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The quantum-critical fluctuations of the time-reversal breaking order parameter which is observed in the
pseudogap regime of the cuprates are shown to couple to the lattice equivalent of the local angular momentum
of the fermions. Such a coupling favors scattering of fermions through angles close to �� /2 which is
unambiguously shown to promote d-wave pairing. The right order of magnitude of Tc and the zero temperature
gap � /Tc are calculated using the same fluctuations which give the anomalous normal state properties for
dopings near the quantum-critical value.

DOI: 10.1103/PhysRevB.81.064515 PACS number�s�: 74.20.Mn, 74.72.�h

I. INTRODUCTION

The objective of a microscopic theory of the phenomena
in cuprates ought to be to derive their universal properties, in
all the parts of their phase diagram, based on a single set of
ideas and with a consistent set of calculations on a well-
defined model. In particular, since superconductivity is an
instability of the normal state of a metal, it is necessary that
the same theory which seeks to explain high-temperature su-
perconductivity in the cuprates also explain their remarkable
normal states. To be convincing, the theory should also lead
to unique predictions which can be tested in experiments.

Toward these goals, one particular approach to the theory
has so far achieved the following: �1� starting from the three-
orbital model with on-site and nearest-neighbor repulsions, it
was predicted that the pseudogap state occurs through a
phase transition to a new state of matter with spontaneous
orbital currents without changing translational symmetry.
The transition temperature T��x�→0 for x→xc, defining a
quantum-critical point �QCP� at x=xc. The loop-current or-
der �LCO� parameter1 has by now been observed in the
pseudogap region of four distinct families of cuprates.2–6 �2�
The quantum-critical fluctuations �QCF� of the observed or-
der have been derived7 and shown to have the spectrum with
� /T scaling and spatial locality, which was introduced phe-
nomenologically long ago8 to explain the observed normal-
state anomalies9 and predict the single-particle spectra in the
“marginal Fermi-liquid” region around x=xc. Using angle-
resolved photoemission spectroscopy �ARPES� data the pa-
rameters of the QCF’s and their coupling strength to fermi-
ons have also been determined.10

In this paper, we show that the derived QCF couple to �the
lattice equivalent of� the local-orbital angular momentum of
the fermions. This is a natural generalization of the coupling
of the spin-angular momentum of the fermions to collective
spin fluctuations.11 We derive the momentum dependence of
the coupling of the QCF to fermions of the conduction band
and show from microscopic theory as well as symmetry con-
siderations that their exchange leads to an attractive d-wave
pairing. Using the parameters extracted from the quantitative
fit to the normal-state anomalies and ARPES, we obtain the
right order of magnitude of Tc and � for superconductivity in
the region dominated by the QCF. The principal findings of

this paper can be tested in detailed analysis of ARPES data in
the superconducting state using the generalization of the
McMillan-Rowell procedure for s-wave superconductors.

Plan of this paper

In order to present the new results of this paper, it is
useful to briefly recapitulate earlier work upon which it
builds. In Sec. II, we summarize �i� the microscopic model,
�ii� the derivation of the loop-current order based on it, and
�iii� the quantum statistical mechanical model for the quan-
tum fluctuations of the order parameter. As shown earlier,
lattice anisotropy is irrelevant in the fluctuation regime and
the spectra of the fluctuations is obtained from the solution
of the dissipative quantum xy or rotor model in the con-
tinuum. In Sec. III, we present the coupling of the fermions
to the fluctuations based on general symmetry considerations
and show that in the continuum, the fluctuations of the an-
gular momentum of the rotors couple to the local angular
momentum operator of the fermions. In Sec. IV, we derive,
through microscopic calculations, the coupling of the fermi-
ons to the fluctuations in the lattice model and show that it is
a generalization of the continuum model to take into account
the lattice anisotropy. Some technical details of the lattice
calculations are given in Appendices. In Sec. V, we present
the vertex for superconductivity derived from the couplings
in Secs. III and IV and prove that only d-wave pairing is
possible in the model. In Sec. VI, we derive parameters of
the model from the fit to the normal-state spectral function
A�k ,�� of the fermions and estimate Tc and the supercon-
ducting gap � based on generalization of the Eliashberg
theory to d-wave superconductors. We also discuss the limit
of validity of the Eliashberg theory in the present context.

II. SUMMARY OF WORK LEADING UP TO THE
PRESENT WORK

A. Microscopic model

The relevant microscopic model for the LCO in the cu-
prates is the three-orbital model12 with local and finite-range
interactions. A unit cell with a Cu and two oxygen orbitals
per unit cell and with labeling used in this paper is shown in
Fig. 1. The nearest-neighbor copper-oxygen interactions,
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Hnn = �
�R,R��

Vpdnd�R��npx
�R�� + npy

�R�� + Vppnpx
�R�npy

�R���

�1�

play a crucial role in deriving the LCO. Here nd�R�, npx,y
�R��

are the charge operator for the d orbital on Cu site and the
px,y orbital on the oxygen sites at the sites R and R�, respec-
tively. Only neighboring Cu and oxygen sites on the eight
links �R ,R�� per each unit cell are summed. In the metallic
state, the local interactions �U’s� are assumed to only renor-
malize the kinetic-energy parameters, unlike in the
insulating-antiferromagnetic state close to half filling. The
possible novel changes in symmetry1 are seen by re-
expressing Eq. �1� using the operator identity,

2a�
†�R�a��R�b��

† �R��b���R��

= − �O����R,R���2 + a�
†�R�a��R� + b��

† �R��b���R�� ,

O����R,R�� 	 ia�
†�R�b���R�� + H.c., �2�

O�R ,R��	��O���R ,R�� is proportional to the current op-
erator on the link between site i and i�.

