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The behavior of the ground-state fidelity susceptibility in the vicinity of a quantum critical point is investi-
gated. We derive scaling relations describing its singular behavior in the quantum critical regime. Unlike in
previous studies, these relations are solely expressed in terms of conventional critical exponents. We also
describe in detail a quantum Monte Carlo scheme that allows for the evaluation of the fidelity susceptibility for
a large class of many-body systems and apply it in the study of the quantum phase transition for the transverse-
field Ising model on the square lattice. Finite-size analysis applied to the so-obtained numerical results con-
firms the validity of our scaling relations. Furthermore, we analyze the properties of a closely related quantity,
the ground-state energy’s second derivative, which can be numerically evaluated in a particularly efficient way.
The usefulness of both quantities as alternative indicators of quantum criticality is examined.
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I. INTRODUCTION

The quantity known as fidelity naturally appears in the
field of quantum information science as a way of determin-
ing the reliability of a given protocol for quantum informa-
tion transfer: the similarity between input ��in� and output
��out� states can be quantified by simply computing the ab-
solute value of the overlap between them, F= ���in ��out��.
Recently, after the pioneering work1 of Zanardi and Paunk-
ović, and following the broader trend of cross fertilization
between the fields of quantum information science and
condensed-matter physics,2 a number of studies have ex-
tended the scope of applicability of the concept of fidelity to
the study of quantum critical phenomena �for a review, see
Ref. 3�.

The basic idea behind this so-called fidelity approach is
simple. We consider a general many-body Hamiltonian,

H�g� = H0 + gH1, �1�

with ground-state ��0�g��, H�g���0�g��=E0�g���0�g��.
Since ��0�g�� undergoes major changes in the vicinity of a
quantum critical point �QCP� gc, we expect a sharp drop in
the fidelity,

F�g,dg� = ���0�g + dg���0�g��� , �2�

for small �dg→0� variations in g close to gc. Therefore, by
investigating the behavior of F�g ,dg� when couplings in the
Hamiltonian are varied, one should be able to detect quan-
tum criticality. This approach is purely quantum geometrical4

and therefore has the appeal that no a priori identification of
order parameters is required.

The concept of fidelity susceptibility5 �F�g� naturally ap-
pears as the fidelity’s leading term in the limit dg→0,

F�g,dg → 0� � 1 −
1

2
�F�g�dg2.

�The linear term in dg in the above expansion vanishes due
to normalization of the wave function—alternatively it can
be seen to arise from the fact that F�g ,dg� is maximum at
dg=0 for any value of g.� The aforementioned drop in

F�g ,dg� close to a QCP is thus associated to a divergence in
�F, and the latter quantity may also be employed in the study
of quantum phase transitions. The situation here is reminis-
cent of the use of the specific heat to detect thermal phase
transitions: while the presence of singularities in the specific
heat for varying temperatures signals the location of finite-
temperature critical points, �F�g� is a system’s response to
changes in the coupling constant g, whose divergencies are
associated to the occurrence of quantum phase transitions.

Although obviously some information is lost in going
from F�g ,dg� to �F�g�, and for instance it is currently not
clear whether transitions of order higher than second can be
detected by studying the latter, focusing on �F�g� has up to
now proved to be a fruitful strategy. The main reason behind
this is that it is possible to show5–7 that �F�g� is closely
related to more conventional physical quantities, such as
imaginary-time dynamical responses. This is particularly ad-
vantageous since it allows one to rely on well-established
concepts and techniques from theoretical condensed-matter
physics in order to draw conclusions on the properties of
�F�g�. We follow this line of reasoning in this paper in a
twofold way.

First, we present the details of a recently introduced8

quantum Monte Carlo �QMC� scheme that allows for the
evaluation of �F for a large class of sign-problem-free mod-
els. This constitutes an important advance as the group of
problems that can be studied within the fidelity approach is
considerably enlarged, and additionally one benefits from the
computational power of QMC methods. In particular, high-
precision scaling analysis for models in dimensions higher
than one is now possible: previous computations of �F for
two-dimensional systems have relied on exact diagonaliza-
tion �ED� techniques and were restricted to small system
sizes, something that precludes a precise determination of
scaling dimensions in the vicinity of a QCP.

Second, by building upon the aforementioned relationship
between �F and response functions, we determine the scaling
behavior of the fidelity susceptibility close to a QCP. The
divergence of �F�g� at gc is shown to be related to the critical
exponent � describing the divergence of the correlation
length. In this way, and supported by the results obtained
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from the QMC simulations, we assess the validity of other
scaling analysis for the divergence of �F that have recently
appeared in the literature.

Throughout the paper, we also analyze the properties of
the ground-state energy’s second derivative, �2E0�g� /�g2.
This quantity is closely related to the fidelity susceptibility7

and, as explained in Sec. II C, scales in a way related to the
scaling of �F in the quantum critical regime. Since the com-
putation of �2E0�g� /�g2 within QMC is much more efficient
than that of �F, as discussed in Sec. III B, it is important to
address the question of which of these quantities is best
suited to the study of second-order quantum phase transitions
and of whether the current interest around the concept of
fidelity susceptibility is justified on practical grounds.

The paper is organized as follows. After reviewing basic
concepts in the fidelity approach in Sec. II A, we analyze an
extension of the concept of fidelity susceptibility to finite
temperatures �a prerequisite for path-integral QMC simula-
tions� and relate it to a more commonly employed metric for
thermal states in Sec. II B. We then perform a scaling analy-
sis of �F and �2E0�g� /�g2 in Sec. II C and relate their scaling
dimensions to conventional critical exponents.

In Sec. III, we give a detailed account of the previously
introduced8 QMC scheme for calculating �F and further ex-
plore it �Sec. IV� in order to determine the scaling dimension
of the fidelity susceptibility in one of the most paradigmatic
models in the field of quantum phase transitions: the
transverse-field Ising model �TIM� in two dimensions.
Throughout the paper, concepts are illustrated by presenting
results for the one-dimensional version of the TIM, which is
exactly solvable.9–11 A summary is given in Sec. V and im-
portant technical details are discussed in the Appendix. Some
of the results present in this paper have been first presented
�by some of us� in Ref. 8.

II. FIDELITY SUSCEPTIBILITY

A. Definition

We consider the limit of dg→0 and perturbatively calcu-
late the overlap appearing in Eq. �2� to leading order in dg.
The fidelity susceptibility, defined by Eq. �1�, can easily be
shown to read as4,5

�F�g� = 	
n�0

���n�g��H1��0�g���2

�En�g� − E0�g��2 , �3�

in terms of the eigenbasis

	
n

��n�g����n�g�� = I �4�

of H�g�, H�g���n�g��=En�g���n�g��.
Starting from Eq. �3�, one can relate5,6 �F�g� to the

imaginary-time correlation function

GH1
��� = ������H1���H1�0�� − �H1�2� , �5�

where H1���=e�HH1e−�H, with � denoting an imaginary time,
���� is the Heaviside step function and zero-temperature av-
erages are defined by �O�= ��0�g��O��0�g��. Inserting Eq.

