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We have calculated the Raman B1g and B2g spectra as a function of temperature, as well as doping, for the
underdoped cuprates, using a model based on the resonating valence-bond spin liquid. We discuss changes in
intensity and peak position brought about by the presence of a pseudogap and the implied Fermi surface
reconstruction, which are elements of this model. Signatures of Fermi surface reconstruction are evident as a
sharp rise in the doping dependence of the antinodal to nodal peak ratio which occurs below the quantum
critical point. The temperature dependence of the B1g polarization can be used to determine if the supercon-
ducting gap is limited to the Fermi pocket, as seen in angle-resolved photoemission spectroscopy, or extends
beyond. We find that the slope of the linear low-energy B2g spectrum maintains its usual d-wave form, but with
an effective gap which reflects the gap amplitude projected on the Fermi pocket. Our calculations capture the
main qualitative features revealed in the extensive data set available on the HgBa2CuO4+� �Hg-1201� cuprate.
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I. INTRODUCTION

The underdoped region of the high-Tc cuprate phase dia-
gram is known to contain a number of features, which makes
both the normal and superconducting state challenging to
understand using microscopic models. These features in-
cluded: nanoscale inhomogeneities as seen in scanning tun-
neling microscopy,1,2 the observation of a pseudogap energy
scale above Tc,

3,4 as well as a transition to an antiferromag-
netic Mott insulating state at low doping.5

The discovery of a pseudogap feature in the normal state
above the superconducting dome, for doping below some
critical value �thought to be a quantum critical point�, has
recently resulted in considerable research activity. Under-
standing the effect of this pseudogap energy scale on the
transition temperatures, Tc, of the cuprates, as well as the
origin of this energy scale itself, are important and interest-
ing issues. Examination of the cuprate phase diagram shows
a clear reduction in Tc as the pseudogap energy scale in-
creases. This could be an indication of the pseudogap arising
from a competing phase, driving down the superconducting
gap, and hence the Tc. Indeed, a great deal of experimental
evidence appears to suggest that the superconducting gap
and pseudogap occupy unique regions of phase space �nodal
superconductivity and antinodal pseudogap�.6

Since its appearance in 2006, the model of Yang, Rice,
and Zhang �YRZ� �Ref. 7� has shown some success in un-
derstanding Raman and optical properties,8,9 angle-resolved
photoemission spectroscopy �ARPES� �Ref. 10� and specific-
heat data.11 The YRZ model provides an ansatz for the co-
herent part of the many-body Green’s function for a resonat-
ing valence-bond �RVB� spin-liquid system. In the absence
of a pseudogap, the model maintains a large tight-binding
Fermi surface that can undergo a transition to the supercon-
ducting state resulting in a superconducting gap which opens
on this Fermi surface. The inclusion of a pseudogap in the
YRZ model is such that it opens about the antiferromagnetic

Brillouin zone �AFBZ� boundary. The net result is that a
finite pseudogap in this model acts to deform the tight-
binding Fermi surface to form Fermi hole pockets. If one
assumes the onset of the pseudogap to be a zero-temperature
quantum critical point �QCP� at a critical doping xc, then we
can define several regions around this critical doping. First,
for dopings above xc, there is a superconductivity-dominated
region with a large tight-binding Fermi surface. Second, for
dopings well below xc, there is a pseudogap-dominated re-
gion with Fermi pockets which become smaller and shrink
toward the nodal direction as the antiferromagnetic Mott in-
sulator is approached. Finally, there is an intermediate region
wherein the features of a pseudogap onset, as well as a de-
formation of Fermi surface both present themselves. It is in
this region that the energy scale of superconductivity and the
pseudogap are comparable.

There are other theoretical methods for including a
pseudogap phase through, for example, preformed pairs12 or
as a competing d-density wave order.13,14 As the YRZ theory
has thus far resulted in good qualitative descriptions of a
number of experimental properties, continued investigation
of this model allows us to distinguish quintessential features
of the cuprates which must be included in any more complex
microscopic models that might follow. Of central importance
to this paper is the presence of two energy scales, nodal and
antinodal, in the superconducting underdoped cuprates, as
seen in Raman and ARPES experiments.15–18 Within the
model of YRZ, which includes two independent energy
scales �superconducting gap and pseudogap�, we calculate
the minima in the angular-band energies for comparison with
ARPES and application to Raman spectra. Although the YRZ
model has previously been applied to the calculation of Ra-
man spectra at zero temperature in the work of Valenzuela
and Bascones,8 the work presented here extends upon those
doping-dependent calculations to understand better the spe-
cific behaviors which are present in models of the pseudogap
phase. Here we will identify the impact on Raman B1g �an-
tinodal� and B2g �nodal� spectra of two important behaviors:
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�1� the k-space separation of superconducting-gap and
pseudogap energies and �2� the reconstruction of the Fermi
surface. We will demonstrate how �1� and �2� play a role in
the temperature and doping dependence of the Raman spec-
tra.

We have organized this work to fit the following structure.
Section II will describe the theoretical framework and pa-
rameters involved in the YRZ model used for all calculations
shown. Section III will be a description of ARPES results in
the context of the YRZ model with the motivation that this
will be necessary for the understanding of the Raman results.
Section IV will contain our Raman calculations in the YRZ
model, including finite temperature, while Sec. V will con-
tain a summary of our main conclusions.