Suppose an expectation value �O�R ,R���	x�R ,R�� were
shown to exist. Given a kinetic-energy coefficient t�R ,R�� in
the bare Hamiltonian, this is equivalent to an effective
kinetic-energy operator on the link with a complex coeffi-
cient �=t�R ,R��+ ix�R ,R���. This amounts to a vector poten-
tial ��R ,R��=arctan�x / t� on the link �R ,R��. Gauge-
invariant combinations of vector potentials always form
closed loops and correspond to flux in the area formed by the
closed loops. Such gauge-invariant combinations of
�i�R ,R�� within a unit cell i are organized in to irreducible
representations � of the point group symmetry of the lattice

L̃i,� 	 �
�R,R��

�i,��R,R�� . �3�

As may be seen from Figs. 1 and 4, there are five closed
loops which can be formed in a unit cell through connecting
nearest-neighbor Cu-O and O-O links. This is consistent with

the vector potentials on each of the eight links per unit cell
and the three lattice points per unit cell at which independent
gauge transformations can be made. The algebraic represen-
tation as well as their flux patterns of the five varieties of the
� are exhibited in Appendix C. In the ground state in the
pseudogap phase, one of these symmetries �with two-
dimensional representation Eg� is realized globally in the ex-
periments and also found to be the lowest-energy state in
mean-field or better calculations.13 There are differences in
the experimental results from the prediction of the two-
dimensional model. However, the spatial symmetry and the
number of allowed configurations per unit cell in the more
general three-dimensional model13 are not changed from
those given by the two-dimensional model.14

The observed long-range ordered state is described by a
time-reversal odd polar vector L which has four possible
orientations. These four domains are shown in Fig. 2. In the
fluctuation regime, the cells fluctuate between the four con-
figurations spatially and temporally. To describe the fluctua-
tions, we generate the effective Hamiltonian which includes
the interactions energy of the four local configurations as
well as the kinetic term which causes transitions among
them.

B. Effective Hamiltonian

The complete Hamiltonian obtained using the identities in
Eqs. �2� and �3� is explicitly derived in Appendix D. As
discussed there the effective Hamiltonian of the four local
configurations per unit cell, from which earlier results and
the results in this paper are derived is

H = KE −
�Vpd�

16 
�
i,�

L̃i,� · L̃i,� + �L̃z,i�2� , �4�

where

1 2

34

p1x

p4x

p2yp1y

FIG. 1. The unit cell chosen for the two-dimensional model for
cuprates used for calculations in this paper. The labeling used to
denote the Cu orbitals and the oxygen orbitals will be used through-
out the paper.

FIG. 2. �Color online� The four domains of the circulating cur-
rent phase are shown. They may be specified by the four orienta-
tions of a vector L shown in red.
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L̃i = �L̃i,x�,L̃i,y�� . �5�

The labels i, i� will denote the unit cells. KE. is the kinetic-
energy operator which is explicitly written down in Appen-
dix B in terms of two parameters t̃pd, t̃pp, which are, respec-
tively, the effective hopping parameters �renormalized due to
on-site repulsions� between the nearest-neighbor Cu-O and

O-O sites, respectively. � stands for x̂� , ŷ�= �x�y� /�2. L̃i,�

and L̃z,i are given in terms of the fermion operators in Ap-

pendix C. The operators L̃z,i introduce quantum fluctuations
in the model through transitions between the four possible
local configurations of the local order parameter L, as
derived in Appendix E and discussed below.

The operators L̃i , L̃z,i are expressed as the sum of a col-
lective part Li ,Lz,i and a residual incoherent fermionic part
L fi ,Lz,fi using the Hubbard-Stratanovich or equivalent meth-
ods,

L̃i = Li + L fi,

L̃z,i = Lz,i + Lz,fi. �6�

The mean-field Hamiltonian consists of the kinetic energy
Eq. �B1� and the second term of Eq. �4�. Integrating over the
fermions generated a mean-field free-energy Fmf��L��.1
Minimizing this gave the stable long-range order with an

order parameter �Li�	�L̃i� for all i.
The effective Hamiltonian for fluctuations of the order

parameter is generated from Eq. �4� using the substitutions,
Eq. �6�. The fermion operators in the bilinear terms LiL fi
+L jL f j are eliminated by integrating over the propagator
�L fi

+ L f j� in the standard manner to generate a coupling be-
tween the collective variables Li and L j. Keeping coupling
only between nearest-neighbor cells this generates the fluc-
tuation Hamiltonian,

Hfl = �
�ij�

LiJL j +
Vpd

16
�Lz,i�2. �7�

Here J is in general a second rank tensor whose components
depend on the orientations of Li and L j. Only its order of
magnitude can be estimated and is of O�10−1Vpd

2 / t�.15,16

III. QUANTUM FLUCTUATIONS

The quantum model is specified in terms of operators Li

=ei	̂i, whose eigenstates are the four angles 	i in each cell i
depicted in Fig. 2,

Li�	i� = ei	i�	i� . �8�

Given the symmetries of the four domains, the angles corre-
spond to

�	 = �/4� = �x̂ + ŷ� ,

�	 = 3�/4� = �− x̂ + ŷ� ,

�	 = 5�/4� = �− x̂ − ŷ� ,

�	 = 7�/4� = �x̂ − ŷ� . �9�

The low-energy quantum fluctuations of the order param-
eter form current loops of all sizes and shapes and varying in
time. They are generated by the elementary process of quan-
tum flips between the four configurations. We show explic-

itly in Appendix E that the operator L̃z,i is the generator of
rotations in the space of the four one-particle eigenstates of

the operator L̃i. In other words the operator that rotates the
states is

U = exp
− ı
�

2
L̃z,i� = 1 − ıL̃z,i − L̃z,i

2 . �10�

The operators U causes transition between �	� and �	−� /2�,

Ui�	i� = ��	 − �/2�i� . �11�

It may be worth noting that in the continuum limit when the
possible angles of rotations is continuous, Eq. �10� goes over
to the usual definition of a rotation operator.