�4� into this last equation and taking its Fourier transform we
arrive at

G̃H1
��� = 	

n�0

���n�g��H1��0�g���2

En�g� − E0�g� + i�
, �6�

The similarity between Eqs. �3� and �6� is evident, and by
simply performing a derivative, one can establish5,6 the im-
portant result

�F�g� = i
 dG̃H1
���

d�



�=0
= �

0

�

d��GH1
��� . �7�

This expression is remarkable for a number of reasons. First,
it relates �F�g� to a dynamical response of the system to the
“driving term” H1, evidencing its physical content. Second,
as discussed in detail in Sec. II C, Eq. �7� allows us to ad-
dress the issue of the scaling behavior of �F�g�. Finally, Eq.
�7� permits us to extend the definition of fidelity susceptibil-
ity to finite temperatures �Sec. II B� and therefore constitutes
an obvious starting point in devising a scheme to obtain
�F�g� from path-integral QMC simulations.

Before proceeding, it is also instructive to consider the
ground-state energy’s second derivative, whose intimate
relation to �F�g� has been pointed out in Refs. 7 and 12.
Motivated by this close relationship, we define �E�g�
=−�2E0�g� /�g2, and, by using the eigenbasis of H�g�, it is
readily shown that

�E�g� = −
�2E0�g�

�g2 = 2	
n�0

���n�g��H1��0�g���2

En�g� − E0�g�
. �8�

Comparing Eqs. �6� and �8� it is straightforward to see that

�E�g� = 2G̃H1
�� = 0� = 2�

0

�

d�GH1
��� . �9�

We can notice that the only important difference between
Eqs. �3� and �8� is that in the former the denominator is
squared: this is reflected by the appearance of the � factor in
Eq. �7�, absent in Eq. �9�. One might thus expect �F�g� to
display a more pronounced behavior around a QCP and
therefore to be a better indicator of quantum criticality, an
observation put onto firmer grounds by the scaling analysis
of Sec. II C. Finally, similarly to the case of Eq. �7�, relation
Eq. �9� can be used in order to extract �E�g� from QMC
simulations, as we discuss in Sec. II B.

B. Finite temperature

Before discussing how to extend the definition of fidelity
susceptibility �F�g� to finite temperatures �T=1 /	� it is in-
structive to consider first the similar extension for �E�g�.
From Eq. �9�, one obtains the finite-T generalization

�E�g,	� = 2�
0

	/2

GH1
���d� , �10�

where now GH1
��� is still defined by Eq. �5� but with thermal

averages, �O�=Z−1 Tr�exp�−	H�O�, replacing ground-state
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expectation values �Z=Tr�exp�−	H� is the partition func-
tion�. An important subtlety is apparent here: notice that the
upper integration limit in the above expression is 	 /2 instead
of 	. The underlying reason is that, within the path-integral
formalism used in QMC simulations, periodic boundary con-
ditions are implied along the imaginary-time direction. Con-
nected physical correlation functions, such as GH1

���, are
periodic along the � direction, with period 	. This is illus-
trated in Fig. 1�a� for the one-dimensional TIM �see Sec.
IV A� on a chain with L=16 sites and 	J=16, for h /J=1: we
see that GH1

��� is symmetric around 	 /2 �vertical dashed
line� and decays to zero at �→	 /2 for large enough 	,
a trend already noticeable in Fig. 1�a� where data for the
relatively high temperature 	J=16 are displayed. Therefore,
in the present case we have �E�g�=2�0

	/2GH1
���d�

=�0
	GH1

���d�.
The definition of fidelity susceptibility �Eq. �7�� can be

extended to finite temperatures in a similar way

�F�g,	� = �
0

	/2

�GH1
���d� . �11�

An important difference appears though: the aforementioned
properties of GH1

��� are not shared by the function �GH1
���

since the prefactor � destroys the periodicity along the
imaginary-time direction. This is illustrated in Fig. 1�b�,
again using the one-dimensional TIM as an example. In par-
ticular, �0

	/2�GH1
���d���	/2

	 �GH1
���d� and, therefore, in or-

der to ensure that �F�g ,	� converges correctly to its zero-
temperature limit, lim	→� �F�g ,	�=�F�g�, one must cut the
integral at 	 /2. This has important implications for the QMC
evaluation that is now made possible by Eq. �11�, as clarified
in Sec. III A.

While the just discussed generalization of �F to finite 	
�Eq. �11�� has been introduced for computational purposes, it
is possible to relate it to more commonly used metrics for
thermal �mixed� quantum states,13 as we discuss in what fol-
lows.

1. Bures metric

The so-called Uhlmann fidelity generalizes the concept of
fidelity �Eq. �2�� to the case of mixed states. For density
matrices 
A and 
B, it is defined as14

F�
A,
B� = Tr�
A
1/2
B
A

1/2,

and has an associated metric ds�
A,
B�=�2�1−F�
A,
B��,
known as the Bures distance. We are interested in the case of
thermal density matrices,


g =
1

Z
	

n

e−	En�g���n�g����n�g�� ,

expressed here in terms of the eigenbasis of H�g� �Eq. �4��.
The concept of fidelity susceptibility �Eq. �3�� can then be
extended to the finite-T regime with the Bures metric
ds2�g ,	�=ds2�
g ,
g+dg� for density matrices associated to
infinitesimally close �dg→0� couplings in the Hamiltonian,
g and g+dg. Following Zanardi et al.,13 one obtains the fol-
lowing expression for ds2�g ,	� �for the sake of simplicity we
omit the dependence on g of the eigenvalues and eigenvec-
tors in the remainder of this section�:

ds2�g,	� = dscl
2 �g,	� + 	

n�m

���n�H1��m��2

�En − Em�2

e−	En

Z

�1 − e−2x�2

1 + e−2x ,

�12�

where x=	�Em−En� /2. One appealing feature in this expres-
sion is that it distinguishes “classical” and quantum contri-
butions. The “classical” term, dscl

2 �g ,	�, is given by13

dscl
2 �g,	� =

	2

4
��H1,d

2 � − �H1,d�2� . �13�

Here, H1,d denotes the diagonal elements of H1 in eigenbasis
Eq. �4� so that

�H1,d� =
1

Z
	

n

e−	En��n�H1��n� .

On the other hand, the second term in Eq. �12� is of pure
quantum origin and vanishes unless �
g ,
g+dg��0.13

2. Relation between �F(g ,�) and ds2(g ,�)

We now relate the two previously discussed finite-
temperature extensions for the fidelity susceptibility, namely,
Eqs. �11�–�13�. We expand the trace for thermal averages and
insert the eigenbasis of H�g� �Eq. �4�� in Eq. �11� arriving to

�F�g,	� =
1

Z
	
n,m
�

0

	/2

d���e−	En+��En−Em����n�H1��m��2

−
e−	�En+Em�

Z
��n�H1��n���m�H1��m�� .