II. THEORY

In the YRZ model,7,10 both the superconducting gap, �sc,
and the pseudogap, �pg, have a d-wave k-space dependence
described by

�sc =
�sc

0 �x�
2

�cos kxa − cos kya� , �1�

�pg =
�pg

0 �x�
2

�cos kxa − cos kya� , �2�

where a is the lattice constant. For a doping x, the YRZ
model employs, for the coherent piece, a propagator,

G�k,�,x� = �
�=�

gtWk
�

� − Ek
� − �sc

2 /�� + Ek
��

, �3�

which has been formulated from numerical studies of RVB-
type models and will contain the essential physics of the
superconducting state. Entering this Green’s function are the
quantities

Ek
� =

�k − �k
0

2
� Ek,

Ek = ��̃k
2 + �pg

2 ,

�̃k =
��k + �k

0�
2

,

Wk
� =

1

2
�1 �

�̃k

Ek
� . �4�

The energy dispersion �k=−2t�cos kxa+cos kya�
−4t� cos kxa cos kya−2t��cos 2kxa+cos 2kya�−�p is the
third nearest-neighbor tight-binding energy dispersion, while
�k

0=−2t�cos kxa+cos kya� is the first nearest-neighbor term,
which effectively shifts the placement of the pseudogap off
the Fermi surface to an energy which coincides with the
AFBZ boundary, defined by the half-filling point of the
tight-binding energy �k

0. These energy dispersions contain
doping-dependent coefficients: t�x�=gt�x�t0+3gs�x�J	 /8,

t��x�=gt�x�t0�, and t��x�=gt�x�t0�, where gt�x�= 2x
1+x and gs�x�

= 4
�1+x�2 are the energy renormalizing Gutzwiller factors for

the kinetic and spin terms, respectively. gt�x� also appears in
Eq. �3� as a weighting factor for the coherent part of the
Green’s function which acts to statistically remove or project
out doubly occupied states.19,20 The dispersion, �k, uses �p as
a chemical potential determined by the Luttinger sum rule.21

Values of other parameters in the dispersion were taken from
Ref. 7 to be: t� / t0=−0.3, t� / t0=0.2, J / t0=1 /3, and 	
=0.338, which are accepted values for the hole-doped
cuprates.22 The optimal superconducting gap �sc

0 was chosen
to give an optimal Tc around 95 K for a ratio of 2�sc

0 �x ,T
=0� /kBTc=6, using of t0=175 meV. We also take �sc

0 �x ,T�,
the gap amplitude at doping, x, and temperature, T, to have a
BCS temperature dependence. We will assume that the
pseudogap is only a function of doping, and hold the value of
�pg�x� constant with temperature. This will allow us to at-
tribute any temperature dependence in calculated quantities
as being due to the superconducting state. �sc

0 �x� and �pg
0 �x�

are described by the well-known superconducting dome and
pseudogap line, the latter vanishing at T=0 at a QCP in this
model. These are given explicitly as

�sc
0 �x,T = 0� = 0.14t0�1 − 82.6�x − 0.16�2� , �5�

�pg
0 �x� = 3t0�0.2 − x� . �6�

From the YRZ Green’s function of Eq. �3� and standard
equations of superconductivity for the anomalous propagator,
one can extract the regular and anomalous spectral functions,
A�k ,�� and B�k ,��, respectively, and see that there are four
energy branches, given by the energies,

�Es
� = � ��Ek

��2 + �sc
2 . �7�

These energy branches appear in the spectral functions as

A�k,�� = �
�=�

gtWk
���u��2��� − Es

�� + �v��2��� + Es
��� ,

�8�

B�k,�� = �
�=�

gtWk
� �sc

2Es
� ���� + Es

�� − ��� − Es
��� , �9�

where

u� = 	1

2
�1 +

Ek
�

Es
��
1/2

, �10�

v� = 	1

2
�1 −

Ek
�

Es
��
1/2

. �11�

The Raman response, 	
����=Im�	
�T ,���, is given by

	
���� =
�

4 �
k

�k

�2�

−�

�

d��f��� − f�� + ���

� �A�k,��A�k,� + �� + B�k,��B�k,� + ��� ,

�12�

where f is the Fermi function and 
 is the choice of vertex
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B1g or B2g. The vertex strength, �k

�2, can be determined

straightforwardly from the energy dispersion, such that

k
B1g =

�2��k�
�kx

2 −
�2��k�

�ky
2 , �13�

k
B2g =

�2��k�
�kx � ky

. �14�

For the energy dispersion used, this results in

k
B1g = 2ta2�cos kxa − cos kya� + 8t�a2�cos 2kxa − cos 2kya� ,

�15�

k
B2g = − 4t�a2 sin kxa sin kya . �16�

The Raman response can be simplified by performing the
integration over � in Eq. �12�. This allows us to separate the
contribution to the Raman spectra from each energy branch
so that

	
���� =
�

4 �
k,�=�

�k

�2gt�Wk

��f�Es
�� − f�Es

� + ���

� 	�u��2A�k,Es
� + �� +

�sc

2Es
�B�k,Es

� + ��

+ Wk

��f�− Es
�� − f�− Es

� + ���

� 	�v��2A�k,− Es
� + �� −

�sc

2Es
�B�k,− Es

� + ��
� .

�17�

Throughout this work, all Raman calculations shown are the
results of Eq. �17�. Due to symmetry considerations, we have
numerically summed over only the first quadrant of the Bril-
louin zone with a square grid containing at least 1000
�1000 points. For simplicity, we have broadened the delta
functions as Lorentzians with a half width of �=0.01t0 in all
cases unless otherwise explicitly noted.

III. ARPES

In this section, we wish to understand how the angular-
energy profiles seen in ARPES data come about in the YRZ
model. This will be essential to the Raman analysis and dis-
cussion given in Secs. IV and V

The concept of a Fermi surface, defined here by �k=0, can
be a powerful aid in understanding the k-space distribution of
electronic states and excitations. In the presence of energy
gaps, more complicated energy dispersions, Es

�, arise which
may not trace a zero-energy surface. In these cases, the ex-
amination of the minima of the energy dispersion produces a
surface which represents the lowest energy excitations in k
space. In the YRZ model, examination of the Es

+ and Es
−

energies as a function of angle, serve to produce these lowest
energy surfaces, or nearest approach energy, �na, surfaces. In
Fig. 1, the Es

− energy is plotted as a function of distance
along a line traced from �� ,�� for a range of angles. At �
=45°, the line is traced through the nodal direction, where

both the pseudogap and superconducting gap equal zero.
This results in a true Es

−=0 Fermi surface in the �� ,�� di-
rection, culminating at well-known Dirac points. For angles
away from the node, there are no Es

−=0 points. It is for these
angles that the minima in energy serves as an effective Fermi
surface.

