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We show that the Haldane phase of S=1 chains is characterized by a double degeneracy of the entanglement
spectrum. The degeneracy is protected by a set of symmetries �either the dihedral group of � rotations about
two orthogonal axes, time-reversal symmetry, or bond centered inversion symmetry�, and cannot be lifted
unless either a phase boundary to another, “topologically trivial,” phase is crossed, or the symmetry is broken.
More generally, these results offer a scheme to classify gapped phases of one-dimensional systems. Physically,
the degeneracy of the entanglement spectrum can be observed by adiabatically weakening a bond to zero,
which leaves the two disconnected halves of the system in a finitely entangled state.
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I. INTRODUCTION

A topological phase is a phase of matter which cannot be
characterized by a local order parameter, and thus falls be-
yond the Landau paradigm of condensed matter physics. To-
pological phases are often characterized by a gap separating
excitations from the ground state in the bulk and by the
presence of gapless edge modes. The existence of edge ex-
citations implies that a topological phase cannot be deformed
continuously into a conventional, topologically trivial phase
without going through a phase transition, in which the gap
closes and the edge mode merges with the bulk.

The Haldane phase of integer spin chains1,2 is an example
of a “symmetry protected topological phase” in one
dimension.3 This phase appears also in other one-
dimensional systems, such as chains of interacting bosons4

and fermions.5 These gapped phases lack a local order pa-
rameter, and are not amenable to a description by a site fac-
torizable wave function. Alternatively, in certain cases, the
Haldane phase can be characterized by the existence of frac-
tionalized edge excitations, by a nonvanishing nonlocal
“string” order parameter or, as recently proposed, by a quan-
tized Berry phase.6–8

However, in the most general case, the description of the
Haldane phase in terms of a string order parameter or spin-1

2
edge states is insufficient. As we will demonstrate below,
slightly deforming the Hamiltonian can destroy the string
order parameter �which is known to be fragile to small
perturbations9� and lift the degeneracy of the edge states. Yet,
as long as an appropriate set of symmetries is preserved, the
Haldane phase is stable,3,10 in the sense that it is still sepa-
rated from other, topologically trivial phases by a thermody-
namic phase transition in which the gap closes. This stability,
by itself, can be used as an operational definition of the
Haldane phase. However, it is desirable to find a definition
which can be stated in terms of the ground-state wave func-

tion of a single Hamiltonian. Recently, it has been proposed
that topological phases can be characterized by their “en-
tanglement spectrum,” obtained by arbitrarily dividing the
system into two parts, tracing out one half and diagonalizing
the reduced density matrix of the other.11–16 This creates ar-
tificial edges, without disrupting inversion symmetry. For ex-
ample, the entanglement spectrum of the Affleck-Kennedy-
Lieb-Tasaki �AKLT� state17 consists of two degenerate
nonzero eigenvalues, which mimic the doubly degenerate
energy edge spectrum of a system with a physical
boundary.18

In this paper, we show that the Haldane phase is charac-
terized by a double degeneracy of the entire entanglement
spectrum. This degeneracy is caused by the same set of sym-
metries which protect the stability of the Haldane phase, ap-
plied to the eigenstates of the reduced density matrix. If the
Hamiltonian is deformed while keeping these symmetries in-
tact, the degeneracy remains until a phase boundary is
crossed. This symmetry-protected double degeneracy can be
used to define the Haldane phase in the most general situa-
tion, when both gapless edge states and a string order param-
eter are absent.

The most surprising result of the analysis is that inversion
symmetry alone is enough to preserve the degeneracy of the
entanglement spectrum. If this is the only symmetry present,
there are no gapless edge modes, since edges break inversion
symmetry. There is also no conventional string order,
either.19

This approach can be used to classify the phases of any
one-dimensional system, given its symmetry group. For a
given set of symmetries, there are several types of gapped
phases. One of them is the “nondegenerate” �or “trivial”�
phase, in which the eigenvalues of the density matrix can be
nondegenerate. Besides this, there can be several types of
“degenerate” �“nontrivial”� phases. The entanglement spec-
trum in any one of the latter phases has at least twofold
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degeneracy. In this case, the density-matrix eigenstates trans-
form in a nontrivial way under a projective representation of
the symmetry group.

The entanglement spectrum, although being associated
with a partition of the system at a certain point in space,
actually carries highly nonlocal information about the
ground-state wave function. We show that the double degen-
eracy of the entanglement spectrum has a simple physical
consequence. If one of the bonds of the system is adiabati-
cally weakened until its strength reaches zero, the symmetry
of the Hamiltonian continues to retain the degeneracy in the
entanglement spectrum across the weakened bond. Hence,
the von Neumann entropy of the partition in the final state is
equal to ln�2� once the bond is broken. This is a physical
reflection of the entanglement in the ground state and can, in
principle, be used to identify it in experiment.

This paper is organized as follows. First we introduce in
Sec. II a spin-1 model Hamiltonian which has a Haldane
phase for a certain parameter range. In Sec. III, we briefly
review some properties of matrix-product states, which we
use to study properties of the entanglement spectrum, and
show how matrix-product states transform under symmetry
operations. The main result of this paper, namely, the degen-
eracy of the entanglement spectrum in the Haldane phase, is
derived in Sec IV. Numerical results for several model
Hamiltonians with different symmetries are shown in Sec. V.
In Sec. VI we briefly outline the generalization of these re-
sults toward a classification scheme of gapped phases in one
dimension. A more detailed discussion is deferred to a later
publication.20 A numerical experiment, which sheds light on
the physical consequences of the degeneracy of the entangle-
ment spectrum, is presented in Sec. VII. Finally, the results
and conclusions are summarized in Sec. VIII. Some details,
concerning the application of the above results to generali-
zations of the Haldane phase and a derivation of the proper-
ties of the Haldane phase under inversion, are discussed in
the appendices.