The terms with n=m in the first term in the integrand are
independent of � and can be regrouped with the second term
to yield 1

2dscl
2 �g ,	�. Performing the integration for the re-

maining terms, we finally obtain
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FIG. 1. �Color online� Correlation functions �a� GH1
��� and �b�

�GH1
���, as a function of �, for finite inverse temperature 	J=16 for

the d=1 TIM on a chain with L=16 sites and h /J=1 �see Sec.
IV A�. Data are generated by using the QMC method detailed in
Sec. III and fixing the parity to the P=+1 sector �Sec. IV A 2�. ED
data with fixed parity P=+1 are also shown both for finite and zero
temperatures.

QUANTUM CRITICAL SCALING OF FIDELITY… PHYSICAL REVIEW B 81, 064418 �2010�

064418-3



�F�g,	� =
dscl

2 �g,	�
2

+ 	
n�m

���n�H1��m��2

�En − Em�2

e−	En

Z
�1 − e−x�2,

�14�

where again we set x=	�Em−En� /2. One can readily show
that in the limit T→0 both �F�g ,	� �Eq. �14�� and ds2�g ,	�
�Eq. �12�� converge to the ground-state result of Eq. �3�, as
desired. This is illustrated for the TIM on the square lattice in
Fig. 3, where data from QMC �for �F�g ,	�� and exact diago-
nalizations �for both �F�g ,	� and ds2�g ,	�� are displayed
�see discussion in Sec. IV B�. On the other hand, the high-
temperature limit �	→0� yields ds2�g ,	→0�=2�F

�g ,	→0�= 	2

4 ��H1
2�− �H1�2�.

In order to analyze the general case, we evaluate the ratio
between f�x�= �1−e−2x�2 / �1+e−2x�, which appears in Eq.
�12�, and g�x�= �1−e−x�2 �from Eq. �14��. We have
f�x� /g�x�=1+1 /cosh�x� and therefore f�x� /2�g�x�� f�x�.
Noting that dscl

2 �g ,	�0, we can conclude that

1

2
ds2�g,	� � �F�g,	� � ds2�g,	� . �15�

These inequalities show that if ds2�g ,	� diverges, then
�F�g ,	� must also diverge and we conclude that both quan-
tities are equally well suited for detecting criticality. While in
this paper we are interested in quantum phase transitions and
thus focus on the limit 	→�, it would also be of interest to
investigate the finite-T behavior of �F�g ,	�: as discussed in
Ref. 13, this quantity might be able to detect thermal phase
transitions and/or finite-T signatures of quantum criticality.

C. Scaling behavior

We focus now on the issue of how the fidelity suscepti-
bility �F behaves in the vicinity of a QCP and start by re-
viewing the main results from the scaling analysis devised by
Campos Venuti and Zanardi.6 Starting from Eq. �7� and fol-
lowing standard scaling arguments �see for instance Ref. 15�,
they apply the scale transformation x�=sx, ��=sz� �z is the
dynamic critical exponent�, and arrive to the following rela-
tion for the scaling of the fidelity susceptibility density:

L−d�F � �g − gc���d+2z−2�H1
�. �16�

Here, Ld=N is the number of sites for a d-dimensional sys-
tem. In what follows, we assume that a second-order quan-
tum phase transition takes place at a value gc of the “driving
parameter� g and that the correlation length diverges in its
neighborhood as ���g−gc�−�; �H1

is the scaling dimension
of the driving term H1 in Eq. �1�: H1�=s−�H1H1. Standard
finite-size scaling arguments thus imply that

�F � L−2�z−�H1
� �17�

for finite systems at criticality.
An alternative scaling analysis has been recently put for-

ward by some of us in Ref. 8, where the simpler result

�F � L2/�, �18�

has been derived. The appeal of the above scaling relation, as
compared to Eq. �17�, stems from the fact that it is not ex-

pressed in terms of the exponent �H1
, rarely dealt with in

more conventional approaches to quantum critical phenom-
ena. In fact, �H1

can easily be related to the exponent � �see
Ref. 8�. In what follows, we provide an intuitive equivalent
derivation of Eq. �18�.

We start by remarking that at T=0 the free-energy density
fH reduces to the ground-state energy density, L−dE0. Since,
by definition, fH��g−gc�2−� �see for instance Ref. 15�, one
readily obtains

L−d�E � �g − gc�−�. �19�

This relation is not at all surprising since, as we can see from
Eq. �9�, �E�g�=−�2E0�g� /�g2 is similar to a “zero-
temperature specific heat.” Comparing the expressions for �E
�Eq. �9�� and �F �Eq. �7��, one sees that the only difference is
the presence of an imaginary-time �or inverse energy� scale �
in the latter, that we naturally expect to scale as �g−gc�−z� in
the critical regime.15 We thus arrive at

L−d�F � �g − gc�−��+z�� = �g − gc�−�2−d��, �20�

where we have made use of the hyperscaling formula 2−�
=��d+z�. Therefore, we arrive to the conclusion that L−d�F
diverges only when ��2 /d.

On the other hand, by similarly inserting the hyperscaling
formula into Eq. �19�, we obtain L−d�E��g−gc�−2+��d+z� and,
as anticipated in Sec. II A, conclude that �E has a weaker
divergence than �F at a critical point. Furthermore, we find
that the more stringent condition ��2 / �d+z� must be satis-
fied for L−d�E to diverge and that there might be situations
where only L−d�F displays a divergence at a critical point,
being in general a better indicator of quantum criticality.

Next, by performing a finite-size scaling analysis, we con-
clude that for the fidelity susceptibility per site we have

L−d�F � L�2/��−d, �21�

in agreement with Eq. �18� �Ref. 8�. For L−d�E, we similarly
obtain

L−d�E � L�2/��−�d+z�. �22�

The validity of the scaling relations Eqs. �21� and �22� is
confirmed by the analysis of the QMC data performed in
Sec. IV C. Finally, we note that the scaling relations pre-
sented here have been independently found in the context of
quantum quenches,16–18 as discussed in Sec. V.

III. STOCHASTIC SERIES EXPANSION

Despite the sign problem that precludes efficient simula-
tions of most fermionic/frustrated models, quantum Monte
Carlo methods are among the most efficient tools to simulate
quantum many-body problems. Particularly useful for our
purpose here is the QMC formulation known as stochastic
series expansion �SSE�, developed by Sandvik and
coworkers.19–21 Basically �for a detailed account the reader is
referred to Ref. 21�, SSE relies on a power-series expansion
of the system’s partition function22
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Z = Tr�e−	H� = 	
n=0

�

	
�

	
Sn

	n

n!
����

i=1

n

H�bi���� . �23�

Here ���� is any suitable basis and the system’s Hamiltonian
is typically a sum over local operators: H=	bH�b�, with b
labeling different local terms. For instance, b may denote
operators acting on different bonds of the lattice and/or di-
agonal versus nondiagonal operators. For our current pur-
poses, it is convenient to choose a decomposition that re-
spects the bipartition of Eq. �1�, such that all terms appearing
in H0 are labeled by b0 and those appearing in gH1 by b1 and
we have b� �b0 ,b1. SSE configurations �� ,Sn�, with opera-
tor strings

Sn = �
i=1

n

H�bi� , �24�

are then sampled, according to the statistical weight

W��,Sn� =
	n

n!
����

i=1

n

H�bi���� .