When these nearest approach energies are traced in k
space one obtains the inset of Fig. 1 demonstrating the Fermi
pockets which are an essential part of the YRZ model. As has
been previously described, the Es

+ and Es
− bands have relative

weightings Wk
+ and Wk

−, given in Eq. �4� which are dependent
on both the sign of the bare dispersion, as well as modified
by the presence of the pseudogap, such that Wk

++Wk
−=1.

These weightings are incorporated into the nearest approach
momentum contours of Fig. 2 through a color scale as shown
by two vertical columns with black equal to one and orange
equal to zero.

Of course, each branch will have, possibly, separate near-
est approach surfaces. Examples of these are shown in Fig. 2.
In Fig. 2�a�, which contains a large pseudogap, the Es

− band,
shown as a continuous curve, dominates in weighting along
the front side of the Fermi pocket closest to �0,0�, forming a
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FIG. 1. �Color online� Plot of Es
− band as a function of length, L,

along a line traced from the �� ,�� �see inset� point for a range of
angles, �, in the x=0.14 doping case. The local minima in this curve
are the energies of nearest approach, �na. The inset shows the
k-space locations of these nearest approach energies, marking out
the Fermi pocket and its extension to the Brillouin zone boundary
through the Fermi-Liquidlike wings, shown in red.
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FIG. 2. �Color online� Locations of nearest approach for both
the Es

+ �dots� and Es
− �solid� bands for the �a� x=0.12 and �b� x

=0.19 cases with the color scale of the individual pseudogap
weightings Wk

+ and Wk
−. This illustrates the restructuring of the tight-

binding Fermi surface in the antinodal direction, shown as the black
dots of the curve in �b�, related to the Es

+ band.
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strong Fermi arc, shown in black �the top of our color scale�.
The backside of the Fermi pocket closest to the AFBZ
boundary has a small weighting due to proximity to the
pseudogap located there and is shown in orange which is the
bottom of our color scale. In a recent ARPES experiment23

the backside of the pocket has finally been resolved and is
indeed seen with much lower intensity as compared with the
front side. The second momentum space contour, shown as
solid dots, in Fig. 2�a� are associated with the Es

+ branch. For
most of this curve the intensity falls in the middle of the
range shown, which is red on our color scale. Note that while
these nearest approach contours are well defined, Fig. 2 tells
us nothing about how close to zero the approach energies
might be. This can be very important in determining how
effective a process involving such energies might be. Later
we will return to this issue.

Figure 2�b� shows how the closest approach surfaces
change as the pseudogap becomes small. Here for doping x
=0.19, which is only slightly less than xc=0.20, the Es

+ band
has substantial weight near the antinodal “wings,” shown as
black dots. One can see the reformation of the tight-binding
Fermi surface as the combination of Es

+ and Es
− black regions.

The side of the pocket nearest to the AFBZ boundary now
has a more uniform weighting, approaching zero in value for
x=xc. The contours also take on the shape of the AFBZ with
which they almost overlap. In the antinodal direction the Es

+

band has two nearest approach values as does Es
− in the

Fermi pocket region.
We can also examine the size of the nearest approach

energies as a function of angle, along the strongly weighted
region of Fig. 2�a�. This is shown in Fig. 3, where we com-
pare the cases with either a pseudogap or a superconducting
gap to the case with both. The surface traced by minima in
the Es

− band coincides with the Luttinger pocket and actual
Es

−=0 Fermi surface in the absence of superconductivity,
which is important for correctly describing low-energy nodal
excitations. The strongly weighted part of the Es

+ band in the
nodal direction occurs at a high energy relative to a zero-
energy Fermi surface that exists in the Es

− band in the �� ,��
direction. Comparison with ARPES data with energy scales
relative to the Fermi level will therefore be dominated by the
Es

− band. It is an important note that the nearest approach
contours are not shifted when the superconductivity is
switched on or off. We make two calculations of Es

−���: one
without the superconductivity in which we denote the energy
of nearest approach by �na�T=Tc� �red short-dashed curve�
and one with superconductivity denoted by �na�T=0� �solid
black curve�. We can also evaluate directly the size of the
superconducting gap on the nearest approach contour, �sc���
and this is the long-dashed green curve. In the pseudogap
case, for angles less than some critical angle, �YRZ, �na�T
=Tc�, which contains only a pseudogap, is finite. These
angles ���YRZ represent the region along the wings of the
Fermi surface. In this sense �YRZ marks the corner of the
Fermi pocket. For ���YRZ, �na�T=Tc� is uniformly zero
along the strongly weighted side of the Fermi pocket. In the
YRZ model, in spite of introducing a d-wave pseudogap over
the entire Brillouin zone the net effect is that it only appears
dominant in the wings, and not in the pocket itself where the
excitation spectrum shows no gap, as is also seen in ARPES

data. Figure 3 also includes �na�T=0,�� �solid black curve�,
which has both gaps present. The value of �na�T=0,�� is
dominated at ���YRZ by the pseudogap contribution and by
the superconducting contribution for ���YRZ. However,
there appears here a natural energy scale which is well ap-
proximated by �na�T=0,����tot���=��sc

2 ���+�na
2 �Tc ,��,

the root sum of squares of the superconducting-gap and
pseudogap contributions. This square root is represented by
the open blue circles which overlap precisely with the
�na�T=0� curve.

