödinger equation is con-
verted to a difference equation on a square grid of spacing h,
with the Laplacian approximated by its five-point finite-
difference form,14 resulting in a block tridiagonal matrix of
size N2	N2, where the grid has dimensions of N	N. Each
diagonal element corresponds to a grid point and has values
of 4 /h2+V�x ,y�, whereas the nonzero off-diagonal elements
all equal −1 /h2. The matrix is thus very large but sparse. We
use three different numerical methods to diagonalize this ma-
trix: the biconjugate gradient method,15 the Jacobi-Davidson
algorithm,16 and Arnoldi-Lanczos algorithm,17 with the latter
two being more suited to large sparse matrices whose ex-
treme eigenvalues are required. We use freely available open
source packages �JADAMILU �Ref. 18� and ARPACK �Ref. 19��
written in FORTRAN for both. All three approaches are pro-
jective Krylov subspace methods, which rely on repeated
matrix-vector multiplications while searching for approxima-
tions to the required eigenvector in a subspace of increasing
dimensions. Reference 20 provides a concise introduction to
the Jacobi-Davidson method, together with comparisons to
other similar methods. The implicitly restarted Arnoldi pack-
age �ARPACK� is described in great detail in Ref. 21. Some
general issues about the real-space diagonalization as well as
some specific features of the three methods used for it are
discussed below.

The accuracy of the real-space diagonalization methods is
controlled by two main parameters: the grid spacing h and
the total size of the grid, which is given by Nh. The finite-
difference approximation together with the rapid variation in
the potential near the origin imply that the solution of the
partial differential equation would be more accurate for a
smaller grid spacing. We work with open boundary condi-
tions, which means that a bound-state wave function could

TABLE I. Summary of ground-state energy estimates of the
edge-dislocation potential. Energy is given in units of 2mp2 /�2.

References Ground state estimate

Landauer �1954�a −0.102

Emtage �1967�b −0.117

Nabutovskii and Shapiro �1977�c −0.1014

Slyusarev and Chishko �1984�d −0.1111

Dubrovskii �1997�e −0.1196

Farvacque and Francois �2001�f −0.1113

Dorsey and Tonerg −0.1199

This work −0.139

aReference 6.
bReference 8.
cReference 11.
dReference 9.

eReference 10.
fReference 12.
gReference 13.
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be correctly captured only if the total size of the grid were to
be greater than the natural decay length of the wave function.
In other words, the eigenstate has to be given enough space
to relax. This limits the number of bound states we can cal-
culate accurately because a large grid size together with
small grid spacings calls for a large number of grid points,
thus quadratically increasing the size of the matrix to be
diagonalized. Computational resources as well as the limita-
tions of the algorithms themselves place an effective upper
bound on the size of a diagonalizable matrix. We experi-
mented to find that a 106	106 size sparse matrix was about
the maximum that could be diagonalized with our computa-
tional resources.

The origin of the square grid is symmetrically offset in
both x and y directions to avoid the 1 /r singularity. We first
tested the accuracy of the real-space techniques for the case
of the two-dimensional Coulomb potential, the spectrum of
which is completely known.22 We observe that for various
lattice sizes the biconjugate method captures at most the first
four states whereas the Jacobi-Davidson method returns 20
eigenstates. The eigenvalues obtained from both methods are
accurate to within 2% of the exact values.22

We have applied the biconjugate method to the edge-
dislocation potential for various lattice sizes, varying from
10	10 to 600	600. The number of eigenstates captured
increases with the size of the lattice, as expected. The
ground-state energy is observed to vary from −0.134 to
−0.142. We also observe that for the number of grid points
exceeding N=2000 we encounter a numerical instability due
to the accumulation of round-off errors. For the largest real-
space grid size of 600	600 �N=1200, h=0.5� we obtain
seven eigenstates with a ground-state energy of −0.139.

The ground-state energy from the Jacobi-Davidson
method, employed for the same lattice size gives −0.139,
which matches well with our expectations from the varia-
tional calculation. We are able to obtain 20 bound-state ei-
genvalues in this method using N=1000, h=0.5. It is
checked that the low-lying eigenvalues are not very sensitive
to values of h in this regime, so a relatively large value of 0.5
serves our purpose. As pointed out earlier, the accuracy of
this method is determined by the choice of lattice param-
eters. The variation in the calculated ground-state eigenvalue
for differing lattice parameters is within 0.001, which there-
fore is the estimated error in the calculation of eigenvalue.