Efficient update schemes such as the directed loop
algorithm21,23 render the SSE technique one of the most ef-
ficient QMC methods for quantum lattice models.

The general procedure for obtaining thermal averages
within the SSE framework is discussed in detail by Sandvik
in Ref. 24. The basic idea, supposing we are interested in an
observable O, is to determine an estimator O�� ,Sn� such that

�O�W =
1

Z
	

n
	

��,Sn�
O��,Sn�W��,Sn� .

In what follows, we show how estimators for the fidelity
susceptibility �F�g ,	� �Eq. �11�� and �E�g ,	� �Eq. �10�� can
be obtained from SSE-QMC simulations.

A. Fidelity susceptibility

First, we need to evaluate imaginary-time operator prod-
ucts of the form �H1���H1�0�� appearing in the integrand of
Eq. �11� �cf. Eq. �5��. These operators being part of the
Hamiltonian, one trick consists in reinterpreting two of the
elements with label b1 of the string �Eq. �24�� as the opera-
tors to be measured. Following Ref. 24, we arrive at

g2�H1���H1�0��

= 	
m=0

n−2
�n − 1�!

�n − m − 2�!m!
	−n�	 − ��n−m−2�m�NgH1

�m��W.

�25�

Here, n is the length of the operator string Sn �Eq. �24�� and
NgH1

�m� the number of times any two operators comprising
gH1 appear in the strings Sn separated by m positions. We
discuss below how NgH1

�m� can be measured.
The second term in Eq. �5� is obtained by a simpler

procedure24 and is given by

�H1�2 =
1

g2	2 �NgH1
�W

2 , �26�

where NgH1
is the total number of gH1 operators in Sn.

Inserting the results Eqs. �25� and �26� into Eq. �11� and
integrating from �=0 to 	 /2 �taking into account the impor-
tant multiplicative factor of � in the integrand�, we finally
arrive at the result

�F�g,	� =
1

g2 	
m=0

n−2

�A�m,n��NgH1
�m��W� −

�NgH1
�W

2

8g2 , �27�

with the coefficient

A�m,n� =
�n − 1�!

�n − m − 2�!m!
�

0

1/2

d��m+1�1 − ��n−m−2. �28�

We show in Appendix how this coefficient can be approxi-
mated very accurately by an analytical expression in the limit
of n�1.

NgH1
�m� is conveniently extracted from the simulations in

two steps. Firstly, the string �Eq. �24�� is traversed �for in-
stance when performing diagonal updates; see Ref. 19� and
the positions i where a local Hamiltonian H�bi� appears with
a label bi=b1 are recorded �there are in total NgH1

such op-
erators�. Secondly, the histogram NgH1

�m� is generated by
computing all distances m between all previously recorded
positions i. This step is the most demanding as it requires
NgH1

�NgH1
−1� /2 operations. Note finally that the prefactor

1 /g2 arises from the definition of the fidelity susceptibility
�Eq. �3�� which does not include the coupling constant g,
whereas the SSE decomposition used in Eq. �23� typically
does.

B. Ground-state energy’s second derivative

The results �Eqs. �25� and �26�� can also be used in order
to directly evaluate the ground-state energy’s second deriva-
tive, relying on Eq. �10� and extrapolating to the limit 	
→�. The absence of the factor � in Eq. �9� considerably
simplifies the situation since the integration over � can now
always be performed exactly. In this way, we arrive at the
simple result

�E�g,	� =
1

g2	
��NgH1

2 �W − �NgH1
�W − �NgH1

�W
2 � . �29�

We stress that the computational cost for evaluating �E�g ,	�
is much lower than the one required to obtain �F�g ,	�: the
estimator for the former quantity in Eq. �29� simply requires
counting the number of times the operators contained in the
“driving term” gH1 occur in the operator strings Sn. This is to
be contrasted with the computationally heavy task, specially
in the limit of large lattice sizes and low temperatures, of
computing the histogram NgH1

�m� necessary in evaluating
�F�g ,	� �cf. Eqs. �27� and �28��.
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IV. NUMERICAL SIMULATIONS

A. Transverse-field Ising model

1. Definition

The transverse-field Ising model �TIM� is perhaps the
simplest model to display a QCP and many key concepts in
the theory of quantum critical phenomena have been devel-
oped by analyzing its properties.25

The TIM Hamiltonian reads as

H�h� = JHJ + hHh = − J	
�i,j�

�i
x� j

x − h	
i

�i
z, �30�

where �i , j� denotes nearest-neighbor sites on a
d-dimensional lattice and �i

x,z are Pauli matrices attached to
the site i. We set the energy scale by henceforth fixing J=1.

At zero temperature and in any dimension, a quantum
phase transition occurring at a field hc separates a ferromag-
netic phase for low fields h�hc from a polarized one for h
�hc, with spins aligning along the field direction. The quan-
tum phase transition in d dimensions belongs to the univer-
sality class of the finite-temperature phase transition of the
classical Ising model in d+1 dimensions and has a dynamic
critical exponent z=1.25

The TIM is exactly solvable in the one-dimensional
case.9–11 The QCP is located at hc=1 and most observables,
including �F,3 can be computed analytically. We make use of
these exact results in establishing the validity of the QMC
method discussed in Sec. III, for instance in Sec. IV A 2,
where the issue of parity is discussed. On the other hand, the
TIM is not solvable in two dimensions and has been inves-
tigated mainly through means of numerical techniques.26–31

The most precise estimate for the location of the QCP, hc
=3.044 38�2�, has been obtained from a QMC approach.31

Before proceeding, we remark that a scaling analysis for
the fidelity susceptibility and the second derivative of the
ground-state energy for the TIM on the square lattice has
been recently performed by Yu et al. in Ref. 32. Results are
compared in Sec. V.

2. Parity quantum number

An important issue concerning the TIM is the existence of
a conserved quantum number, the parity P. It is readily veri-
fied that the parity operator,

P = �
i=1

N

�i
z �31�

�for a system with N sites�, commutes with the TIM Hamil-
tonian �Eq. �30��, �H ,P�=0, and therefore the parity P
= �1 is a good quantum number.