II. MODEL HAMILTONIANS

In order to study the stability of the Haldane phase, we
will mainly focus on various spin-1 model Hamiltonians
with different symmetries. As we will prove in Sec. IV, the
Haldane phase is protected by certain symmetries. One of
them is a symmetry under a bond-centered spatial inversion

Sj
x,y,z → S−j+1

x,y,z , �1�

where Sj
x,y,z are the spin-1 operators at site j. Other possible

symmetries are the time reversal �TR� symmetry

Sj
x,y,z → − Sj

x,y,z �2�

or the symmetry with respect to spin rotations by � about a
pair of orthogonal axes. As long as at least one of these
symmetry groups is not broken, the entire entanglement
spectrum remains doubly degenerate. Therefore, the Haldane
phase maintains its identity and cannot evolve adiabatically
to another phase.

For concreteness, throughout most of this paper we con-
sider the following spin-1 model Hamiltonian:

H0 = J�
j

S� j · S� j+1 + Bx�
j

Sj
x + Uzz�

j

�Sj
z�2. �3�

The symmetries of this model include translation, spatial in-
version, a rotation by � around the x axis, and a combination
of a rotation by � around the y axis and time-reversal
e−i�Sy

�TR �which takes Sj
x,z→Sj

x,z ,Sj
y→−Sj

y�.
The phase diagram has been studied in Ref. 3. At large

Uzz, we find a trivial insulator phase which can be described
by a caricature state where all the sites are in the �Sz=0�
state. Furthermore, we find two antiferromagnetic phases Z2

y

and Z2
z with spontaneous nonzero expectation values of �Sy�

and �Sz�, respectively. Uzz=Bx=0 is the Heisenberg point, for
which one finds the gapped Haldane phase. Even when non-
zero Uzz and Bx values are introduced into this Hamiltonian,
the Haldane phase is separated from the “nondegenerate
phases” by phase transitions. Here, we investigate the ques-
tion of what defines the Haldane phase and thus protects
these transitions from becoming smooth crossovers. We will
later add different terms to H0 which break various symme-
tries, and show explicitly for which classes of perturbations
the Haldane phase remains well defined.

III. MATRIX PRODUCT STATE REPRESENTATION

A. Definitions

In order to prove the above statements, we will use a
matrix product state �MPS� representation21 of the ground-
state wave function. We also use this representation to com-
pute the ground-state properties numerically, using the infi-
nite time-evolving block decimation �iTEBD� method.22 The
iTEBD method is a descendent of the density-matrix
renormalization-group method.23 For the sake of complete-
ness, we now review some of the properties of MPS’s. A
translationally invariant MPS for a chain of length L can
formally be written in the following form:24

��� = �
�mj�

tr	�m1
� . . . �mL

�
�m1 . . . mL� . �4�

Here, �m are ��� matrices with � being the dimension of
the matrices used in the MPS. The index m=−S , . . . ,S is the
“physical” index, e.g., enumerating the spin states on each
site, and � is a ���, real, diagonal matrix with non-
negative matrix elements. Ground states of one-dimensional
gapped systems can be efficiently approximated by matrix-
product states,25–27 in the sense that the value of � needed to
approximate the ground-state wave function to a given accu-
racy converges to a finite value as L→�. We therefore think
of � as being a finite �but arbitrarily large� number.

The matrices �, � can be chosen such that they satisfy the
canonical conditions for an infinite MPS �Refs. 28 and 29�

�
m

�m�2�m
† = �

m

�m
† �2�m = 1 . �5�

These equations can be interpreted as stating that the transfer
matrix
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T		�;

� = �
m

�m

	 ��m
�

	� ���
�
� �6�

has a right eigenvector �

� with eigenvalue �=1.

� � denotes complex conjugation.� Similarly, T̃		�;

�
=�m��m
�

	� ���m

	 �	�	� has a left eigenvector �		� with

�=1. We further require that �		� is the only eigenvector
with eigenvalue ���
1 �which is equivalent to the require-
ment that ��� is a pure state30�.

The considerations given here become most intuitive
when one considers, formally, an infinite chain. If the chain
is infinite and has open ends, it may be partitioned at a cer-
tain bond. The wave function can then be Schmidt
decomposed31 in the form

��� = �
	

�	�	L��	R� , �7�

where �	L� and �	R� �	=1, . . . ,�� are orthonormal basis
vectors of the left and right partitions, respectively. In the
limit L→�, and under the canonical conditions 	Eq. �5�
, the
Schmidt eigenvalues �	 are simply the entries of the � ma-
trix, �	. �	

2 are the eigenvalues of the reduced density matrix
of either of the two partitions, and are referred to as the
entanglement spectrum. The entanglement entropy is
S=−�	�	

2 ln �	
2 . This corresponds to the von Neumann

entropy of the reduced density matrix. The states �	L�
and �	R� can be obtained by multiplying together
all the matrices to the left and right of the bond, e.g.,
if the broken bond is between sites 0 and 1, �	L�
=��mj�,j�0	�k�0��mk


�	�. . .m−2m−1m0�. Here, � is the index
of the row of the matrix; when the chain is infinitely long,
the value of � affects only an overall factor in the wave
function. Reviews of MPS’s as well as the canonical form
can be found in Refs. 29 and 32.