Comparison with experiment18 yields a complication in
that there appears to be minimal difference between
�na�Tc ,�� and �na�T=0,�� for small angles. In order to ob-
tain a similar feature that �na�0,����na�Tc ,�� for small
angles, corresponding to the region off of the Fermi pocket,
one would infer from the equation for �tot��� that the new
superconducting gap should be zero off of the Fermi pocket
and be equal to �sc��� from Fig. 3 for large angles, corre-
sponding to the region on the Fermi pocket. Guided by Fig.
3, we have chosen a �sc���, which is zero for small angles
and smoothly transitions to be equivalent to its value in Fig.
3 for large angles. Figure 4 demonstrates the result of such a
constraint on �sc��� �long-dashed green curve� as well as the
expected overall gap �na�0,��=��sc

2 ���+�na
2 �Tc ,�� �solid

black�. This procedure results in a superconducting-gap pro-
file, which appears either highly nonmonotonic or that is
only present on the Fermi pocket for ���YRZ, dropping off
quickly beyond that. One can apply this simple analysis to
the experimental data taken from Ref. 18, which we have
shown in the inset of Fig. 4. We see that the superconducting

0 10 20 30 40 50
θ (deg)

0

0.05

0.1

0.15

0.2

0.25

∆/
t 0

∆
na

(T=0)
∆

na
(T=Tc)

∆
sc

(θ)
∆

tot

FIG. 3. �Color online� Es
− energies of nearest approach, �na,

versus angle, �, for the x=0.12 doping case: with superconductivity
�solid black line� and without superconductivity �short-dashed red
line�. The long-dashed green line is �sc��� as described in the text.
Marked with open circles is the robust approximation that �na�T
=0,����tot, where �tot���=��sc

2 ���+�na
2 �Tc ,��. The angle at

which �na�Tc�=0 marks the edge of the Fermi pocket and thus
defines �YRZ, as measured from �� ,�� and described in the text.
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gap �solid green curve� is nonzero only in the nodal region
up to approximately 23°, i.e., between 23° –45°.

The issue of how the superconducting gap presents itself
on the Fermi surface in complicated electronic systems is
important. Even in conventional metals, for which the
electron-phonon interaction is responsible for the supercon-
ducting condensation, the gap is found to be highly aniso-
tropic and does not exist for certain solid angles in momen-
tum space where there is no Fermi surface because it is
gapped out by the crystal potential.24–26 In the cuprates, sig-
nificant deviations from the simplest d-wave gap, Eq. �1�,
have been known for some time in Bi2Sr2CaCu2O8+� �Ref.
27� and are seen in ARPES data which resolves bilayer split-
ting in �Pb,Bi�2Sn2CaCuO8+�.28 A nonmonotonic gap was
also observed in Nd2−xCexCuO4,29 an electron-doped super-
conductor. This is also expected in theoretical models with
pairing based on spin fluctuations.30–33 Numerical solutions
of the gap equation in such cases show that many higher
d-wave harmonics are present in the gap function. When a
pseudogap is present, as is the case in the underdoped cu-
prates, one expects it to prevent the lowest order harmonic
contribution to the superconducting gap from having its full
amplitude. This amplitude could even be forced to zero as is
indicated in the data shown in the inset of Fig. 4 for the
regions away from the Fermi pocket. The Fermi pocket is the
only region where the normal state supports zero-energy ex-
citations.

Of additional note, the angular profile of the pseudogap,
�na�Tc ,�� can be compared to another model, such as the arc

model, which has previously been used to fit electronic
specific-heat data11,34 as well as understand the existence of
two energy scales in Raman spectra.35 The arc model, named
as such because it produces a Fermi arc rather than a Fermi
pocket, places a pseudogap over only a portion of the large
tight-binding Fermi surface, i.e.,

�pg
ARC�k� = �pg

0 cos� ��

2�0
� , � � �0

�pg
0 cos���� − �/2�

2�0
� , � �

�

2
− �0.�

�18�

This �pg
ARC��� is essentially a shrunken cos�2�� which goes to

zero at �0 rather than �=45°. For reference, the open blue
circles in Fig. 4 show Eq. �18� for �0=�YRZ. This arc model
pseudogap profile shows minimal difference from what
would be extracted on the heavily weighted side of the
pocket in the YRZ model. In this respect the two models are
equivalent, the arc is just one side of the pocket.

IV. RAMAN IN THE YRZ MODEL

Experimental Raman spectra suffer from a loss of the B1g
signal with increased underdoping as well as a strong signal
from inelastic scattering at higher frequencies and complica-
tions due to surface effects. Still, given these issues, work
has been done, which is able to see clearly two energy
scales:16,36,37 one in the antinodal B1g signal which increases
and the other in the nodal B2g signal which decreases
with underdoping. While ARPES experiments are able to
resolve k-space dependence, Raman spectra sample a finite
region of k space associated with nodal or antinodal
polarizations. These regions may even overlap somewhat.
We seek to illustrate how some of the intricate details seen in
ARPES, namely, the Fermi surface restructuring and the
superconducting-gap profile, impact upon Raman spectra.

Figure 5 shows a sample calculation for the x=0.10 case.
Each frame contains Raman spectra for the pseudogap case
only �dashed green�, superconducting case only �dash-dotted
red�, and both �solid black�. In the top frame the B1g peak,
2�AN, is marked. For this doping, the 2�AN peak occurs at a
higher frequency than both the 2�pg and 2�sc points due to
the additive impact of these two gaps on the antinodal gap.
In the �sc only curve, the peak occurs just before the 2�sc
point. In the simplest BCS calculations based on free-
electron bands, the position of this peak would coincide ex-
actly with the value of twice the superconducting-gap ampli-
tude. However, in more complicated band-structure models,
as we are using here, and with a superconducting gap defined
over the entire Brillouin zone rather than just on the Fermi
surface this need not be the case. In addition, the Raman
cross-section can display other features such as the second
peak seen in the red dash-dotted curve of the top frame of
Fig. 5 which have their origin in the band structure. In the
bottom frame, the B2g peak, 2�N �first peak in the B2g spec-
trum�, is marked on the solid black line, and occurs at lower
energy than both 2�sc and 2�pg. There are two main factors,
which contribute to this lower value. First, the value of a gap
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∆/

t 0

∆
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∆
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∆
sc

(θ)

Eq. (18)
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)
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∆
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FIG. 4. �Color online� Nearest approach energies as a function
of angle, � �measured from �� ,���, at T=0 �solid black line� and
T=Tc �dashed red line� for doping x=0.12. Here the
superconducting-gap profile �sc��� �long-dashed green line� is cho-
sen so that �na�T=0,����na�T=Tc ,�� for small �, which is differ-
ent from Fig. 3 and is governed by �sc���=��na

2 �0,��−�na
2 �Tc ,��.