Continuum model

The functioning of the rotation operator is more familiar
in the continuum model, where the four states are replaced
by a continuum of angles 	i. In fact, in the fluctuation re-
gime, the discreteness of the 	i variables is a �marginally�
irrelevant perturbation7 and a continuous distribution of 	i
gives the correct correlation functions. The model is then just
the quantum rotor model,

Hc = �
i

�Lzi�2

2I
+ J�

ij

cos�	i − 	 j� , �12�

where Lzi= i� /�	i, conjugate to the operator 	i, causes rota-
tions of 	i. The quantum-critical fluctuations are calculated
by supplementing the quantum rotor model by the dissipa-
tion term of the Caldeira-Leggett form. The Fourier trans-
form of the spectral function of the correlation function
�exp�i	�r , t��exp�i	�r� , t���� derived in Ref. 7 is

Im 
�q,�� = 
− 
0 tanh��/2T� , ��� � �c

0, ��� � �c.
� �13�

The value of the cutoff �c and of the amplitude 
0 will be
deduced from experiments below. As noted this is of the
same form as suggested phenomenologically. The spectral
weight 
0 in that equation may be fixed from �q�d�
�−Im 
�q ,�����2
0�2, where 
0 is the ordered flux in each
of the two Cu-O-O triangular plaquettes in each unit cell. 
0
is given from experiments3,5 of an ordered moment of about
0.1�B per triangular plaquette. In Appendix F, we show that
the singular part of the correlations of the “angular momen-
tum” operator, Lzi are proportional to those in Eq. �13�.

IV. COUPLING OF FLUCTUATIONS TO
FERMIONS

A. Coupling in the continuum model

It is instructive to derive the coupling for the special case
that the conduction electron wave functions are approxi-
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mated by plane waves. This can be done by symmetry con-
siderations alone; the microscopic results for the lattice are
shown below to reduce to these in the continuum limit.

The minimal coupling of the operator for the angular mo-
mentum of the collective fluctuations Lzi to fermions can
only be to the local angular momentum of continuum fermi-
ons. Thus in the continuum limit, the coupling Hamiltonian
of the fluctuations to the fermions is

Hcoup �� drf��r���+�r��r � p���r�Lz�r� + H.c., �14�

where p is the momentum operator so that �r�p� is the
angular momentum operator. f��r�� is a function which re-
stricts the integrals to be only over the �circular� Wigner-
Seitz cell of the continuum problem. Fourier transforming,
we get that

Hcoup � ��k,k���+�k���k��Lz�k − k�� + H.c.,

��k,k�� � i�k � k�� . �15�

The important point about Eq. �15� is that scattering of
fermions through an angle near � /2 or −� /2 is strongly
favored compared to backward � or forward 0 angles. The
other important point is the factor of i signifying coupling to
time-reversal breaking fluctuations. These two points are cru-
cial to the pairing symmetry favored, as shown below. It
should also be clear that what has been derived is effectively
the equivalent for coupling of collective modes which trans-
form as orbital magnetic moments to the orbital moment of
fermions, to the familiar coupling J��r����r� ·S�r� of cou-
pling between collective spin-moment variables S to the fer-
mion spins. Note that the physics of d wave being favored
through strong enough antiferromagnetic fluctuations is also
related to the scattering through an angle near � /2 or −� /2
and a minus sign �i2� due to spin trace of the fluctuations of
S.

B. Coupling of fluctuations to fermions for the lattice model

Now we return to the lattice model of Eqs. �4� and �6� to
generate the coupling of the collective variables to the fer-
mions in microscopic theory. Putting the latter into the last
term of the former generates the requisite coupling term

Hcoup = �
i

Vpd

16
Lz,i,fL

+
z,i + H.c. �16�

We can now Fourier transform to get the coupling Hamil-
tonian in momentum space for states in the conduction band.
The explicit expression for Lz,i,f in terms of fermion opera-
tors is given in Eq. �D11� in the appendix. Let us take the
simplest representation of the conduction-band states �in the
absence of orbital order� for which the annihilation creation
operators are

ck,� =
1
�2

�dk,� + i�sx�k�pkx,� + sy�k�pky,��sxy
−1� . �17�

Here sx�k�	sin�kxa /2� , sy�k�	sin�kya /2� , sxy�k�
	�sx

2�k�+sy
2��k��. Projecting to these states, we have

dk
†�ck

† /�2, pkx
† �−ı�sx�k� /�2sxy�ck

†, and pky
†

�−ı�sy�k� /�2sxy�ck
†, where sxy =�sin�kx /2�2+sin�ky /2�2. The

coupling Hamiltonian is

Hcoup = �
k,k��

��k,k��c�
†�k��c��k�ıLz,q, �18�

where the coupling matrix is

��k,k�� = ı
Vpd

32
��sx�k�sy�k�� − sy�k�sx�k���Sxy�k,k�� .