B. Symmetries in matrix product states

In order to study the consequences of symmetries of the
wave functions, it is useful to first study how these symme-
tries are reflected in the MPS representation. If ��� is invari-
ant under a local symmetry, which is represented in the spin
basis as a unitary matrix �mm�, then the � matrices can be
shown to satisfy30

�
m�

�mm��m� = ei��U�
† �mU�, �8�

where U� is a unitary matrix which commutes with the �
matrices, and ei�� is a phase. Thus, the matrices U� form a
�-dimensional �projective� representation of the symmetry
group of the wave function. In close analogy to the deriva-
tion in Ref. 30, we can derive a similar relation to Eq. �8� for
time-reversal and inversion symmetry. For a time-reversal
transformation �m� is replaced by �m�

� �complex conjugate�
on the left-hand side. Finally, in the case of inversion sym-
metry �m� is replaced by �m�

T �transpose� on the left-hand
side of Eq. �8�.

IV. DEGENERACIES IN THE ENTANGLEMENT
SPECTRUM

We now turn to derive our main result, namely, the de-
generacies in the entanglement spectrum of the wave func-
tion in the Haldane phase. Our strategy is to determine when
the transformation law for the Schmidt eigenstates under the
symmetry operations of the system is nontrivial. From Eq.
�8�, the Schmidt eigenstates of the left half of the system,
�	L�, transform under a symmetry operation � according to
the following rule:

��	L� = �



�U��
	�
L� . �9�

Similarly, the right Schmidt states �	R� transform by the con-
jugate matrix. Thus, the Schmidt eigenstates transform ac-
cording to a projective representation of the symmetry group
of the system. The phases of the matrices U� are not
uniquely determined by Eq. �8�, or by Eq. �9�. The phase
ambiguities turn out to be the key to proving the degenera-
cies of the entanglement spectrum. We will show that for
certain symmetries, there can be situations where the irre-
ducible representations present in U� are all multidimen-
sional. In these cases, which are identified with the Haldane
phase �or a generalization of it�, the entire entanglement
spectrum has nontrivial degeneracies.

A. Inversion symmetry

As a first example, let us consider a system which is sym-
metric under spatial inversion. The transformation law of �
is written as

�m
T = ei�IUI

†�mUI, �10�

where UI is a unitary matrix and �I� 	0,2�� is a phase.
Iterating this relation twice gives

�m = e2i�I�UIUI
��†�mUIUI

� . �11�

Now, the relation implies that

�
m

�m
† �UIUI

���m = e2i�IUIUI
� , �12�

where we have used Eq. �5� and the fact that 	UI ,�
=0.
Thus UIUI

� is an eigenvector of the transfer matrix T
	Eq. �6�
 with eigenvalue e2i�I. Since by our assumption, the
only unimodular eigenvalue of T is �=1 and this eigenvalue
is unique, we find that e2i�I=1 and UIUI

� =ei�I1 where �I is
a phase. Hence UI

T=UIe−i�I. Repeating this relation twice,
we find that e−2i�I=1, i.e., �I=0 or �.

If �I=�, then UI is an antisymmetric matrix. From this
we find that all the eigenvalues �	 are at least doubly de-
generate. Moreover, the corresponding multiplicity k	 is
even for all 	. This follows from the fact that UI
transforms the k	-dimensional subspace of states with
eigenvalue �	 within itself. Therefore, the matrix UI

	

�projected into subspace 	� satisfies det UI
	=det	�UI

	�T

=det�−UI

	�= �−1�k	 det UI
	. But since UI

	 is unitary,
det UI

	�0 and therefore �−1�k	 =1.
The fact that, in the presence of inversion symmetry, the

phase �I can only take discrete values �0 or ��, leads to
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phase transitions between states when one would not expect
them on the basis of the Landau paradigm of broken sym-
metry. If an inversion-symmetric wave function evolves con-
tinuously, its characteristic phase �I cannot change discon-
tinuously, and therefore its value is fixed. The only way �I
can change is through a critical point, where either the cor-
relation length diverges because the transfer matrix T has a
pair of unimodular eigenvectors �and the main relation,
UI

�UI=ei�I1 cannot be proven� or there is simply a discon-
tinuous change in the ground-state wave function �i.e., a
first-order transition�. We can therefore identify two distinct
states, characterized by �I=0,�. The state with �I=� can
be identified with the Haldane phase. To show this,
we consider the AKLT state with �a=�a, �= 1

�2
1, where

�a �a=x ,y ,z� are Pauli matrices. We are here using the
time-reversal invariant spin basis �x�= 1

�2
��1�− �−1��,

�y�= i
�2

��1�+ �−1��, and �z�= �0�. Under inversion, �a→�a
T

=−�y�a�y and thus UI=�y and �I=�. Since �y�y
�=−1, we

find that ei�I=−1. The AKLT state is known to describe the
same phase as the Haldane phase.17 Therefore, we conclude
that the Haldane phase is characterized by ei�I=−1 and
ei�I=−1, and a doubly degenerate entanglement spectrum.
The wave function cannot evolve continuously if the phases
�I or �I change discontinuously. This implies that changes
in �I or �I between 0 and � are always accompanied by a
phase transition. Consequently, the degeneracy in the
Haldane phase can only be lifted by a phase transition. The
full argument for the existence of a transition in such cases
appears in Ref. 33.

In the discussion above, we have assumed that the system
is invariant under both inversion and translation 	see Eq.
�4�
. However, in fact, inversion symmetry alone is sufficient
to protect the double degeneracy in the entanglement spec-
trum, as long as it is bond centered. To show this, one can
imagine adding a general commensurate perturbation to the
Hamiltonian, such that the unit cell is enlarged. One can still
write the ground-state wave function in a translationally in-
variant form 	Eq. �4�
 where each site represents a single unit
cell. If the unit cell is defined such that it ends at an
inversion-symmetric bond, the new system is also inversion
symmetric, and the entanglement spectrum degeneracy re-
mains protected. Since the size of the unit cell can be arbi-
trarily large, it is clear that translational symmetry cannot be
essential for this argument to hold. The same argument can
be made in the case of local symmetries, such as the ones
described in Secs. IV B and IV C.