Inset shows a similar analysis of experimental data from Kondo et
al. �Ref. 18� for an underdoped sample measured at T=10 K �low
temperature� and T=40 K �above Tc�, where we take �sc���
=��na

2 �10 K,��−�na
2 �40 K,��.
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in the B2g spectra in standard BCS theory falls not at its peak
but beyond the peak, at a point of inflection. Additionally,
since the B2g vertex samples largely the nodal direction, it
may not contain the maximum input gap values which occur
in the antinodal direction, depending on the actual size and
shape of the Fermi pocket.

To elaborate, as mentioned in Fig. 3, the edge of the
Fermi pocket is marked by an angle �YRZ which changes
quite drastically with doping. If we instead measure this
angle from �0,0�, which we will distinguish by calling it
�YRZ �shown in the upper right inset of Fig. 6�, we would
find that �YRZ has a large value approaching 45° at x=0 and
for dopings at or above the QCP, xc, has some small value
defined by the angle from �0,0� to the point where the tight-
binding Fermi surface intersects the Brillouin zone boundary.
As shown in Fig. 2�a� the edge of this pocket can be quite
heavily weighted, and as a result any experimental probes
that are concerned with excitations along the Fermi surface

will see a maximum superconducting-gap value at the edge
of the Fermi pocket near the angle �YRZ where a maximum
value coincides with a strong weighting. In a theoretical cal-
culation, the input of a superconducting gap with a maxi-
mum value �sc

0 �x� �see Eq. �1�� such that �sc�x ,��
=�sc

0 �x�cos�2�� will show features in the Raman spectra at a
value �sceff

�x�=�sc�x ,�YRZ�. Figure 6 demonstrates the size
of this effect in the YRZ model. Shown in solid black is the
input superconducting dome given by Eq. �5� while the open
purple squares show �sceff

in the YRZ model. This is ob-
tained by finding the angles �YRZ�x� across the doping phase
diagram. Although this effect is small in the absence of
pseudogap; in the presence of pseudogap, this alone results
in a factor of 2 difference between the apparent gaps, as
compared with the actual input gap, across the phase dia-
gram. This is seen clearly in the upper left inset of Fig. 6,
which shows just the value of cos�2�YRZ� versus doping.

The shrinking of the Fermi pocket with underdoping has
additional important effects on the B1g antinodal response.
Figure 7 shows an overlay of the effective Fermi surface
onto the B1g vertex strength, �k

B1g�2. The B1g vertex cannot
properly sample the Fermi surface near the edge of the Fermi
pocket for strongly underdoped cases. Although this is an
extreme example, illustrating the large range of pocket size,
this effect can be seen clearly over a much smaller doping
range. Figure 8 shows the YRZ Raman B1g spectra with the
doping-dependent Gutzwiller factors removed to better illus-
trate this vertex strength effect. For doping above x=0.17,
there are extremely strong low-frequency peaks, which mark
the antinodal gap. For dopings below x=0.17 the low-
frequency signal has become extremely suppressed. The
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FIG. 5. �Color online� Raman response curves for the x=0.10
case. The top and bottom frames show the B1g and B2g responses,
respectively. The antinodal gap, 2�AN, and the nodal gap, 2�N, are
defined as the dominant peaks in their respective B1g and B2g

curves. As well, the actual input gap values 2�sc=0.2t0 and 2�pg

=0.6t0 are marked.
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FIG. 7. �Color online� An overlay of the Fermi pocket and
Fermi surface wings �in white� for the Es

− band, on a backdrop of
the B1g vertex strength, �B1g�2, as in Eq. �15�, for dopings: �a� x
=0.05, �b� x=0.16, and �c� x=0.19. This illustrates an expected loss
of B1g signal in the underdoped region as the pocket, which domi-
nates the superconducting state, shrinks away from regions of
strong �B1g�2, in addition to loss associated with the considerable
weakening of the vertex itself.

LEBLANC, CARBOTTE, AND NICOL PHYSICAL REVIEW B 81, 064504 �2010�

064504-6



horizontal dashed line helps the reader to see the two distinct
regions of doping with the boundary between the regions
occurring at x=0.17. This doping falls considerably below its
critical value, xc=0.20, which defines the quantum critical
point at which the pseudogap sets in. In both regimes, the
Raman vertex favors the antinodal direction. While it can
vary somewhat, both in shape and in amplitude, since the
hopping parameters in the electronic dispersion curves de-
pend on x, this is not the important effect that we wish to
emphasize here. What is more important is the evolution in
the topology of the Fermi surface, or more correctly the sur-
face of closest approach, that occurs for x�xc. As the pock-
ets begin to shrink they move away from the antinodal point
and the intensity of the Raman signal consequently drops due
to an effectively smaller value of the vertex projected onto
the pocket. To get a large reduction it is necessary that the
distance in momentum space between the end of the pocket
and the Brillouin zone boundary at the antinode is not too
small. Our calculations show that this occurs rather abruptly
at a doping of x=0.17.