�19�

Here q=k−k� and Sxy�k ,k��= �sxy
−1�k�+sxy

−1�k���. Note that in
the continuum limit, sx�k�= �kxa� /2, etc., so that ��k ,k��
� i�k�k��. This is the result we had obtained in Eq. �15�
through a symmetry argument.

V. PAIRING SYMMETRY

Integrating over the fluctuations in Eq. �18� in the stan-
dard manner gives an effective vertex for scattering of fer-
mion pairs,

Hpairing � �
k�k���

��k,k��c��
† �− k��c�

†�k��c��k�c���− k� ,

��k,k�� = ��k,k����− k,− k��Re 
�� = �k − �k�� . �20�

The susceptibility appearing in the coupling ��k ,k�� is
given in Eq. �13�. For further discussion see Appendix F. As
will be discussed, this is correct to O���c /Ef�, where �’s are
dimensionless coupling constants derived below.

It is illuminating to note first the symmetry of the favored
pairing due to such a coupling in a continuum approximation
for fermions near the Fermi energy. The pairing vertex is
then

��k,k ,� � − �k � k��2Re 
��k − k��,�� . �21�

Since Re 
�k−k� ,���0 for −�c����c, independent of
momentum, the pairing symmetry is given simply by ex-
pressing �k�k��2 in separable form,

�k � k��2 = 1/2��kx
2 + ky

2��kx�
2 + ky�

2� − �kx
2 − ky

2��kx�
2 − ky�

2�

− 4�kxky��kx�ky��� . �22�

Pairing interaction in the s-wave channel is repulsive, that in
the two d-wave channels is equally attractive, and in the
odd-parity channels is zero. The factor i in ��k ,k��, present
because the coupling is to fluctuations of time-reversal odd
operators, is crucial in determining the sign of the interac-
tions of the pairing vertex. So is the fact that the vertex
favors scattering of fermions through �� /2.

We now return to Eq. �20� for a semiquantitative analysis
of pairing in the lattice. The dimensionless coupling con-
stants �� determining Tc and the gap � are given in a gen-
eralized Eliashberg theory by17
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�� = 2N�0�� d�d����k,k��F��k�F��k�� . �23�

Here d�=N�0�−1dSk / �vk�, where Sk is an element the Fermi
surface and N�0� is an effective density of states on the
Fermi surface for one spin species. Also, F��k�F��k�� are
separable lattice harmonics on to which ��k ,k�� is
projected,17

Fs�k� = Ns�1 − cos�kxa�cos�kya�� ,

Fd1�k� = Nd1�cos�kxa� − cos�kya�� ,

Fd2�k� = Nd2 sin�kxa�sin�kya� . �24�

Where the labels �s ,d1,d2� represent the irreducible lattice
representations �A1g ,B1g ,B2g� of a tetragonal lattice, popu-
larly referred to as extended s wave, dx2−y2 and dxy symme-
tries, respectively. The factor N� ensures normalization
�d�F��k�F��k�=1.

The resolution of ��k ,k�� in Eq. �20� is

��k,k�� = �0�Fs�k�Fs�k��
Ns

2 −
Fd1�k�Fd1�k��

Nd1
2

−
F�d2��k�Fd2�k��

Nd2
2 � . �25�

From Eq. �25�, the s-wave interactions are repulsive while
the interaction is equally attractive for the d�x2−y2� and dxy
waves for a circular Fermi surface. For the actual Fermi sur-
face of the cuprates in which the Fermi velocity is largest in
the �1,1� directions and the least in the �1,0� or the Cu-O
bond directions, d�x2−y2� pairing is favored because in that
case the maximum gap is in directions where the density of
states is largest.

VI. DEDUCTION OF PARAMETERS FROM ARPES
EXPERIMENTS AND ESTIMATES OF Tc AND �

In this section, we first summarize experimental evidence
and calculation directly showing that the scattering of fermi-
ons is uniquely given by the derived QCF’s and how ARPES
experiments have been used to determine the parameters
used later in this paper. We argue that since superconductiv-
ity is an instability of the normal state which occurs at T
�Tc, it is unlikely that any other fluctuations can dominate
in determining Tc.

The value of the cutoff �c, of the amplitude 
0 in Eq. �13�
and the coupling constants in front of � in Eq. �20� can be
provided in terms of the parameters of the microscopic
model as well as deduced from experiments below. Given a
coupling function of such fluctuations to fermions ��k ,k�� to
scatter from k to k�, calculated below, the self-energy of the
fermions is10

Im ���,k� = −
�

2
��k�
��� , ��� � �c

�c, ��� � �c.
� �26�

Here ��k�=N�0���2�k� and ��2�k� is the average of ���k ,k���2
over k� on the Fermi surface. In the phenomenological

approach8 this was taken to be momentum independent. In
Ref. 10, this expression is compared with the data in all
available directions and parts of the phase diagram of the
cuprates. In Fig. 3, we show the deduced MDC linewidth in
the �� ,�� direction for all the cuprates near optimal doping
for which data is available. This data is taken with poor
energy resolution, �40 meV, to cover a wide energy range.
The linearity of the linewidth with energy in the normal state
for low energies has been checked with better precision in
other experiments. Here we focus on the full energy range.
We notice the remarkable correspondence with Eq. �26� with
the cutoff �c between 0.4 and 0.5 eV for all the measured
cuprates. Below we will use the slope of these curves for
���c to deduce the coupling constant �� in different angu-
lar momentum channels. The normal-state resistivity and op-
tical conductivity can also be calculated using the values of
�� and �c to within about 30% of those deduced from the
single-particle spectra.