B. Time-reversal symmetry

The transformation of the MPS wave function � matrices
under TR has the form

�
m�

��T�mm��m�
� = ei�TUT

†�mUT. �13�

Here we have used the Sz basis for the spins �m=−1,0 ,1�
and �T=ei�Sy

. From this, one can derive �in close analogy
with the case of spatial inversion� that UTUT

� =ei�T1, where
�T can be either 0 or �. If ei�T=−1, then the double degen-

eracy of the entanglement spectrum follows �precisely as in
the previous section�. The AKLT state � matrices transform
as �m→�y�m�y. Thus UT=�y and time-reversal symmetry is
sufficient to protect the double degeneracy of the entangle-
ment spectrum in the Haldane phase. Note that �T is not
well-defined because it depends on the phase of the wave
function.

The transformation of the MPS wave function � matrices
under e−i�Sy

�TR corresponds to a complex conjugation �CC�
of the wave function and has the form

�m
� = ei�CCUCC

† �mUCC. �14�

From this, one can derive that UCCUCC
� =ei�CC1, where �CC can

be either 0 or �. The AKLT state � matrices transform as
�m→�m. It follows that UCC=1 and thus e−i�Sy

�TR alone is
not sufficient to protect the double degeneracy of the en-
tanglement spectrum in the Haldane phase. Physically, this
means that it is possible to add to the Hamiltonian a pertur-
bation which is invariant under e−i�Sy

�TR but destroys the
Haldane phase, in the sense that it is no longer separated
from an unentangled product state by a phase transition. This
perturbation has to break all other symmetries that may pro-
tect the Haldane phase �an example of such a perturbation
can be found in Sec. V�.

C. Sets of rotations

A symmetry of rotation about a single axis by 2�
n , where n

is an integer, does not lead to any classification of phases. If
� is a rotational symmetry of order n, one can show that
U�

n =ei� as in the previous section. Rescaling U� by ei�/n

leaves Eq. �8� satisfied, and shows that � has no significance.
However, when there are multiple symmetries, there is also a
phase for each pair of symmetries �1 and �2. This phase is
defined by noting that the transformation of Schmidt states
corresponding to �1�2 can differ by a phase from the prod-
uct of the Schmidt state representations of �1 and �2

U�1
U�2

= ei���1,�2�U�1�2
. �15�

If the phase ���1 ,�2� cannot be gauged away by redefining
the phases of U�1,2

, then the combined symmetry can lead to
a protected Haldane phase.

A concrete example is a system with symmetry under the
dihedral group D2 of � rotations about three orthogonal axes
�say, x, y, and z axes�. Since the product of � rotations about
the x and z axes RxRz or RzRx give a � rotation about the y
axis Ry, the group is equivalent to Z2�Z2. Thus it is suffi-
cient to consider the action of two generators, say Rx and
Rz. For Rx,

�
m�

��x�mm��m� = ei�xUx
†�mUx, �16�

where �x=ei�Sx
. Repeating this relation twice, we get

�m=e2i�x�Ux
†�2�mUx

2. From this it follows 	analogously to the
arguments below Eq. �12�
 that e2i�x =1 and Ux

2=ei�x1. The
phase factor ei�x is not important, since it can be absorbed in
Ux. Therefore we can assume that Ux

2=1. Similarly for Rz,
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we arrive at Uz
2=1. The combined operation RxRz, however,

may give rise to a nontrivial phase factor. By repeating this
symmetry twice, the associated unitary matrix UxUz can be
shown �in the same way as above� to satisfy UxUz
=ei�xzUzUx. Since the phases of Ux and Uz have been de-
fined, the phase factor ei�xz is not arbitrary, and can have a
physical meaning. Clearly ei�xz = �1. If ei�xz =−1, then the
spectrum of � is doubly degenerate, since � commutes with
the two unitary matrices Ux and Uz which anticommute
among themselves. For the AKLT state, Ux=�x and Uz=�z,
therefore UxUz=−UzUx, and the Haldane phase is protected
if the system remains symmetric under both Rx and Rz.

V. EXAMPLES

We now demonstrate how the symmetries discussed
above stabilize the Haldane phase. We use the iTEBD
method to numerically calculate the ground state of the
model given by Eq. �3�, augmented by various symmetry-
breaking perturbations. We used MPS’s with a dimension of

�=80 for the simulations. The double degeneracy of the en-
tanglement spectrum is used to identify the Haldane phase.

Example 1. We begin with the original Hamiltonian H0 in
Eq. �3�. This model is translation invariant, invariant under
spatial inversion, under e−i�Sx

and under e−i�Sy
�TR. Using

the above argument, we know that inversion symmetry alone
is sufficient to protect a Haldane phase. The phase diagram is
shown in Fig. 1�a� and agrees with the results of Ref. 3. A
diverging entanglement entropy indicates a phase transition
�see, for example, Ref. 34� and we use observables such as
Sy and Sz to reveal the nature of the phases. In our approach,
the Haldane phase can be easily identified by looking at the
degeneracy of the entanglement spectrum as shown in Fig. 2:
the even degeneracy of the entanglement spectrum occurs in
the entire phase.

In the entanglement spectrum of the trivial insulating
�TRI� phase, there are both singly and multiply degenerate
levels. We have checked that the multiple degeneracies in the
TRI spectrum can be lifted by adding symmetry-breaking
perturbations to the Hamiltonian �while preserving inversion
symmetry�. In the Haldane phase, on the other hand, the
double degeneracy of the entire spectrum is robust to adding
such perturbations.