So far we have not accounted for damping. The inelastic
scattering in the cuprates, which is known to be large, can
broaden the Raman response considerably and provide a
background that remains in the Fermi-liquid state.38,39 In our
formalism it would correspond to the incoherent part of the
Green’s function which should add a second piece in Eq. �3�
which involves only the coherent part. It has been shown that
the Raman, optical, and quasiparticle scattering rates are all
strongly dependent on frequency.39–42 In the superconducting
state, these scattering rates are reduced at low energy by the
opening of a superconducting gap and therefore there is no
justification for broadening the B2g spectrum, which samples
mainly the low-energy nodal region. However, the antinodal
B1g spectrum contains peaks that generally fall at higher en-
ergies, particularly in the underdoped region of the phase
diagram, and we therefore expect rather large scattering rates
and considerable broadening. For experimental purposes,

one would need to know the pseudogapped normal-state Ra-
man response to compare to the superconducting Raman
spectra in order to see indications of the strength of the su-
perconducting state in the combined spectra. Figure 9 gives
such a comparison for the B1g �right frame� and B2g �left
frame� spectra where the B1g curves have been broadened
with a doping-dependent elastic scattering of �=0.2t�x�
while the B2g have been kept near the clean limit. There is an
apparent shift of B1g spectral weight, shown by the shaded
yellow region, upon the addition of a superconducting en-
ergy scale. The differences between the normal and super-
conducting B1g spectra become much less pronounced for
increased underdoping. This behavior occurs at all dopings
where the pseudogap energy scale dominates, and the super-
conductivity provides only a very small additional contribu-
tion to the antinodal Raman. We note also that the overall
strength of the Raman signal decreases with decreasing dop-
ing as noted in experiments.16,37 As we have described be-
fore, this can be traced to a smaller overlap between the
appropriate Raman vertex weighting factor in the Brillouin
zone and the Fermi surface pocket. The case of the B2g re-
sponse yields a different result. The region of interest occurs
at a lower frequency, on the scale of the superconducting
energy gap, while the effect of the pseudogap is most appar-
ent only at higher frequency. However, the pseudogap does
suppress the lower frequency normal-state Raman back-
ground. This makes the effect of the superconducting gap
very apparent relative to this background even at small dop-
ings. Note that in the lower left frame, the shaded yellow
region at the lowest doping remains substantial compared
with its value in the upper frame. This is distinct from the
case in the right-hand frame where the shaded yellow region
at low dopings has essentially disappeared.

We have calculated the temperature evolution of these
peaks for the case where the superconducting and
pseudogaps are full d-wave gaps over the Brillouin zone,
given by Eqs. �1� and �2� and where we have assumed �pg

0 to
be constant with temperature and �sc

0 to have a BCS tempera-
ture dependence. The top frame of Fig. 10 shows that the B1g
peaks, normalized by their zero-temperature values, do not
follow the input BCS temperature dependence for the super-
conducting gap, but follow instead a temperature dependence
related to the combined magnitudes of �sc�T� and �pg. For
the extremely underdoped cases, there is almost no discern-
ible temperature dependence. For increased doping, the
pseudogap is reduced, and as xc is approached, the assumed
BCS temperature dependence returns. This is distinct from
the temperature dependence in the nodal direction, which is
dominated by the temperature dependence of the supercon-
ducting gap as is shown in the bottom frame of Fig. 10 where
it is compared to the input BCS ��T� /��0�.

We also wish to consider a cut-off superconducting gap, a
gap only present along the Fermi pocket, as suggested by
ARPES experiments. As a first attempt, we can cutoff the
superconducting gap sharply at the edge of the Fermi pocket.
Although this sharp cutoff would result in clear features in
nearest approach energies, the sharpness should not create
additional features in the Raman spectra due to the averaging
effects of the Raman vertices.

To state explicitly, when we state “�sc cutoff,” we are
referring to
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FIG. 8. �Color online� Raman B1g spectra versus frequency for a
range of doping values wherein the gt

2�x� prefactor has been re-
moved. Below x=0.17, the 	B1g

� amplitude is small at low frequen-
cies but maintains a roughly constant peak amplitude. Above x
=0.17, we see a strong increase in low-frequency amplitude caused
by the reformation of Fermi surface in the antinodal region which is
of interest for the B1g vertex. A dashed horizontal line has been
added to help the reader distinguish these two regions.

SIGNATURES OF FERMI SURFACE RECONSTRUCTION IN… PHYSICAL REVIEW B 81, 064504 �2010�

064504-7



�sc = �sc
0 �x�
2

�cos kxa − cos kya� , �YRZ � � �
�

2
− �YRZ

0, otherwise.
�

�19�

With this �sc cutoff, the gaps in the nodal direction are
largely unaffected, and the temperature dependence of the
corresponding B2g peaks follows exactly as in Fig. 10 �lower
frame�. This is not the case for the B1g antinodal results,
where the superconductivity has been removed. These results
are shown in Fig. 11. The open blue triangles are for the x
=0.16 case from Fig. 10, which had no �sc cutoff. Upon
inclusion of the cutoff, the results change drastically to the
solid blue circles, which show no temperature dependence
�due to the lack of temperature dependence assumed for the
pseudogap�. Although not shown, all dopings below x
=0.16 show the exact same result that the dominant peak is
purely pseudogap and independent of T. However, as the
doping is increased above x=0.16, there is reconstruction of
the Fermi pocket in the antinodal wings, shown in the inset
of Fig. 11 for the x=0.18 case. For these cases, the super-
conducting gap is present in the antinodal direction, and as a
result, the temperature dependence of the B1g peaks returns.
This change in Fermi surface in the antinodal direction oc-

curs over a relatively small doping change, �x=0.01–0.02,
and results in drastic modification to the temperature depen-
dence of the B1g Raman spectra. This gap cutoff could ex-
plain the recent data of Guyard et al.,16 which sees a large
change in the B1g temperature dependence over a small range
of doping. Furthermore, dopings which present little or no
temperature dependence in the B1g spectra, despite a strong
B2g nodal gap �N, are evidence of a pseudogap suppressing
the antinodal part of the Fermi surface. Experimental obser-
vation of this lack of temperature dependence continuing be-
low Tc is evidence to support the idea that the pseudogap line
continues through to T=0 in the phase diagram and does not
terminate at the top of the dome.