The most important point to be noted from Fig. 3 is the
following: the result in Eq. �26� arises because the scattering
at any energy ��T is proportional to the integrated weight
of fluctuations up to �, i.e., ��0

�Im 
����. Therefore the lin-
earity of the scattering rate with � up to about �c and con-
stancy thereafter is a direct proof of the fluctuations of the
form of Eq. �13�. The rather sharp �c proves that one need
not be concerned that a distinct energy scale of fluctuations
may not exist.18

An important deduction from recent analysis19 of high-
resolution laser-based ARPES at different angles on the
Fermi surface is that a momentum-independent fluctuation
spectra is obtained from the inversion of the data through
Eliashberg equations to fit the data at different angles.

In Eq. �25�, �0 may be estimated thus: Re 
����
−2
0 ln

�c

��� for �����c and it is vanishing beyond. The cutoff
�c is important but the weak dependence on ��� may be
ignored by replacing it by O�Tc� for estimates of parameters
determining Tc. For �c�0.4 eV, as deduced from
experiments10 and Tc�100 K, Re 
��� is then �−6
0 for
���c. Using this estimate �0�−6V2N�0�
0 with a cutoff in
the range of interaction at �c. �Here sxy

2 �k=kF��1 /2 has
been used.�

We now ask whether the �c and � deduced from experi-
ments in the normal state yield the right order of magnitude

FIG. 3. �Color online� The MDC linewidths along the � , pi
directions for all the measured cuprates. The detailed references for
each cuprate are given in Ref. 10.
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of both Tc’s and the ratio of the zero-temperature gap � to
Tc. Compared to s-wave superconductors, the normal self-
energy and inelastic scattering lead to a stronger depression
in Tc and a stronger enhancement in � /Tc in d-wave
superconductors;17 estimate, Tc��c exp�−�1+ ��s�� / ��d��,
where �s is the coupling constant which appears in the nor-
mal self-energy and �d, the coupling constant which appears
in the anomalous self-energy. From Eq. �24�, ��d� / ��s��1 /2.
The normal-state self-energy deduced from experiments10

gives ��s��1 and �c�0.4 eV. The formula above gives Tc
�80 K for these values.

The value of � /Tc may be read off from Fig. 4 of Ref. 17
using the parameters above to be about 2.5�0 /Tc0, where �0
and Tc0 are estimated ignoring the self-energy and inelastic
scattering. This gives � /Tc�5. � /Tc of 4–5 are reported for
the cuprates.20

We can roughly estimate the value of �’s and �c from the
microscopic parameters. As estimated above, ��s�
�6N�0�V2
0. To get �s�1 requires 
0�6�10−2 �eV�−1 for
N�0��2 states /eV /unit cell, V�1 eV. For the deduced
�c�0.4 eV, this requires an ordered 
0 per triangular
plaquettes of about O�0.1�. As mentioned already this corre-
sponds well with the measured moment deduced by Fauque
et al.3

A comment should be made on the validity of a theory of
superconductivity with electron-electron interactions using
an Eliashberg-type simplification.18 The Eliashberg simplifi-
cation of the theory works only if there is a small parameter
which limits the irreducible vertex in the particle-particle
channel to ladder diagrams alone with the simplest single-
particle self-energy in the propagators. For any model with
single-particle self-energy which is nearly momentum inde-
pendent in the normal state as in the present case �and the
case of electron-phonon interactions�, this parameter is
O���c /W�, where W is the bare electronic bandwidth. This
parameter for the cuprates with W�2 eV is O�1 /5�. This
does not allow the luxury of a parameter of O�10−2� as for
electron-phonon interactions but small enough to have a sys-
tematic theory.

The results of this paper and their applicability for a con-
sistent calculation of superconducting parameters, can be
tested in detail through inversion of ARPES data by a pro-
cedure, which is a generalization of the Rowell-MacMillan
procedure for s-wave superconductors.21 �Approximate in-
version of such data has recently appeared22 with results con-
sistent with the results of this paper for the shape of the
spectrum and its cutoff energy.�

VII. CONCLUDING REMARKS

This paper has derived that the fluctuations responsible
for the normal-state anomalies near the QCP couple to fer-
mions to promote d-wave pairing and with parameters taken
from fits to the normal-state data and consistent with esti-
mates from microscopic calculations calculated the right
magnitude of both Tc and � /Tc. The critical fluctuation spec-
tra develops a low-energy cutoff which increases as x in-
creases. So Tc is expected to fall. For underdoping, supercon-
ductivity can only be calculated in a state with the competing

order parameter whose strength goes up as x decreases from
xc. Again Tc must fall. The details of such calculations are
work for the future.
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APPENDIX A: INTRODUCTION TO THE APPENDICES

There are three principal purposes of these appendices.
First is to derive the Hamiltonian, Eq. �4� from the interac-
tions of Eq. �1�. Toward this end, we first give the expres-
sions for the kinetic energy so as to specify the choice of
phases made in the d and the p orbitals and of the current
operators in the gauge chosen for the calculations. This is
followed by a detailed derivation of Eq. �4�. The second
purpose is to show that the operator Liz provides the kinetic
energy which acts as a rotation operator for the four possible
flux patterns given by Li� in the cell i. The third is to show
that the correlations of the operators Liz have the same sin-
gularities as the order parameter fluctuations calculated in
Refs. 7 and 23.