For finite systems, the ground state of the TIM lies in the
P=+1 sector, as shown by the following argument. It is con-
venient to work on the basis given by tensor products of the
eigenvectors ��↑ �x , �↓ �x of �i

x at every site: ���m� with, for
instance, ��m�= �↑↓ ↓ ↑¯�x. All off-diagonal matrix elements
for the Hamiltonian �Eq. �30�� are nonpositive in this basis
and therefore the TIM on finite lattices satisfies the condi-
tions for the Perron-Frobenius theorem to apply. According

to this theorem, the coefficients of the system’s ground state
�in its expansion in terms of the basis ���m�, ��0�
=	mcm��m�� must all have the same sign �say, cm0�. Con-
sider the lowest-lying states in each parity sector ��0

��: they
can be expanded as ��0

��=	mcm
���m

��, with ���m
�� denoting

the subset of elements in ���m� with fixed parity P= �1.
The argument proceeds by noticing that the parity operator
�Eq. �31�� simply acts as a spin reversal operator upon the
elements of the �x basis: namely, P��m

��= ��m
��, where ��m

�� is
obtained from ��m

�� by flipping all spins �for instance,
P�↑↓ ↓ ↑¯�x= �↓↑ ↑ ↓¯�x�. Thus, the expression

P��0
�� = 	

m

cm
�P��m

�� = 	
m

cm
���m

�� = � ��0
�� ,

is only consistent with the positiveness of the ground state if
P=+1 �one readily sees that the above relation can only be
satisfied in the P=−1 sector if the coefficients for the basis
elements ��n

�� and P��n
��= ��n

�� have opposite signs in the
expansion for ��0

−��.
The above discussion is directly relevant for our purposes

here since, while expectation values for most physical ob-
servables are the same for the lowest-lying states in both
parity sectors, this turns out not to be the case for �F and �E.
This is illustrated in Fig. 2, where exact results for �F
�curves, see Ref. 3� for the TIM on a chain with L=16 sites
are shown for both parities, P=+1 and P=−1. Also shown
are data obtained from a naive QMC implementation not
discriminating between different parity sectors �triangles in
Fig. 2�: the disagreement is evident, specially in the neigh-
borhood of the QCP at hc=1. While we expect this discrep-
ancy to disappear in the thermodynamic limit �as suggested
by exact results for the d=1 TIM for increasingly larger sys-
tems; however, we have no general proof�, QMC simulations
are obviously restricted to finite system sizes and it thus
important to take the parity quantum number into account.
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FIG. 2. �Color online� Fidelity susceptibility density for the 1d
TIM, as obtained from the exact solution �curves� and QMC
simulations �symbols; see Sec. III A�. Results for both parity sectors
P=−1 and +1 are shown �see Sec. IV A 2�. QMC results indicated
by P= �1 �triangles� have been obtained by making no distinction
between parity sectors. For h /J�1, statistics are insufficient to es-
timate �F in the P=−1 sector from QMC simulations since only the
ground state in the P=+1 sector is sampled at the low temperature
considered here, 	J=32. Data are for a system of size L=16 with
periodic boundary conditions.
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Fortunately, the parity of a given SSE configuration
�� ,Sn� can easily be determined within the here adopted con-
vention for the TIM �Eq. �30��.33 Indeed, the parity operator,
defined in Eq. �31�, is diagonal in the �z basis employed in
SSE-QMC simulations and the parity is then readily obtained
as

P = �
i=1

N

�i
z���� = 0��

�since the parity is a conserved number, it can be computed
at any time slice, in particular at �=0�. Both parity sectors
are sampled due to the nonlocal updates in the QMC scheme
�see Ref. 21�. Therefore, our strategy consists of computing
the estimators required for obtaining �F and �E �see Sec. III�
for all SSE configurations �� ,Sn� and storing the results in
different variables according to the parity of the state
����=0��. Data obtained in this way for the d=1 TIM are
shown in Fig. 2 and perfectly agree with the exact results.
Finally, since for finite systems the ground state has P=+1,
all results discussed in the present work have been obtained
for this parity sector �with the exception of the indicated
ones in Fig. 2�.

B. Simulation details

The computation of �F�g ,	� and �E�g ,	� requires only
small changes to an existing SSE code: estimators for both
quantities �Eqs. �27� and �29�, respectively� are simply com-
puted by analyzing the operator strings �Eq. �24��, a task
ideally carried out while performing diagonal updates for the
SSE configurations �� ,Sn�.21 Our code is based on the ALPS

�Ref. 34� libraries implementation of SSE QMC.23 The main
modifications of the original codes are independent from
measurements for �F and �E and are specific to the TIM �as
defined by Eq. �30�� studied in the present work. They in-
volve changes in the processes that are allowed when per-
forming off-diagonal updates35 and the computation of the
parity quantum number �see Sec. IV A 2�.

Calculating �F can be computationally demanding due to
the fact that the number of operations required for obtaining
the histogram NgH1

�m� �see Eq. �27�� scales quadratically
with the total number of gH1 operators in the string Sn. The
situation can be ameliorated by a judicious bipartition of the
system’s Hamiltonian into H0 and H1 �Eq. �1��.

Indeed, there is freedom to consider either HJ or hHh �or,
in general, any combination of these� appearing in Eq. �30�
as the “driving term” H1 in Eq. �3�: since ��n�h���HJ
+hHh���0�h��=0 for n�0, we readily conclude from Eq. �3�
that �F

HJ =h2�F
hHh �superscripts indicate the term assigned to

H1� and therefore different bipartition choices lead to the
same zero-temperature results for �F, apart from a trivial
multiplicative factor. Although this is no longer true for the
finite-T generalizations of Eqs. �12� and �14�,36 the equiva-
lence between results obtained from different partitions is
recovered in the limit T→0, as shown in Fig. 3 for the TIM
on the square lattice �data obtained from QMC simulations
for a 4�4 cluster and h /J=1�.

We may thus explore the fact that different terms in the
Hamiltonian dominate in different regions of the phase dia-

gram in order to reduce computational cost. Specifically, for
the case of the TIM considered here �Eq. �30�� it is more
efficient to compute NgH1

�m� in the high-field limit if we set
H1=HJ, since the number of such operators in the strings Sn
will be smaller than that of Hh operators in this limit. In
practice, we find that, for field magnitudes close to the QCP
for the TIM on the square lattice, setting H1=HJ is the most
efficient choice.

Following this strategy, we have simulated the TIM on the
square lattice by considering clusters with linear size L and
periodic boundary conditions �PBCs�, and are able to reach
L=28 when computing �F. On the other hand, computing �E
requires much lesser numerical effort and we are able to
reach L=48. For both quantities, we find that if we set the
inverse temperature 	=2L both �F and �E reach their
ground-state expectation values. This is illustrated in Fig. 3
for the L=4 cluster. We have also performed a few simula-
tions setting 	=4L in order to confirm that convergence has
indeed been achieved, at least within error bars, for 	=2L.

C. Results

Our QMC data for L−2�F and L−2�E for the TIM on the
square lattice are shown in Fig. 4 for various system sizes L.
The presence of peaks in the curves for both quantities is
evident: they become more pronounced for increasing L and
their positions seemingly converge toward the estimate hc
=3.044 38�2� for the QCP found in Ref. 31 �see below�.
Furthermore, we notice that �E displays less pronounced
peaks than �F, as expected from our discussion in Sec. II C.
A quantitative data analysis is explained in what follows.