Comparing Raman spectra across the phase diagram is
complicated due to doping-dependent changes to the vertex
weightings, as well as modifications to the Fermi surface. To
further emphasize this point, we calculate the low-frequency

slope of the nodal Raman response, SB2g
= �

�	B2g�

�� ��=0, across
the doping phase diagram. In BCS theory of d-wave super-
conductors, this low-frequency dependence goes linear with
frequency as 	B2g

� �� /�sc.
43 Since for most dopings there is

little impact due to the pseudogap on the nodal direction
response, the effects of the vertex component, as well as
Fermi pocket size, can be seen clearly. Figure 12 shows these
slopes versus doping as open red circles with the solid red

(0,0)

B1g Antinodal Region

(b)

(0,0)

B2g Nodal Region

(a)

(d)(c)

FIG. 9. �Color online� Raman response in the
YRZ model for the B2g �left frames� and B1g

�right frames� polarizations. The dashed red
curves are for the normal state and act as a back-
ground for reference. In the underdoped region
the pseudogap background dominates, and super-
conductivity plays little role in the B1g spectra.
This is emphasized by the shaded region between
the curves above the background peak. The effect
of �sc on the B2g curves is clear, even at low
dopings, by a strong B2g signal relative to the
background. Also note that the y-axis scales are
modified with doping, which is an effect of the
gt

2�x� prefactors.
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line a guide to the eyes. Taken directly, there is a factor of 5
difference across the region shown. We can largely remove
the doping-dependent vertex factors by scaling out
�t��x�gt�x��2 and can compensate for the superconducting gap
by multiplying by �sc�x�. This results in the dashed blue
curve in the upper right inset of Fig. 12. With the factors
removed there remains a doping dependence, which varies
by a factor of 2 across the doping range shown. To compen-

sate for the effect of the pocket size, we replace the �sc�x�
factor with a �sceff

�x� factor, which is shown in the top left
inset of Fig. 12. To within 5% in the values here, the simple
BCS low-frequency scaling is maintained since this is purely
nodal physics and should be relatively unaffected by the
higher energy pseudogap scale. This does illustrate, however,
that the indirect effect of the pseudogap of modifying the
Fermi surface has an important and strong impact on the
low-frequency B2g spectra. This shows that it is the value of
the superconducting gap on the Fermi pocket that is impor-
tant and not its value at other points in the Brillouin zone.

Finally, we wish to examine the progression of zero-
temperature peaks in the Raman response as the doping is
varied over the phase diagram. Figure 13 shows such a plot,
which includes the input 2�sc�x� dome �solid black curve�
and 2�pg�x� line �dash-dotted green line�. Also included is
2�sceff

�x� �open purple squares�, the maximum gap value on
the Fermi pocket, from Fig. 6. All zero-temperature calcula-
tions are for a superconducting gap which exists over the
entire Fermi surface and not just on the pocket, as in Eq. �1�.
The open red diamonds mark B1g peaks while open black
circles mark B2g peaks. One first notes that the B2g peaks lie
substantially below the input 2�sc dome and follow a curved
shape much like the 2�sceff

�x� modified dome. In practice, the
2�sceff

point should always lie beyond the B2g peak at a point
of inflection �as mentioned in discussion of Fig. 5�. Here, if
one were to divide 2�sceff

�x� by the B2g peak values, you
would find a roughly constant value of �1.4. The B1g peaks
show additional features. For dopings above xc=0.20, the
B1g peaks fall exactly on the 2�sceff

dome. Just below xc, for
dopings x=0.17→0.19, the B1g peaks lie just above the
2�sceff

dome, due to the presence of a small pseudogap. For
these dopings, there is still Fermi surface in the antinodal
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response, SB2g
= �
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�� ��=0, versus doping. In the top right inset,
doping-dependent factors �t��x�gt�x��2 have been removed to at-
tempt to verify the low-frequency scaling of 	B2g
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in order to compare slopes across all dopings. To guide
the eyes in the top left inset, we have included a horizontal line at
the average value of the points and included error bars of �5% of
the point values.
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region in the form of small “loops,” which are nearest ap-
proach surfaces for the Es

+ band, as is illustrated in the inset
of Fig. 11 for the x=0.18 case. There is also a jump in this
curve between x=0.16 and 0.17. For dopings above x=0.17,
the B1g spectral peaks coincide with the Es

+ energy on the
nearest approach surface in the antinodal direction. For dop-
ings below x=0.17, the Es

+ loops disappear altogether. This
results in a shift from the Es

+ band to the Es
− band, which

happens to have a higher energy of nearest approach in the
antinodal direction. As a result, the B1g peaks jump up in
energy as x is changed from 0.17 to 0.16. We will refer to
this jump at x=0.16 as being at the onset doping, xonset, the
doping below which the system is dominated by pseudogap-
created Fermi pockets.

We now have the image of three distinct regions: x
�xonset, which is dominated by the pseudogap and the Fermi
pockets; xonset�x�xc, which is a region wherein strong
Fermi surface reconstruction occurs; and finally x�xc,
where the pseudogap is zero and the system is dominated by
the �sc energy scale with a large tight-binding Fermi surface
described by a Fermi-liquid model. Of these three regions,
the one that is most complicated to understand quantitatively
is the middle range, where the topology of the Fermi surface
becomes particularly complex and includes Fermi pockets as
well as other pieces of Fermi surface with complex geometry
around the antinodal points as seen in the inset of Fig. 11. It
is, however, precisely this region where the B1g Raman scat-
tering cross-section shows the most rapid variation, as seen
in Fig. 8, and has the greatest promise for future experimen-
tal investigation. A second interesting feature to note about
the phase diagram traced in Fig. 13 is that the values of the
position of the B1g Raman peaks �open red diamonds� fall
below the input pseudogap values �green dash-dotted curve�
in the highly underdoped region near the lower end of the
superconducting dome. These reduced values coincide with
the value of the Es

− band on the antinodal nearest approach
surface. The physics behind this reduction in peak position
relates to the shape of the B1g Raman vertex and its overlap
with the Fermi pocket as is seen in Fig. 7�a�. The Fermi

pockets have shrunken so much that the peak in the B1g
Raman cross-section comes from sampling a momentum re-
gion, which is displaced from the antinodal direction toward
the nodal direction and in this region, the pseudogap is re-
duced from its full amplitude �pg

0 �x�, by the modulating fac-
tor �cos�kxa�−cos�kya�� of Eq. �2�.