The colormap in Fig. 3�a� shows the difference of the two
largest Schmidt values for the whole Bx-Uzz phase diagram.
In the Haldane phase, the whole spectrum is at least twofold
degenerate and thus the difference is zero.

Example 2. The Hamiltonian H0 has, in fact, more sym-
metries than are needed to stabilize the Haldane phase. To
demonstrate this, we add a perturbation H1 of the form

H1 = Bz�
j

Sj
z + Uxy�

j

�Sj
xSj

y + Sj
ySj

x� . �17�

H1 is translation invariant and symmetric under spatial inver-
sion, but breaks the e−i�Sx

and the ei�Sy
�TR symmetry. The

phase diagram for fixed Bz=0.1J and Uxy =0.1J as a function
of Bx and Uzz is shown in Fig. 1�b�. As predicted by the
symmetry arguments above, we find a finite region of stabil-
ity for the Haldane phase. This region is characterized, as
before, by a twofold degeneracy in the entanglement spec-
trum, as shown in Fig. 3�b�.

FIG. 1. �Color online� The colormaps show the entanglement
entropy S for different spin-1 models: Panel �a� shows the data for
Hamiltonian H0 in Eq. �3�, panel �b� for H0 plus a term which
breaks the e−i�Sy

�TR symmetry 	Eq. �17�
, and panel �c� for H0

plus a term which breaks inversion symmetry 	Eq. �18�
. The blue
lines indicate a diverging entanglement entropy as a signature of a
continuous phase transition. The phase diagrams contain four dif-
ferent phases: a TRI phase for large Uzz, two symmetry breaking
antiferromagnetic phases Z2

z and Z2
y, and a Haldane phase �which is

absent in the last panel�.

−1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

U
zz
/J

−
2
lo
g
(�
�
)

Z
2

z
Haldane TRI

FIG. 2. �Color online� Entanglement spectrum of Hamiltonian
H0 in Eq. �3� for Bx=0 �only the lower part of the spectrum is
shown�. The dots show the multiplicity of the Schmidt values,
which is even in the entire Haldane phase.
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Example 3. In this example, we consider a case in which
there is no symmetry that protects the Haldane phase. We
add the following inversion symmetry-breaking term:

H1 = R�
j

	Sj
z�Sj

xSi+1
x + Sj

ySj+1
y � − Sj+1

z �Sj
xSj+1

x + Sj
ySj+1

y � + H.c.
 .

�18�

Note that this term is invariant under ei�Sy
�TR. The phase

diagram for the parameter R=0.1J is shown in Fig. 1�c�. As
predicted by the symmetry arguments above, we do not find
a Haldane phase with a twofold degeneracy 	see Fig. 3�c�
.
The Haldane phase region is continuously connected to the
TRI phase. The same scenario appears if we consider very
small R.

Example 4. Another example in which the Haldane phase
and the TRI phase are continuously connected is recently
given in Eq. �6� of Ref. 35. The model studied is related to
the thin-torus limit of the fractional quantum Hall effect. The
model also does not have any of the symmetries which pro-
tects the Haldane phase. Thus their finding is consistent with
our analysis.

VI. CLASSIFICATION OF GAPPED PHASES IN ONE
DIMENSION

In Sec. IV we have identified several � parameters, such
as �I, �T, and �xz, which parametrize the phase ambiguities
in the symmetry operations acting on the Schmidt eigenstates
of the wave function. When one of these parameters is non-
zero, the entanglement spectrum is degenerate, and a non-
trivial �Haldane-type� degenerate phase is stable over a finite
range in parameter space.

When more than one symmetry is present, the nontrivial
�degenerate� phases may be classified into several families
depending on the combination of values taken by the corre-
sponding �’s. In fact, there are even more phases than this
argument would naively suggest.20 Most generally, given the
symmetry group of the system, the phases can be classified
according to all the possible inequivalent projective repre-
sentations of the symmetry group. The general classification
scheme of one-dimensional gapped phases will not be de-
scribed in detail in this work, but will be deferred to a later
publication Ref. 20.

In Appendix A, we consider various generalizations of the
Haldane phase, which are protected by different symmetries.
In a S=1 antiferromagnetic chain with Dzyaloshinskii-
Moriya interactions in a magnetic field, we show that there is
a stable Haldane-type phase which is protected by a modified
inversion symmetry. The extended Bose-Hubbard model also
has a generalized Haldane phase.4 This phase is shown to be
inequivalent to the usual Haldane phase of spin-1 chains,
which is also supported by the symmetry group of this sys-
tem.

VII. ADIABATIC BOND WEAKENING

The doubly degenerate entanglement spectrum is a unique
feature of the Haldane phase, which can be used to distin-
guish it from other phases. However, since the entanglement
spectrum is a highly nonlocal property, one may wonder
whether it has any physical consequences, which can be ac-
cessed in experiments.

In the introduction, we discussed an adiabatic process in
which a single bond in the system is slowly weakened to
zero. The degree of correlation remaining across this bond
can be measured by the entanglement entropy. We will show
that, if the system starts in the Haldane phase and inversion
symmetry about the weakened bond is preserved throughout
the process, the minimum value of the entanglement entropy
of the two halves is ln�2�. This is because the entanglement
spectrum eigenvalues remain doubly degenerate. The mini-
mum entropy is reached if just one pair of entanglement
eigenvalues is nonzero.