We start by determining the peaks positions and heights
for both �F and �E from the raw data displayed in Fig. 4. The
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FIG. 3. �Color online� Finite-T fidelity susceptibility L−2�F�g ,	�
�Eqs. �11� and �14�� and Bures metric L−2ds2�g ,	� �Eq. �12�� as a
function of the inverse temperature 	=T−1 for the TIM on the
square lattice �N=4�4 sites cluster with periodic boundary condi-
tions; restriction to the P=+1 parity sector, see Sec. IV A 2�. Both
HJ and hHh �see Eq. �30�� have been considered as the “driving
term� H1 in the definitions for �F�g ,	� and ds2�g ,	�: we see that
different choices yield the same T=0 result. The vertical dashed line
marks the value 	=2L set in obtaining the QMC data displayed in
Figs. 2 and 4: while for the coupling considered here �h /J=1� the
system is deep into the ferromagnetic phase and convergence to
ground-state expectation values is achieved for smaller 	, the more
stringent condition 	=2L is necessary closer to the QCP.
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so obtained results are shown in Fig. 5. From the scaling
relations derived in Sec. II C, L−d�F�L�2/��−d and L−d�E

�L�2/��−�d+z� �Eqs. �21� and �22�; d=2 and z=1�, we expect a
linear dependence for the logarithm of the peaks’ height on
ln L. This is confirmed by the results shown in Figs. 5�a� and
5�c�. By applying linear regression to the points associated to
the three largest values of L in each plot we obtain our first
estimates for correlation length’s exponent: �=0.623�8� ��F,
Fig. 5�a�� and �=0.615�1� ��E, Fig. 5�c��. While the former
estimate is in good agreement with the result for the univer-
sality class of the three-dimensional classical Ising model
��=0.6301�8�, Ref. 37�, the latter clearly underestimates �.
This is likely to be explained by the weak divergence dis-
played by �E, implying that regular subleading corrections
are important in accounting for the behavior in system sizes
as the ones considered here: indeed we notice that the data
points corresponding to the smallest system sizes clearly de-
viate from the linear fit obtained for the points for the three
largest L in Fig. 5�c�.

In Figs. 5�b� and 5�d� we plot the peaks’ location versus
inverse system size 1 /L for �F and �E, respectively. We ex-
pect �see for instance the related discussion in Ref. 38� the
following expression to hold for the scaling of the peak po-
sitions for hc�L� with system size L,

hc�L� = hc
� +

�

L1/� , �32�

where hc
� is the result for L→�. Data fits give the following

estimates: hc
�=3.0442�4� and �=0.625�7� ��F, Fig. 5�b�� and

hc
�=3.0442�7� and �=0.63�1� ��E, Fig. 5�d��. We remark that

our estimates for the location of the QCP are in very good
agreement with the result from Ref. 31 and, although quality
is lesser in this case, our results for � are consistent with the
value �=0.6301�8� found in Ref. 37.

Finally, from the finite-size scaling analysis performed in
Sec. II C we expect the following relation to describe the
behavior of �F on finite systems in the neighborhood of the
QCP

L−d�F�h,L� = L�2/��−df�F
�L1/��h − hc�� , �33�

and similarly for �E

L−d�E�h,L� = L�2/��−�d+z�f�E
�L1/��h − hc�� . �34�

�� �
�
��
������

��
�
��������������

�
�
�
�
��

��
��
��

��
��

�
��
��

�� �
� �� �

�
��
��
�
�
�
��
�
��
��
��
��
��
��
��
��
��
��

�
�

��
��
��

�
��
��

��
��

�
� �� �

� ��
����

�
��
�
��
��
��
����
��
��
��

�

��
��

��

��
��

�
��
��

��
���
��
�
�
�
�
��
��
��
��
�
�
����
�
�
�
�

��
��

�
�

��
��

��

��

��
��

�
�

��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
�

��

��

�
�

�
� ����

���
���
�����
����
��
��
��

��
��

��
��

��
�

�

��

���
�

��

��

�
�

��

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
h / J

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
L

-2
c F

L = 8��

L = 12��
��

L = 16��

L = 20
L = 24��

L = 28

��
���
������

��
�
����
��
��
��
��
��
��
��
��
��
�
�

�
�

��
��

��
��

��

��

�
�

��
��

��
�� �

��
�

��
����
���
�
�
����
��
��
��
��

��
��

��
��

��
��

�

��

��
��

��

�

��
��

�
�
�
�����
��
��
��
��
�
��
��
��
��
�
�
�

��
��

�
�

��

��

��
��

��
��

�
�

�� �
�

��
�� �

� ��
����

��
��
��
����
����
��
��
��

�
�

��
��

��
��

��

�
�

��

��
��
����
��
��
��
��
��
��
��

��
����
��
��
��
��

��
���
�

��
��

��
��

�
�

�
� ����

����
�
�
�����
����
��
��
��
��
���
�

�
�

�
�

��
��

��
�

��

��

�
�

��
��

��
�
���
���
���
��
��
�
��
��
��
��
�

��
��

��
��

��

�
�

�
�

��
��

��

�

��
��

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
h / J

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
-2

c E

L = 8��
L = 12

��
��

L = 16
��
��

L = 20
L = 24��
L = 28
L = 32

��
��

L = 40
L = 48

(b)

(a)

FIG. 4. �Color online� �a� Fidelity susceptibility density L−2�F

and �b� ground-state energy’s second derivative per site
L−2�2E0�g� /�g2=−L−2�E�g� for the TIM on the square lattice, as a
function of h /J and for indicated system sizes L �temperatures are
set to 	=2L�. Data have been obtained by applying the SSE-QMC
procedure detailed in Sec. III.
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FIG. 5. �Color online� Finite size scaling analysis for the loca-
tion and height of the peaks in �a� and �b� �F and �c� and �d� �E,
obtained from the QMC data shown in Fig. 4. In panels �a� and �c�,
the logarithm of the maxima in L−2�F and L−2�E, respectively, are
plotted as function of ln L. Linear regression �lines� is applied to the
three rightmost data points in each case, yielding the estimates �a�
�=0.623�8� and �c� �=0.615�1� for the correlation length’s critical
exponent. In �b� and �d�, the peaks’ location hc�L� for, respectively,
L−2�F and L−2�E is plotted against inverse system size 1 /L. Fits
�curves� for these results by using Eq. �32� yield the estimates: �b�
hc

�=3.0442�4� and �=0.625�7� and �d� hc
�=3.0442�7� and �

=0.63�1� �the extrapolated values hc
� are indicated by the horizontal

dashed lines�. See main text for details.
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In the above expressions f�F
and f�E

are homogeneous func-
tions, a priori unknown. Estimates for critical parameters
can thus be obtained by plotting L−2/��F and L−2/�+z�E versus
L1/��h−hc� and adjusting the values of hc and � until data
collapse is achieved. The so-obtained data collapse plots are
displayed in Fig. 6, from which we get the following esti-
mates: hc=3.0440�15� and �=0.625�3� ��F, Fig. 6�a��, and
hc=3.044�2� and �=0.61�1� ��E, Fig. 6�b��. All of these val-
ues are in agreement with published results �hc
=3.044 38�2� from Ref. 31 and �=0.6301�8�, Ref. 37�, but
we remark the slightly lesser quality of the data collapse
achieved for �E. Indeed, data obtained from the smallest sys-
tem sizes in Fig. 4�b� fail to collapse onto the curve for the
largest L in Fig. 6�b� and have not been taken into account
when performing the analysis. Again, we believe that this is
explained by the weakly divergent behavior of �E.