Figure 14 contains a comparison of the results of our cal-
culations to the experimental data of Guyard et al., taken
from Ref. 16. The top frame contains two y-axis scales. The
left scale is for our calculation with dimensionless quantity
� / t0 and applies to the open points, while the right-hand
scale has units of meV and applies to the experimental data
marked with filled points. The experimental and theoretical
scales are shown with equivalent values for the assumed t0
=175 meV in the YRZ model. It is clear on first glance that
the energy scale for our calculations agrees well with experi-
ment despite not being rigorously fit to this specific experi-
mental system of Hg-1201. The experimental data sets show
that �N �solid black upward pointing triangles� and �AN
�solid red downward pointing triangles� have very similar
values above some doping around x�0.16. This feature is
not captured in our calculation for the �N �open black
circles� and �AN �open red diamonds�, as �N maintains a
lower value than �AN for all dopings. We note, however, that
�sceff

�x� �open purple squares� has similar values to �AN

�open red diamonds� in the overdoped region. This illustrates
that the actual �N doping dependence, as seen in experiment,
may not necessarily follow a straightforward superconduct-
ing dome, but rather an effective dome, given by �sceff

�x�,
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which includes Fermi surface restructuring effects due to the
pseudogap. Our parameters could be improved by scaling
down our energies, which could equivalently correspond to
t0 being smaller by a factor of �1.1.

In the lower frame of Fig. 14, we plot the experimental
ratio �AN /�N as solid blue triangles. We can clearly see two
doping-dependent regions of behavior in this data: x�xonset
and x�xonset, where xonset marks the change in slope around
x=0.16. We seek to distinguish the difference between xonset
and xc in this data. The antinodal to nodal gap ratio, �AN /�N
�open red circles� as well as �AN /�sceff

�shown in open black
squares� are shown for the YRZ model. The �AN /�N calcu-
lations also show two distinct regions: x�xonset and x
�xonset, where xonset=0.17. For dopings above xonset, the �AN
and �N curves do not have the same value, and instead, have
a roughly constant ratio of �1.4. When we instead normalize
�AN by �sceff

, resulting in a constant ratio of 1 for x�0.16,
we find better agreement with the experimental observation
of the �AN /�N ratio.

An important point is that all three data sets �2 theoretical,
1 experimental� in the lower frame of Fig. 14 show only two
distinct regions of doping-dependent behavior: x�xonset and
x�xonset. There is virtually no signature of xc in this data. We
can analyze this further, since the xonset marks the dominance
of �pg over �sceff

in the phase diagram of Fig. 13, all x
�xonset are dominated by the pseudogap. If we assume that
the pseudogap energy scale maintains linearity, we can trace
a simple linear fit of the points just below xonset and extend
that line above xonset. This will result in an estimate of the
location of the doping at which the pseudogap vanishes, and
hence, the doping where one might look for evidence of a
zero-temperature QCP. Indeed this extrapolation gives xc
�0.2, as was input into the theory, and it provides an esti-
mate from experiment that xc�0.19. It is with this simple
interpretation that we reestablish the existence of three re-
gions of importance in this data: x�xonset �where �pg
��sceff

�, xonset�x�xc �where �pg��sceff
�, and x�xc �where

�pg=0�.

V. CONCLUSIONS

The YRZ model provides a formalism whereby a
pseudogap opening up about the AFBZ boundary recon-
structs a large Fermi surface into small Fermi pockets as the
doping progresses toward the Mott insulating state. Compari-
son of the YRZ results to recent Raman spectra on Hg-1201
gives excellent qualitative agreement and establishes that its
quantum critical point, associated with pseudogap formation,
falls at doping x=0.19 inside the superconducting dome and
is consistent with a zero-temperature transition. We have

shown that if the superconducting gap is only present in the
Fermi pocket region �nodal direction� then the B1g peaks
show no temperature dependence. However, beyond some
critical doping, the Fermi surface reconstructs in the antin-
odal region of the Brillouin zone resulting in a large change
in the B1g peak temperature dependence over a small change
in doping. We also understand the loss of B1g spectral am-
plitude in the superconducting state to be an effect of the
presence of a dominant normal-state background in the anti-
nodal direction which grows in strength with underdoping.

Tracing the major peak in each of the B1g and B2g re-
sponse curves as a function of doping creates an apparent
phase diagram in the YRZ model which illustrates the indi-
rect impact of the presence of the Fermi pocket. The effect is
that the Raman spectra can only sample the largest value of
the gap on the Fermi pocket which is at the edge, toward the
antinodal direction. This results in an effective superconduct-
ing dome �sceff

�x�, which can be significantly smaller than
the input gap. This occurs for dopings where the pseudogap
is strong, resulting in Fermi pockets which become smaller
on approach to the antiferromagnetic state. We have also
analyzed the low-frequency slope of the B2g polarization,
taking into account the Fermi surface restructuring �pocket
size� effect by replacing �sc with the effective gap, �sceff

.
Through this work we have identified three regions

of doping dependence in the phase diagram: the
underdoped pseudogap-dominated region, the overdoped
superconductivity-dominated Fermi-liquid region and the in-
termediate mixed region wherein the presence of pseudogap
begins to erode the Fermi surface. In the case of Raman
spectra, this intermediate region may be seen best in the
temperature dependence of the antinodal peaks but also as a
sudden jump of the antinodal peak frequency with doping.

Although our results are largely concerned with the for-
mation of Fermi pockets, we understand that there are simi-
lar models of the pseudogap state which result in the forma-
tion of Fermi arc segments rather than Fermi pockets. The
qualitative results given here will remain unchanged, as they
require: �1� some disappearance of Fermi surface in the an-
tinodal direction due to the presence of a pseudogap and �2�
a dominant superconducting-gap value given by the maxi-
mum value on the Fermi surface. These two requirements
should still be present in models which result in arcs rather
than pockets.
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