APPENDIX B: KINETIC ENERGY

We use a choice of the phase of the d orbitals so that the
starting kinetic energy in the model is a real operator. With
this choice and the notation specified in Fig. 1, the kinetic-
energy operator is

KE = �
i
� tpd

2
�di1

† pi1x + di4
† pi4x − di2

† pi1x − di3
† pi4x + di1

† pi1y

+ di2
† pi2y − di4

† pi1y − di3
† pi2y� + tpp�pi1x

† pi2y − pi2y
† pi4x

+ pi4x
† pi1y − pi1y

† pi1x� + H.c.� . �B1�

APPENDIX C: GAUGE-INVARIANT COMBINATION OF
THE VECTOR POTENTIALS

The complex hopping matrix elements on the links in the
unit cell are equivalent to vector potentials living on the links
of the unit cell. Flux operators are formed by sum of the
phase difference �or vector potentials� in closed loops of
links which form independent areas in each unit cell.

There are 12 Cu-O and O-O links shown in Fig. 1 but
eight of these are shared by the adjoining unit cells so that
there are only eight links per unit cell. But the links form
only five areas per unit cells as shown in Fig. 4. This is
consistent with the fact that there are three sites per unit cell
in which independent gauge transformation can be made to
obtain five gauge-invariant flux operators per unit cell.

The five closed loops in any unit cell can be combined to
form five new combinations which with the point-group
symmetries of the lattice. The five combinations are pictori-
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ally represented in Fig. 4. The five combinations of flux

operators L̃i,� are

L̃i,s = ı�di1
† pi1x − di4

† pi4x + di2
† pi1x − di3

† pi4x − di1
† pi1y + di2

† pi2y

− di4
† pi1y + di3

† pi2y� + H.c.,

L̃i,s̄ = ı�di1
† pi1x − di4

† pi4x + di2
† pi1x − di3

† pi4x − di1
† pi1y + di2

† pi2y

− di4
† pi1y + di3

† pi2y� + H.c. − ı�p1x
† p2y − p2y

† p4x + p4x
† p1y

− p1y
† p1x� + H.c.,

L̃i,x�2−y�2 = ı�− di1
† pi1x − di4

† pi4x + di2
† pi1x + di3

† pi4x + di1
† pi1y

+ di2
† pi2y − di4

† pi1y − di3
† pi2y� + H.c. − ı�p1x

† p2y

+ p2y
† p4x + p4x

† p1y + p1y
† p1x� + H.c.,

L̃i,x� = ı�di2
† pi1x + di4

† pi4x + di4
† pi1y + di2

† pi2y� + c.c.

− ı�p1x
† p2y − p4x

† p1y� + H.c.,

L̃i,y� = ı�di1
† pi1x + di3

† pi4x − di1
† pi1y − di3

† pi2y� + H.c.

− ı�p2y
† p4x − p1y

† p1x� + H.c. �C1�

As will be evident from Fig. 5, L̂s has the identity represen-

tation of the flux operator, while L̂s̄ in common parlance may

be called the “extended s-wave” representation. L̂x� and L̂y�
are the operators that have the symmetry of the �II phase.1

The phases produced by their condensation have magneto-
electric symmetry, describable by time-reversal odd polar
vectors pointing in the x̂� , ŷ�= �x̂� ŷ� /�2 directions, respec-

tively. L̂x�2−y�2 has the symmetry of the �I phase described
earlier.1

APPENDIX D: DERIVATION OF THE INTERACTION
HAMILTONIAN IN TERMS OF FLUX OPERATORS

In this appendix, we give details of the re-expression of
the Cu-O and O-O interaction Hamiltonian Hnn given by Eq.
�1� in terms of current operators using the operator identity
of Eq. �2�. The purpose of doing this is to derive the relevant
part of the interaction Hamiltonian Hnn in terms of the irre-
ducible combinations of the flux operators of Eq. �3�. The
unimportant one-electron terms in Eq. �2� are ignored and
only the spin-diagonal parts are kept. The spin-diagonal part
of the interaction Hnn across the 12 links in Fig. 1,

Hnn = −
Vpd

4 �
�=1

4

��Oi,�,x�2 + �Oi,�,y�2� −
Vpp

2 �
�=1

4

�Oi,�,xy�2.

�D1�

Here � sums the four Cu sites per unit cell and the operators
O, given after Eq. �2� are written down again here,

Oi,�,x = �
�

idi,�,�
+ pi,�,x,� + H.c., etc., �D2�

Oi,�,x,y = �
�

ipi,�,y,�
+ pi,�,x,� + H.c., etc. �D3�

To simplify notation, we use a slightly modified labeling
scheme in this appendix. In a given unit cell there are four
triangles with one of their vertices being a Cu site and one
square with its vertices being the four oxygen atoms. The
subscript x and y refer to the px and py orbital, that combined
with the copper site, labeled by �, form the triangle. Explic-
itly the triangles are �1, p1x , p1y�, �2, p1x , p2y�, �3, p4x , p2y�,
and �4, p4x , p1y�. The flux in the triangles labeled L=I,. . .IV
in Fig. 4 with a Cu site at �=1, . . . ,4 is

I II

IIIIV

V

FIG. 4. The five areas in which a unit cell is divided by con-
necting Cu-O and O-O links. Sum of directed current operators on
the links to form closed loops define five flux operators in the areas
marked by Roman letters. These can be further combined to form
five flux patterns with the point-group symmetry of the square lat-
tice as in Fig. 5.