V. DISCUSSION AND CONCLUSIONS

In summary, we have investigated the scaling properties
of the fidelity susceptibility �F in the quantum critical re-
gime. Large-scale quantum Monte Carlo simulations for the
transverse-field Ising model on the square lattice, performed
by using the scheme introduced in Ref. 8, confirm the valid-
ity of the derived scaling relations. Additionally, we also in-

vestigate the scaling behavior of the ground-state energy’s
second derivative, �2E0�g� /�g2=−�E�g�, a quantity closely
related to �F.

We would like to highlight the fact that the novel QMC
scheme for computing �F presented in Ref. 8 and discussed
in detail in the present work opens several research possibili-
ties within the so-called fidelity approach to quantum critical
phenomena. Indeed, investigations in this field have been so
far, to a large extent, restricted to one-dimensional systems,
while our QMC scheme allows for the study of �F for a large
class of sign-problem-free models in arbitrary dimensions.
Furthermore, we stress that the required modifications in a
pre-existing SSE code are minimal and that, even though
SSE is particularly well suited for the task, it is also likely
that measurements for �F�g� can be implemented within
other QMC flavors, such as the loop algorithm.39 Another
potentially interesting possibility opened by the QMC
method considered here involves the study of the finite-T
properties of �F �which scales as the Bures metric, as shown
in Sec. II B�, along the lines of Ref. 13.

A second point worth to emphasize is the particularly
simple scaling relations for �F derived in Sec. II C, expressed
solely in terms of the correlation length’s critical exponent �
and that considerably extends the result obtained by Campos
Venuti and Zanardi.6 Perhaps even more importantly, our
scaling analysis does not rely on novel concepts such as
“quantum adiabatic dimension” recently advocated by Gu et
al.40,41 Also, our Eq. �21� is consistent with several results for
the scaling behavior of �F close to second-order QCPs pre-
sented in the literature, including those compiled in Table I
of the review of Ref. 3 �note that some results from the
literature quoted in this table mistake � for 1 /��.

Additionally, we also obtain a scaling relation for �E,
something that allows us to address the important point of
which of the two quantities, �F or �E, is better suited in
detecting quantum phase transitions. This question is particu-
larly important from the perspective opened by the QMC
SSE scheme: indeed, as we discuss in detail in Sec. III, the
computational cost for calculating �E can be orders of mag-
nitude smaller than the one required in obtaining �F, some-
thing in favor of the former as a better indicator of quantum
criticality, from a practical perspective. However, our scaling
analysis shows �Sec. II C� that �E exhibits a weaker diver-
gence �by a factor of z in the exponent� than �F, meaning that
it might be necessary to take into account nondivergent sub-
leading corrections when performing finite-size scaling
analysis for �E. Furthermore, there may even be situations
where only �F diverges: according to the scaling theory, this
happens whenever 2 / �d+z����2 /d. As a concrete ex-
ample, we mention the case of the QCPs for the CaVO sys-
tem analyzed in Ref. 8, which are preferably detected as a
divergence in �F rather than as a cusp in �E.

That is, the question of which among �F and �E is best
tailored to detect an unknown QCP depends on its �possibly
unknown� universality class and on practical matters such as
the system sizes that can be reached within SSE QMC. From
a practical point of view, a possible strategy consists in
evaluating �E on system of up to intermediate sizes �where
simulations are not too demanding� and search for the pres-
ence of peaks hinting at a singularity or a cusp in the ther-
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FIG. 6. �Color online� �a� Data collapse for the QMC results for
L−2�F �a� and L−2�E �b� for the TIM on the square lattice and
indicated system sizes. Data collapse is achieved for: �a� hc

=3.0440�15� and �=0.625�3� and �b� hc=3.044�3� and �=0.61�1�.
In panel �b�, data for the smallest system sizes are discarded �see
main text�.
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modynamic limit. In the affirmative case, simulations for
larger systems sizes may be performed in order to confirm
the occurrence of singular behavior for this quantity. If this is
not the case, one should measure �F�g� for intermediate sizes
and check on whether a singularity is more apparent.

More specifically, we compare now our results for the
TIM on the square lattice to those obtained, through means
of exact diagonalizations, by Yu et al.32 Yu et al. were able to
study �F and �E by considering clusters comprising up to 20
sites and have arrived to the following estimates of critical
parameters: hc=2.95�1� and ��1.40. On the other hand, by
resorting on the SSE QMC method discussed in Sec. III and
on the scaling relations in Sec. II C, we are able to compute
�F for systems with up to N=28�28 sites and �E for sys-
tems with up to N=48�48, arriving at the estimates �from
the data collapse for �F performed in Sec. IV C�: hc

=3.0440�15� and �=0.625�3�. Our estimate for the location
of the QCP clearly compares much better with results from
conventional approaches �hc=3.044 38�2� from Ref. 31� than
the one found in Ref. 32. And, even more importantly, while
our result for � is in good agreement with the known result
for the universality class of the classical Ising model in d
=3 ��=0.6301�8�, Ref. 37�, the value for � quoted in Ref. 32
considerably deviates from it. Again, we suspect that the
value for � is incorrectly presented as the value for 1 /�.

The fact that the analysis employed in Ref. 32 fails to
obtain critical parameters in agreement with the ones from
conventional approaches highlights the importance of the
two main results presented here. First, our SSE QMC allows
for the computation of �F and �E for much larger systems
than possible within exact diagonalizations, enormously im-
proving the quality of finite-size scaling analysis �we remark
that results for clusters comprising less than N=8�8 sites
are not even taken into account in the data collapse per-
formed in Sec. IV C�. Second, the scaling relations derived
in Sec. II C extend previous results6 and express the scaling
dimensions for both �F and �E in terms of the correlation
length exponent. This has the advantage that the exponents
obtained for �F and �E can be directly compared to estab-
lished results for a given universality class, allowing us to
decide on the validity of the approach.

We also remark that the scaling relations derived here are
in agreement with the ones recently derived in the field of
quantum quenches.16–18 In this context, the fidelity �and its
susceptibility� governs the probability for the system to tran-
sit to an excited state after a sudden change in the coupling
constant g away from the critical point gc. This expands the
range of applicability of the concept of fidelity susceptibility
beyond the fidelity approach to quantum phase transitions.3

We might therefore expect that the QMC method presented
here, or an adaptation thereof, is also applicable in this con-
text.