The Arnoldi-Lanczos method yields the same eigenvalues
to within estimated error. It takes more time and memory
resources to converge but can calculate more eigenvalues. It
provides 30 bound-state eigenvalues for the same set of lat-
tice parameters as the above. Finally, after calculating the
ground-state wave function we find that the coupling con-
stant g=0.0194, slightly larger than the variational estimate
of g=0.017.

B. Coulomb basis method

We also calculate the spectrum numerically by using the
linear variational method with the basis of the 2D hydrogen
atom wave functions.22 There are two advantages of this
method over the real-space diagonalization methods. First,

the linear variational method is capable of capturing more
excited states because the number of calculated bound states
is not limited by the size of the real-space grid but by the
number of long-range basis functions. Second, the singular-
ity at the origin of the edge-dislocation potential does not
pose a problem anymore because elements of the Hamil-
tonian matrix become integrable.

Now we calculate the elements of the Hamiltonian matrix
with a 2D edge-dislocation potential. The Schrödinger equa-
tion with the 2D Coulomb potential is analytically worked
out in Ref. 22. The normalized wave functions of a 2D hy-
drogen atom are given by

�n,l
H �r,�� =
 1

�
Rn,l�r� 	 �

cos�l�� for 1 
 l 
 n

1

2

for l = 0

sin�l�� for − n 
 l 
 − 1,
�
�5�

where

Rn,l�r� =
�n

�2�l��!

 �n + �l� − 1�!

�2n − 1��n − �l� − 1�!
��nr��l�

	 exp�−
�nr

2
	1F1�− n + �l� + 1,2�l� + 1,�nr� ,

�6�

with �n=2 / �2n−1� and 1F1 being the confluent hypergeo-
metric function. The elements of the Hamiltonian with the
2D dipole potential are

�n1,l1
H � − �2��n2,l2

H � = �l1,l2�
0



dr�1 −
�n2

2

4
r	

	 Rn1,l1
�r�Rn2,l2

�r� , �7�

�n1,l1
H �

cos �

r
��n2,l2

H � = Ṽ�
0



drRn1,l1
�r�Rn2,l2

�r� , �8�

where Ṽ=�l1,l2�1 /2 if both l1 and l2 are less or greater than 0,

or Ṽ=1 /
2 if l1 is 0 and l2 positive or vice versa. The spectra
are obtained for several total numbers of basis functions
Nbasis. Due to the numerical precision in calculating elements
of the Hamiltonian matrix Nbasis cannot be increased to more
than 400. For Nbasis=400 we obtain about 150 bound states
and the ground-state energy of −0.0969. This calculated
ground-state energy is not reliable as it is higher than even
the upper bound of −0.1199 estimated variationally earlier.13

In order to improve the ground-state energy, we introduce an
additional decaying parameter in the basis functions, and op-
timize the energy levels for a certain value of this parameter.
With the decaying parameter we obtain the best variational
estimate for the ground-state energy of −0.1257 for Nbasis
=400.

We show the first 20 eigenvalues obtained from different
methods in Fig. 1 and the first five representative eigenvalues
in Table II. As seen earlier, the real-space diagonalization
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methods provide a better estimate of the ground-state energy
whereas the Coulomb basis method is more suitable for
higher excited states. The eigenvalues of both the Coulomb
basis method and the real-space diagonalization methods are
found to match each other for excited states and then they
begin to deviate again �see Fig. 1�. This can be understood
by the fact that the extent of wave functions of the 2D edge-
dislocation potential does not always increase as one goes to
higher excited states—the wave functions of some excited
states extend less than those of lower energy. Therefore,
there are intermediate bound states that are missed in the
real-space calculation because the size of grid used in calcu-
lation is not large enough to capture them. For example, we
find four more bound states with the Coulomb basis calcula-
tion between the 18th and 19th excited states as calculated
from the real-space diagonalization method. This feature also
explains the abrupt increase in the eigenvalue of the 19th
state calculated by using the Arnoldi-Lanczos method
�ARPACK routine� in Fig. 1.