1 2

34

p1x

p4x

p2yp1y

1 2

34

p1x

p4x

p2yp1y

1 2

34

p1x

p4x

p2yp1y

1 2

34

p1x

p4x

p2yp1y

1 2

34

p1x

p4x

p2yp1y

L̃i,x′ L̃i,y′

L̃i,s L̃i,x′2−y′2L̃i,z

FIG. 5. The five gauge-invariant combinations of link variables
organized by the irreducible representations of the point-group sym-

metry of the lattice. L̃i,s has the symmetry of an overall flux in an
unit cell. All the others have zero net flux integrated over the unit
cell. They are described in the text.
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f i,I 	 Oi,1,x − Oi,1,y + Oi,1,xy ,

f i,II 	 Oi,2,x + Oi,2,y + Oi,2,xy ,

f i,III 	 − Oi,3,x + Oi,3,y + Oi,3,xy ,

f i,IV 	 − Oi,4,x − Oi,4,y + Oi,4,xy . �D4�

A clockwise choice of currents around the loop is chosen to
define f to be positive. The convention is shown in Fig. 6.

Similarly, the fifth flux, f i,V operator �see Fig. 5� is

f i,V = �
L

f i,L − 2Oi,�,xy . �D5�

Here the sum of the currents on the Cu-O links cancels the
current in the O-O links such that there is no flux in the
corner triangles.

For the triangle L=1,

Vpd

2
��Oi,1,x�2 + �Oi,1,y�2�

= 
Vpd

4
����Oi,�,x� + Oi,�,y�2 + ��Oi,�,x� − Oi,�,y�2� .

�D6�

We now note that the first term in Eq. �D6� has finite sum of
currents at the Cu sites and can form closed loops only by
adding similar terms from neighboring cells. These cannot
give rise to either q=0 order or long-wavelength fluctuations
and are not considered further. Now we add �Vpd /4��Oi,�,x,y�2
to the second term in Eq. �D6� and subtract it from the simi-
lar term with coefficient Vpp in Eq. �D1� so that we can write

Hnn
L=1 = −

Vpd

8
���Oi,1,x − Oi,1,y + Oi,1,x,y��2� +���Oi,1,x − Oi,1,y

− Oi,1,x,y��2� −
�2Vpp − Vpd�

4
�Oi,1,xy�2. �D7�

Note using Eq. �D4� that the first term in Eq. �D10� is equal
to f i,L=1

2 . This exercise can be repeated for L=2, 3, and 4. For
each triangle we get three terms: �1� f i,L

2 , �2� term analogous

to the second term in Eq. �D4�, and �3� ��2Vpp
−Vpd� /4��Oi,�,xy�2. We can sum over � in the second term to
produce one combination which �see Eq. �D5�� is �f i,V�2. The
other three can be removed by gauge transformations at the
three sites in each unit cell.

Next note that

L̃i,x� = f i,I − f i,III,

L̃i,y� = f i,II − f i,IV,

L̃i,x�2−y�2 = f i,I + f i,III − f i,II − f i,IV,

L̃i,s̄ =
1

2
− f i,V + �
L=I,IV

f i,L� ,

L̃i,s =
1

2 �
L=I,V

f i,L. �D8�

We also note that

�
�=1

4

Oi,�,x,y = L̃i,s̄ �D9�

as well.
Using the above identities, we can write the gauge-

invariant part of Hnn as

Hnn = − 
Vpd

16
���L̃i,x��

2 + �L̃i,y��
2 + 
1

2
��L̃i,x�2−y�2�2 + �L̃i,s�2�

− 
Vpp

8
��L̃i,s̄�2. �D10�

This is in the desired form.
Let us also define an operator

L̃i,z 	 �
L=I,..,IV

f i,L. �D11�

A term

HKE = −
Vpd

16
�L̃i,z�2 �D12�

is also present in the interactions. We are concerned in this
paper with the fluctuations of the observed phase which is
realized by the local condensation of the collective parts of

L̂x� and L̂y� into four possible domains in any unit cell. In the
quantum-fluctuation regime, the important fluctuations are
between these four configurations in any unit cell. As we

show below, such fluctuations are caused by the operator L̂z
so that HKE acts as the kinetic-energy operator rotating the

configurations of L̂x� and L̂y�. The relevant terms in the
above must therefore include HKE beside those involving the

L̂x� , L̂y� operators. This completes the derivation of Eq. �4�
of Sec. II.

The operator L̃i,s corresponds as noted to a net flux in the
unit cell. For it to order, its expectation value must reverse

1 x

y

I

2x

y

II

3x

y

III

4 x

y

IV

FIG. 6. Convention used for defining the triangles and the link
operators.
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between neighboring cells giving rise to flux patterns with
broken translational symmetry. Such patterns are not ob-
served in experiments. What about the uniform ordering of

L̃i,s? This would correspond to a net flux in the sample or
macroscopic boundary currents. By a general theorem, such
ordering is impossible because long-wavelength variations in

L̃i,s have all the symmetries of magnetic field produced by a
vector potential, which cannot acquire mass. However from
the same considerations, fluctuations of such operators at
long wavelengths have the properties of photons and there-
fore may be quite important in the pseudogap phase. The
propagator of such fluctuations and its coupling to fermions
and the consequences of this coupling will be presented in
the near future.