We acknowledge fruitful exchanges with O. Motrunich,
A. Polkovnikov, G. Roux, D. Schwandt, and L. Campos
Venuti. Calculations were performed using the SSE code23 of
the ALPS libraries.34 We thank CALMIP for allocation of
CPU time. This work is supported by the French ANR, Pro-
gram No. ANR-08-JCJC-0056-01.

APPENDIX: ANALYTICAL APPROXIMATION
OF AN INTEGRAL

In this section, we derive useful approximate analytical
expressions for Eq. �28�,

A�m,n� =
�n − 1�!

m!�n − m − 2�!�0

1/2

�m+1�1 − ��n−m−2d� .

First, we note that A�m ,n� can be written in a more symmet-
ric form

A�m,n� =
m + 1

n
f�m + 1,n − m − 2� ,

where

f�p,q� =
�p + q + 1�!

p!q!
�

0

1/2

�p�1 − ��qd� .

We now concentrate on finding efficient analytical approxi-
mations for f�p ,q�, in the limit where r= p+q+1 is large.
Ultimately, we can apply these estimates to our practical
case, corresponding to p=m+1, q=n−m−2, r=n.

f�p ,q� can be alternatively written as

f�p,q� =

�
0

1/2

�p�1 − ��qd�

�
0

1

�p�1 − ��qd�

.

After the change of variable �= 1
2 �1− t

�p+q
�, we obtain

f�p,q� =

�
0

�p+q �1 −
t2

p + q
��p+q�/2� 1 +

t

�p + q

1 −
t

�p + q

�
�q−p�/2

dt

�
−�p+q

�p+q �1 −
t2

p + q
��p+q�/2� 1 +

t

�p + q

1 −
t

�p + q

�
�q−p�/2

dt

.

As a first approximation in the limit r→�, keeping fixed the
ratio

X1�p,q� =
q − p
�r

, �A1�

we obtain
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f�p,q� �
�

0

�

e�−t2/2�+X1�p,q�tdt

�
−�

�

e�−t2/2�+X1�p,q�tdt

,

which simplifies into

f�p,q� � G�X1�p,q�� , �A2�

where

G�x� =
1

�2�
�

−�

x

e−y2/2dy ,

=
1

2�1 + Erf� x
�2

�� .

In order to obtain more systematic and more rigorous ap-
proximate analytic expressions for f�p ,q�, we quite generally
introduce X�p ,q� such that

f�p,q� � G�X�p,q�� . �A3�

Since for p→+� �at fixed q�, one has f�p ,q�→0, we see
that X�p ,q�→−� in this limit. Moreover, the symmetry
f�p ,q�=1− f�q , p� implies that X�p ,q�=−X�q , p�.

We now look for a systematic expansion of X�p ,q� in
powers of �q− p� and expand the corresponding coefficients
in �non necessarily integer� powers of 1 /r. In order to per-
form this expansion, we rewrite f�p ,q� in the form

f�p,q� =
1

2
+

1

2

�
0

1

�1 − t2��r−1�/2sinh�q − p

2
ln�1 + t

1 − t
��dt

�
0

1

�1 − t2��r−1�/2cosh�q − p

2
ln�1 + t

1 − t
��dt

.

�A4�

This expression is formally expanded in powers of �q− p�
and the corresponding coefficients are evaluated for large r.
This expansion is then matched with the one obtained from a
similar formal expansion of X�p ,q� in Eq. �A3�. This calcu-
lation can be carried out with the help of MATHEMATICA, and
we finally obtain the fifth order expansion in �q− p� of
X�p ,q�, which generalizes the first-order result of Eq. �A2�.
This expansion can be nicely expressed as an expansion in
odd powers of X1�p ,q�, with coefficient having an expansion
in integer powers of 1 /r,

X�p,q� = a1�r�X1�p,q� + a3�r�X1
3�p,q� + a5�r�X1

5�p,q� + ¯ ,

�A5�

where X1�p ,q� is given by Eq. �A1�, and with the coefficients

a1�r� = 1 −
1

12r
−

19

160r2 +
155

2688r3 + ¯ ,

a3�r� =
1

12r
−

7

360r2 −
48 929

362 880r3 + ¯ ,

a5�r� =
43

1440r2 −
3253

362 880r3 + ¯ ,

which were obtained up to third order in 1 /r. As suggested
by the above result, one can indeed show that the expansion
of a2l+1�r� in powers of 1 /r starts at order l. Hence, we find
that the expansion of Eq. �A5� is valid for �q− p��r instead
of the naive estimate �q− p���r which could have been
guessed from the quick first-order calculation presented
above Eq. �A2�. Since one has X�p ,q���r for �q− p��r,
f�p ,q� is thus extremely close to 0 �p�q� or 1 �p�q� in this
regime, with an error exponentially small in r. Hence, for all
practical numerical purpose, it is certainly not a serious prob-
lem to have an expansion of X�p ,q� limited to �q− p��r.

We now briefly illustrate the precision of the above ap-
proximate forms for f�p ,q� using the simplest approximation
for X�p ,q�, given in Eq. �A1�, or the fifth order calculation of
Eq. �A5�. For the simplest first-order expression of Eq. �A2�,
the maximal error is less than 10−3 for r�30, and less than
10−4 for r�275. For the fifth order approximation, we find a
maximal absolute error which is less than 10−5, for r�25,
and less than 10−7 for r�120.

In Fig. 7�a�, we plot X�p ,q� as a function of p for p+q
=50, for the first and fifth order approximations, and for the
“exact numerical” X�p ,q� obtained after evaluating numeri-
cally the defining integral of f�p ,q�, and inverting the rela-
tion of Eq. �A3�. The plot of the three corresponding f�p ,q�
is presented in Fig. 7�b�.
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FIG. 7. �Color online� Results for �a� X�p ,q� and �b� f�p ,q� as a
function of p for p+q=50. In both panels, the thick-full line corre-
sponds to the “exact numerical” result, while thin-full and dashed
curves are, respectively, first- and fifth-order approximations. The
difference between these latter results and the exact ones for f�p ,q�,
almost indistinguishable in �b�, are shown in �c�. Notice that the
second term in Eq. �A4� vanishes at p=q �implying f�p ,q�=1 /2 for
p=q� and the approximations become exact at this point.
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The maximal error ��10−3, see Fig. 7�c�� due to the
analytical approximations presented in this appendix is
well below our Monte Carlo statistical error and for all prac-
tical purposes the first-order expression is sufficient. Indeed,
only in the case of the results presented in Fig. 3, we faced
the case of r=n�30. Such small values of the SSE expan-

sion order, for which the analytical approximations may be-
come not accurate enough, are only encountered in the case
of very small lattices at high temperature. In these cases,
a simple precomputation with a numerical integration of
Eq. �28� for all values of �m ,n� can be performed prior to
simulations.
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