This property of the Haldane phase can be used, in prin-
ciple, to identify it in an experiment. It means that, starting
from the Haldane phase and separating it adiabatically into
two halves A and B, some degree of entanglement between A
and B must remain in the final state, as long as the symmetry
that protects the Haldane phase is respected. This manifests
itself in physical correlation functions between the two
halves. Namely, there must exist a pair of physical operators
OA and OB belonging to subsystems A and B, respectively,

FIG. 3. �Color online� The colormaps show the difference be-
tween the two largest Schmidt values ��1−�2� for different spin-1
models. Panel �a� corresponds to the original Hamiltonian H0 in Eq.
�3�, panel �b� to H0 plus a term that breaks ei�Sy

�TR 	Eq. �17�
,
and panel �c� to H0 plus a term which breaks inversion symmetry
	Eq. �18�
. The quantity ��1−�2� is zero only in the Haldane phase.
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such that the disconnected correlation function CA,B
= �OAOB�− �OA��OB� remains nonzero, even when the two
subsystems are completely disconnected. Starting from a
nondegenerate phase, on the other hand, the final state can be
completely disentangled across the cut bond.36

To simulate the weakening of one bond numerically, we
start by preparing ground states of Hamiltonian �3� for dif-
ferent parameters using the iTEBD algorithm with a unit cell
of size L=80 which is large compared to the correlation
length. We then evolve this state in time while decreasing the
strength of one bond in between two half chains, Jweak,
according to Jweak=J− t�. For the rate �=J2 /40 and
t=0, . . . ,40J−1, we found that this time evolution is essen-
tially adiabatic. We calculate the entanglement entropy at the
middle bond as a function of time. The result for Bx=0.3J
and various values for Uzz is shown in Fig. 4. Within the
Haldane phase �Uzz=0.2J and 0.4J� the entanglement en-
tropy at the end of the weakening process is equal to ln�2�. In
the TRI phase �Uzz=0.8J and 1.0J�, the entanglement en-
tropy decreases monotonically to zero.

The robustness of the degeneracy in the entanglement
spectrum of the Haldane phase has an intuitive explanation,
as follows. Let us examine the Schmidt decomposition of the
ground-state wave function corresponding to dividing the
system along the weakened bond. Initially, since �I=�, the
Schmidt states appear in doublets. As we show in Appendix
B, the Schmidt decomposition can be written as

��� = �
	=1

�/2

�2	−1��	,1��	,2� − �	,2��	,1�� , �19�

where �2	−1 are the Schmidt eigenvalues, �	 , i� with i=1,2
are Schmidt states of the left subsystem, and �	 , i�=I�	 , i�
are the inversion-related states on the right subsystem. ��� is
odd under inversion, as can be seen by applying the inver-
sion operator I. Since the Hamiltonian remains symmetric
under inversion throughout the bond-weakening process, ���
has to remain antisymmetric. Thus, at the end of the adia-
batic evolution, the system is in the ground state of the anti-
symmetric sector, which generally differs from the true

ground state �unless the ground state of each of the discon-
nected halves is degenerate�. This is because the true ground
state, a product state, is symmetric under inversion. The an-
tisymmetric sector ground state can be written as 1

�2
��0��1�

− �1��0��. Here �0� and �1� are, respectively, the ground state
and first excited state of the left subsystem and �0� and �1�
are the ground state and first excited state of the right sub-
system, which are related by inversion to the corresponding
states on the left. Thus the entanglement spectrum remains
doubly degenerate, and entanglement entropy in the final
state is ln�2�.

Note that this property of the Haldane phase is not asso-
ciated with the existence of zero-energy edge states. �The
two states �0� and �1� do not have to be degenerate.� In par-
ticular, the Hamiltonian H0 	Eq. �3�
 does not have any zero-
energy edge state at an open boundary.

VIII. SUMMARY

In this work, we have considered the Haldane phase of
S=1 chains as an example of a “topological” phase in one
dimension. It has been known for a long time that this phase
cannot be characterized by any local symmetry-breaking or-
der parameter, and that its unusual character only shows up
in nonlocal properties, such as zero-energy fractionalized
edge states and nonlocal string order parameters. When per-
turbing away from the SU�2� symmetric point, both the edge
states and the string order can be eliminated. Remarkably,
the Haldane phase can still remain stable, given that certain
symmetries are preserved. That is, the nontrivial topological
character of the Haldane phase is protected by symmetry,
even though the Haldane phase itself does not break any
symmetry spontaneously.

We have shown that the nontrivial topological nature of
the Haldane phase of S=1 chains is reflected by a double
degeneracy of the entire entanglement spectrum. The degen-
eracy is protected by the same set of symmetries which pro-
tects the Haldane phase and cannot be lifted unless either a
phase boundary to another, “topologically trivial” phase is
crossed, or the symmetry is broken. The Haldane phase is
protected by any of the following symmetries: spatial inver-
sion symmetry, time-reversal symmetry, or the dihedral sym-
metry D2 �rotations by � about a pair of orthogonal axes�.
This result on the symmetry protection is completely consis-
tent with what was obtained from different arguments.33 The
degeneracy of the entanglement spectrum can be used to
characterize the Haldane phase in the most general situation,
in which edge modes and string order may be absent �see
Table I�.