APPENDIX E: PROPERTIES OF L̃i,z

In this appendix we show that the operator L̂z defined on
the lattice is a generator for rotations. To do so let us con-
sider the four states represented pictorially in Fig. 2 and
write down the one-particle wave function which has the
same expectation value of the current operator as that in the
collective states Li in a unit cell. Define a set of basis opera-
tors centered at each of the four copper sites in a cell i
labeled by their center, ��i1�−−, ��i2�−−, ��i3�−−, ��i4�−−,

�i1
−− =

1

2
��2di1 + eı�pi1x − eı�pi1y� ,

�i2
−− =

1

2
��2di2 + eı�pi1x − eı�ipi2y� ,

�i3
−− =

1

2
��2di3 + eı�pi4x − eı�ipi2y� ,

�i4
−− =

1

2
��2di4 + eı�pi4x − eı�ipi1y� . �E1�

In terms of these operators, the wave function of the electron
corresponding to, say, the state �	=225°�= �−x̂− ŷ� of Li is

�− x̂ − ŷ� =
1

4
��1

−− + �2
−− + �3

−− + �4
−−�†�0� . �E2�

Similar representation of the other four states in terms of
fermion operators may be written down. The state �	
=135°�= �−x̂+ ŷ� is obtained by rotating clockwise by 90°.

The corresponding rotation operator is U�−� /2�=e−ıL̂z��/2� is

U�− �/2� = e−ıL̂z��/2� = I − ıL̂z − L̂z
2. �E3�

Using

�d2
+d3 + d3

+d1, j12� = j31 �E4�

and �j12, j23�= ij13 we can explicitly verify that

�U�− �/2�,
1

4
��1

−− + �2
−− + �3

−− + �4
−−�†�

=
1

4
��1

−+ + �2
−+ + �3

−+ + �4
−+�†, �E5�

where

�i1
−+ =

1

2
��2di1 + eı�pi1x + eı�pi1y� ,

�i2
−+ =

1

2
��2di2 + eı�pi1x + eı�ipi2y� ,

�i3
−+ =

1

2
��2di3 + eı�pi4x + eı�ipi2y� ,

�i4
−+ =

1

2
��2di4 + eı�pi4x + eı�ipi1y� . �E6�

The exercise can be repeated to show that the operator in-

deed rotates the states of L̂ clockwise by 90°. The lattice

fermion operator L̂z is the generator of rotation and corre-
sponds to the angular momentum operator in the continuum
limit.

APPENDIX F: CORRELATIONS OF THE ANGULAR
MOMENTUM OPERATOR

The coupling of the fermions to the fluctuations of
the order parameter are proportional to the angular momen-
tum operator Lz. The pairing interaction that leads to
superconducting instability involve the �LziLzj� correlation
function. To analyze the connection with the
�exp�ı	�r , t��exp�ı	�r� , t���� correlation derived in Aji and
Varma7 we first must identify the appropriate representation
of the field exp�ı	�r� , t���. In the path-integral formulation
the correlation function computed is

Ci,j,�,�� = �eı	i�e−ı	j��� , �F1�

where 	i� is the classical phase at site i at time �. In this
calculation the standard procedure of slicing time into infini-
tesimal segments is followed. The commutation properties
are accounted for by appropriately defining matrix elements
for infinitesimal time evolution as dictated by the Hamil-
tonian. We now show that the correlation function of the
angular momentum operators is proportional to the same
classical field correlations.

To do so we note that the angular momentum in its eigen-
basis �m� is given by

Lz = �
m

m�m��m� . �F2�

We can now look at the operation on a state �	� at site i and
time �,
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Lzi��	i�� = �
mi�

mi��mi���m�	i�� = �
mi�

mi��mi��eı	i�. �F3�

The correlation of the angular momentum operator in the
theta basis is

�	i��Lzi�
† Lzj���	 j��� = �

mi�,mj��

mi�mj��e
−ımi�	i�+ımj��	j���mi��mj��� .

�F4�

Since the �exp�ı	�r , t��exp�ı	�r� , t���� correlations are local
the same is assumed to be true for the angular momentum.
This is justified because in the critical regime the spin waves
are not the critical modes and the overlap of the angular
momentum eigenstates �mi� �mj��� which are spatially sepa-
rated falls off exponentially. At the same site �mi� �mi���
=�mi�mi��

. Having obtained the representation of the angular

momentum correlation in the 	 basis, we can compute the
correlation function,

Ci,i,�,��
Lz = �Lzi�

† Lzi���

= � �
mi�,mi��

�mi�mi��
mi�mj��e

−ımi�	i�+ımj��	j��� . �F5�

The mi�=1 and mj��=1 contribution to the angular momen-
tum correlations in the sum in Eq. �F5� is equal to
�exp�ı	�r , t��exp�ı	�r� , t����. Thus the leading term is local in
space and power law in time. Higher order in m correlations
are also local in space but decay much faster in time so that
the dominant contribution to Lz

†Lz correlations is precisely of
the form in Eq. �13�. We refer to the derivation in Ref. 23 for
further details but quote the main result. The correlations are
given by

�exp�ımr,�	�r,���exp�ımr�,��	�r�,����� � �r,r� expF��−���

�F6�

and

F�� − ��� = − 2�Tm21 − cos��n�� − ����
��n�

log��n�c� ,

�F7�

where �n is the Matsubara frequency and �c is the short-time
cutoff in the theory. For m=1, the long-time correlations de-
cay as ��−���−1. For m�1, the correlations decay faster as
the weight is shifted to higher and higher frequencies. One
can infer this from the spectral function associated with this
autocorrelator which is given by24

A� = c0Tm2−1

sinh
 �

2T
���
m2

2
−

ı�

2�T
��2

2�m2−2�/2���
m2

2
��
m2 + 1

2
� , �F8�

where c0 is a constant. To show the shift in weight we plot
the spectral function for m=1, 2, 3, and 4 in Fig. 7. As m
becomes larger the frequency dependence at low frequencies
is superlinear. The increasing weight at larger frequencies
implies that the these correlations will decay faster that the
m=1 contribution.
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