IV. SEMICLASSICAL ANALYSIS

It is usually insightful to consider the semiclassical solu-
tion of a quantum mechanics problem since the higher-
energy eigenstates tend to approach classical behavior. A
semiclassical estimate of the energy spectrum has been pro-
vided in Ref. 7. Here the total number of eigenstates up to a
value of energy E is proportional to the volume occupied by

the system in the classical phase space. This is expressed by
Weyl’s theorem,23

n�E� =
A

4�

2m�E�
�2 + O�
 �2

2mp2 �E�	 , �9�

where A is the classically accessible area in real space and
�E� the absolute value of energy of the state. The higher-order
corrections can be shown to be less important for higher
excited states, which is where the semiclassical picture ap-
plies. To find A, we need the classical turning points for this
potential determined by setting E=V�r ,��. Then the acces-
sible area is the interior of a circle given by �x− p

2E �2+y2

= � p
2E �2 with area A=��p /2E�2. Therefore, we obtain �writing

the nondimensionalized energy in our system of units as ��,

n��� = −
1

16�
, �10�

where n is the quantum number of the eigenstate and � the
corresponding energy. Note that the density of states dn /d�
scales as 1 /�2.

To check this result we fit the numerical spectrum with
the following functional form:

��n� = a�n − b�c �11�

with the fitting parameters having values a=−0.06, b=0.5,
c=−0.98, each correct to within 5%. �Since we are dealing
with bound states here, all the energy eigenvalues are nega-
tive, and the higher excited states have lower absolute eigen-
values.� We show the fit to the spectrum obtained from JAD-

AMILU routine in Fig. 2. The semiclassically derived
dependence is found to closely match with the fit for numeri-
cally calculated energy eigenstates, except for the b=0.5 fac-
tor. In the limit of large n values, i.e., higher excited states,
the fit relation tends to the semiclassical result as expected.

The classical trajectories for this potential bear the signa-
ture of chaotic dynamics showing space-filling nature and
strong dependence on initial conditions. However, for rea-
sons not yet clear to us, they are not ergodic, filling up only
a wedge-shaped region in real space instead of the full

TABLE II. Comparison of first few energy eigenvalues obtained
from different methods. Energy units: 2mp2 /�2. n indicates quan-
tum number of the state.

n Biconjugate Jacobi-Davidson/Arnoldi-Lanczos Coulomb basis

1 −0.14 −0.139 −0.0970

2 −0.041 −0.0415 −0.0328

3 −0.023 −0.0233 −0.0221

4 −0.02 −0.0201 −0.0167

5 −0.012 −0.0126 −0.0119
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FIG. 1. �Color online� Comparison of eigenvalues obtained from
different methods. �The plot is on a log-log scale.�
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FIG. 2. �Color online� Fit for the eigenvalue spectrum obtained
from JADAMILU using f�x�=a�x−b�c. Fit values are −0.06, 0.61, and
0.96 for a, b, and c, respectively.
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classically allowed circle. The quantum mechanical probabil-
ity density as calculated from the eigenfunctions also exhib-
its such wedge-shaped regions. Some sample wave functions
obtained from our numerical calculations have been pre-
sented. Figure 3 shows the lowest five eigenstates and Fig. 4
shows some higher excited states. As expected, the wave
functions are confined to the left half plane, where the po-
tential is negative and bound states are possible. The parity
of the potential shows up in the wave functions being either
symmetric or antisymmetric about the x axis, although states
of such “odd” and “even” parity do not always alternate. For
example, the second and fourth excited states are odd, and
the third excited state correspondingly even, but the ground
state and first excited states are both even. Similarly the
tenth, 50th, and 100th excited states are all odd while the
23rd and 24th are odd. The spatial extent of the wave func-
tions is seen to be generally higher for higher excited states
but this is not always the case. The extent does not scale
monotonically with quantum number. Some cases are found
where a higher excited state has less spatial extent than a
lower one. For example we see in Fig. 4, that the 24th ex-
cited state is less extended in the x direction compared to the
23rd. We do not have any satisfactory explanation yet for
these irregular features.

V. SUMMARY

In conclusion, we have investigated the long-standing
quantum problem of a two-dimensional dipole potential. The

wave functions and the spectrum are calculated by solving
the Schrödinger equation with the 2D dipole potential nu-
merically, and also, in the case of the ground state, variation-
ally. We find that the results obtained from the different
methods are consistent and compare favorably with previous
estimates in the literature. We also discover a simple pattern
in the spectrum, �n��−1�, which can be justified from semi-
classical considerations. Certain features of the spectrum and
wave functions are yet to be explained and might provide
scope for future investigation. For example, the statistics of
the level spacings could possibly be a signature of quantum
chaos. We hope to extend our work to studying dislocation-
induced superfluidity as a model of 4He supersolid.5 In such
a model, the linearized GL equation is isomorphic to the
Schrödinger equation, Eq. �2�, and the ground-state energy
and its wave function determined in this work provides an
input to obtain the coupling constant g and the superfluid
transition temperature modified by the presence of disloca-
tions.
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