The degeneracy of the entanglement spectrum in the
Haldane phase is proven by examining how the Schmidt
eigenstates transform under a projective representation of the
symmetry group of the system. The transformation laws con-
tain phase factors, which are constrained to take discrete val-
ues by symmetry. If these phase factors are nontrivial, they
require a degeneracy in the entanglement spectrum. Depend-
ing on which phase factors take nontrivial values, several
distinct “Haldane-type” states are possible. This offers a
scheme to classify all possible gapped phases of a one-
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FIG. 4. �Color online� Half-chain entanglement entropy of the
model Hamiltonian �3� at a bond which is slowly weakened as a
function of time Jweak=J− t� and �=J2 /40. The entanglement en-
tropy of the resulting state is ln2 in the Haldane phase and zero
otherwise.
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dimensional system, given its symmetry group. Such a gen-
eral classification will be the subject of a forthcoming
paper.20

The degeneracy of the entanglement spectrum is a highly
nonlocal property, and is not easily related to physical ob-
servables. Nevertheless, the degeneracy of the entanglement
spectrum has direct physical consequences. It means that in
the Haldane phase, the entanglement of the system across
any cut cannot drop below the minimum value of ln�2�. This
can be observed, for example, by adiabatically weakening a
bond to zero. In the Haldane phase, if inversion symmetry is
preserved throughout this process, it leaves the two discon-
nected halves of the system in a finitely entangled state. In a
topologically trivial state, on the other hand, the two halves
can be completely decoupled and form an unentangled prod-
uct state after the process has ended. The nonzero residual
entanglement is reflected in correlation functions of physical
observables belonging to the two halves of the system. Such
an adiabatic weakening process could, at least, in principle,
serve as a way to experimentally distinguish the Haldane
phase from other, topologically trivial phases.
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APPENDIX A: GENERALIZATION OF THE SYMMETRY-
PROTECTED HALDANE PHASE

We have seen above that the Haldane phase of spin-1
antiferromagnetic chains can be characterized by a double
degeneracy of the entanglement spectrum, which can be
traced back to the nontrivial transformation law of its
Schmidt eigenstates under certain symmetry operations. The
double degeneracy of the Haldane phase is protected by any
one of the three symmetries �dihedral group of � rotations
about two orthogonal axes, time-reversal symmetry, or bond-

centered inversion symmetry�. In fact, there are various gen-
eralizations of the Haldane phase, which are protected by
modified symmetries.

For example, in magnetism, the Dzyaloshinskii-Moriya
�DM� interaction generally arises if the system lacks inver-
sion symmetry about the center of bond. In the case of the
one-dimensional chain, the DM interaction is given as

�
j

D� j · �S� j � S� j+1� . �A1�

The following two cases often appear in models of magne-
tism: a uniform DM interaction D� j =D� and a staggered DM
interaction D� j = �−1� jD� . Let us assume D� = �0,0 ,D� �parallel
to z axis�.

The DM interaction, which is also known as antisymmet-
ric exchange interaction, clearly breaks inversion symmetry
about the bond. Here we consider the Hamiltonian of a
S=1 chain

HDM = J�
j

S� j · S� j+1 + Bz�
j

Sj
z + �

j

� jD� · �S� j � S� j+1� ,

�A2�

where �=1 for the uniform and �=−1 for the staggered DM
interaction case. This model breaks all the three symmetries
we have discussed above, if Bz ,D� �0. Thus one might ex-
pect that the Haldane phase is no longer well defined in this
model. However, it turns out that the double degeneracy of
the entanglement spectrum, and thus the well-defined
Haldane phase, survives for D�0. This can be simply un-
derstood because the Hamiltonian can be transformed37,38 to

H̃DM = UG
† HDMUG �A3�

=J�
j

Sj
zSj+1

z + J��
j

�Sj
xSj+1

x + Sj
ySj+1

y � + Bz�
j

Sj
z. �A4�

Here, J�=�J2+D2, if we choose

UG = ei�j j	Sj
z
, �A5�

for the uniform DM interaction, and

UG = ei�j�− 1�j�	/2�Sj
z
, �A6�

for the staggered DM interaction, with 	=tan−1�D /J�. The
resulting Hamiltonian is simply the standard XXZ antiferro-
magnetic chain in an magnetic field Bz. The inversion sym-
metry of the model guarantees a double degeneracy in the
entanglement spectrum, and hence protects the Haldane
phase.

In the context of the original Hamiltonian, however, the
symmetry that protects the double degeneracy is somewhat
obscured. The inversion I acts on the transformed Hamil-
tonian as

H̃DM → I†H̃DMI . �A7�

Here we define the inversion I as usual so that site j goes to
site 1− j. We find that the modified symmetry of the original
Hamiltonian is the invariance under

TABLE I. The different symmetries which can stabilize the
Haldane phase. For each class of symmetries, the table shows
whether string order, edge states, or the degeneracy of the entangle-
ment spectrum are necessarily present. The symmetry under � ro-
tations about a pair of orthogonal axes is represented by the dihe-
dral group D2.

Symmetry String order Edge states Degeneracy

D2 �=Z2�Z2� Yes Yes Yes

Time reversal No Yes Yes

Inversion No No Yes
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HDM → I�†HDMI�, �A8�

where

I� = UGIUG
† =
ei	�j�2j−1�Sj

z
I �uniform DM�

ei	�j�− 1�jSj
z
I �staggered DM�� .

�A9�

Namely, it is the invariance under inversion with an appro-
priate “twist” �rotation of each spin about z axis�.

The invariance under I�, which protects the Haldane
phase, is not a generic symmetry and may be broken rather
easily by perturbations which could occur naturally. For ex-
ample, if the uniform magnetic field were applied to the x
direction instead of the z direction in the Hamiltonian �A2�, it
is clear that the model is no longer invariant under I�.

For example, for a staggered DM interaction, a uniform
field in the x direction leaves a staggered magnetic field
�� j�−1� jSj

x after the transformation. The staggered field
breaks inversion symmetry about the bond center and thus
eliminates the degeneracy in the entanglement spectrum.
That a staggered field destroys the Haldane phase was no-
ticed earlier.39

As another example of physical interest, let us discuss the
“Haldane-insulator” �HI� phase in the extended Bose-
Hubbard model �EBHM�. We will show that the HI phase is
protected by a similar mechanism. The model Hamiltonian
of the EBHM reads

HBH = − t�
j

�bj
†bj+1 + H.c.� +

U

2 �
j

nj�nj − 1� + V�
j

njnj+1

�A10�

where bj
† creates a boson at site j, nj =bj

†bj, and we assume a
filling of one boson per site ��nj�=1� and t ,U ,V�0. In Ref.
10, it has been shown that the EBHM has a phase which is
analogous to the Haldane phase. This phase was termed a HI.

The symmetries of the EBHM are translation, time-
reversal, inversion, and particle conservation. It is useful to
consider an effective spin-1 model by truncating the Hilbert
space of each site to states with n=0,1 ,2, which is strictly
justified in the large U limit. This modification is not ex-
pected to be important in this limit, since states with n�2
are higher in energy. The corresponding effective pseudospin
Hamiltonian reads

Heff = − t�
j

�Sj
+Sj+1

− + H.c.� +
U

2 �
j

�Sj
z�2 + V�

j

Sj
zSj+1

z + H�,

�A11�

where we have introduced the pseudospin operator Sz=n−1,
and H� contains other terms which break the “particle-hole”
symmetry of Heff, which is represented in the pseudospin
language by a � rotation about the x axis. This spurious
symmetry is not crucial for the stability of the HI phase, as
we shall show below.

Ignoring H�, the Hamiltonian Heff is very similar to H0 in
Eq. �3�, with the exception that the Sj

+Sj+1
− +H.c. �“hopping”�

term is of opposite sign. As a result, the HI phase of Eq.

�A11� is not protected by inversion symmetry �I�. The phase
ei�I, which is the parity of the ground state under inversion
about a bond �see next appendix�, is equal to +1 in this case;
the ground state of a system with the ordinary, negative, sign
for the kinetic energy cannot have nodes.

However, the HI phase is protected by a modified sym-
metry instead. The effective Hamiltonian can be mapped to
the antiferromagnetic spin Hamiltonian �3� by a staggered
rotation of spins by �� /2 about z axis, alternatingly on even
and odd sites. The staggered rotation is given by the unitary
transformation of the same form as Eq. �A6�, but now with
	=�. �We note that, if we increase the DM interaction from
zero to infinity for the antiferromagnetic chain, �	� changes
from zero to � /2. Thus the present case is distinct from the
antiferromagnetic chain with DM interactions.� The transfor-
mation changes the sign of the hopping term to negative; in
the spin chain context this makes in-plane exchange interac-
tion antiferromagnetic as in Eq. �3�.

Following the discussion for a staggered DM interaction,
and using 	=�, we find that the HI phase is protected by
invariance under the operation

I� = ei��jSj
z
I . �A12�

As an interesting example, a staggered field in the x direction
is now invariant under I� �and thus does not break the
double degeneracy of the entanglement spectrum�, while a
uniform field in the same direction is not.

In terms of the discussion in Sec. IV, the HI phase is
characterized by �I�=� and �I=0, and is thus distinct from
the usual Haldane phase of H0, with �I�=0 and �I=�. This
shows that these two states cannot be connected adiabatically
while preserving either I or I�.

APPENDIX B: SCHMIDT DECOMPOSITION OF A �I=�
STATE

Let us prove Eq. �19�. We consider an inversion-
symmetric MPS ��� defined on a finite chain of an even
length 2L and assume that ��� is characterized by �I=�.
The MPS is written as

��� = �
�mj�

VL
T�m1

� . . . �mL
� � �mL+1

� . . . �m2L
VR�m1 . . . m2L� .

�B1�

Since we are interested in bulk properties in the limit
L→�, we assume a sufficiently long chain with position–
independent matrices �m. VL and VR are �-dimensional col-
umn vectors which define the boundary conditions �to be
specified later�. Describing the boundary conditions in this
way is possible as long as there are no edge modes, which is
generically true when only inversion symmetry is present
�Otherwise, the edges states of the two ends may require
some extra care.�. Since ��� is invariant under inversion, the
matrices �m satisfy Eq. �10�. Applying this relation to the
matrices �mL+1

. . .�m2L
, we get
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��� = e−iL��
�mj�

VL
T�m1

� . . . �mL
�

� UI�mL+1

T � . . . �m2L

T UI
†VR�m1 . . . m2L� . �B2�

Now, we choose boundary conditions such that VR=UIVL.
The wave function ��� can be written as

��� = e−iL��
	,


�	�UI�	
�	��
� , �B3�

where

�	� = �
�mj�

�VL
T�m1

� . . . �mL
�	�m1 . . . mL� . �B4�

Since �I=�, the Schmidt eigenvalues �	 are all doubly de-
generate �see Sec. IV A�. Let us order the �	’s such that

�2	−1=�2	 for every 1�	��. The matrix U	
 commutes
with �. Therefore, it must have a block-diagonal form with
2�2 blocks on the diagonal. Since UT=−U �which follows
from �I=�, as shown in Sec. IV A�, the blocks on the diag-
onal of U are all of the form ei�	i�2, where �	 is a phase.
Therefore, we write ��� as

��� = �
	=1

�/2

�2	−1��	,1��	,2� − �	,2��	,1�� , �B5�

where �	 , j��ei��	−L�I/2��2	−1+ j� �j=1,2� and �	 , j�
=I�	 , j�. In the limit L→�, the states �	 , j� become ortho-
normal 	as can be shown from the canonical conditions in
Eq. �5�
, and therefore Eq. �B5� is the Schmidt decomposi-
tion of ���. This concludes our proof.
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