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We use a Green’s-function method with random-phase approximation to show how magnetic correlations
may affect electric polarization in multiferroic materials with magnetic-exchange-type magnetoelectric cou-
pling. We use a model spin-1

2 ferromagnetic ferroelectric system but our results are expected to apply to
multiferroic materials with more complex magnetic structures. In particular, we find that transverse magnetic
correlations result in a change in the free energy of the ferroelectric solutions leading to the possibility for
thermal hysteresis of the electric polarization above the magnetic Curie temperature. Although we are moti-
vated by multiferroic materials, this problem represents a more general calculation of the effect of fluctuations
on coupled order parameters.
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I. INTRODUCTION

Early theories that calculated the effect of magnetoelectric
�ME� coupling on the spontaneous magnetization M and
electric polarization P in so-called multiferroic materials
used a Landau free-energy formalism.1–3 All terms in the free
energy are written as products of the order parameters M and
P and must satisfy the symmetry of the paraphase. For ex-
ample, for a centrosymmetric paraphase, the lowest-order
magnetoelectric free-energy term is P2M2. Recently, more
exotic ME coupling terms have been proposed which also
represent free-energy invariants, such as a Dzyaloshinskii-
Moriya coupling in an antiferromagnet P · �M�L� �Refs. 4
and 5� and a spin-density wave coupling proposed by Betou-
ras P · ��� �M2�+���M�� ·M�− �M ·��M�+¯�.6 These cou-
pling terms explain the multiferroicity of new candidate ma-
terials.

However, by writing the ME coupling in terms of the
order parameters, the important contribution to the coupling
by correlations is ignored. Most obviously, above the lowest
ordering temperature �out of the magnetic and the ferroelec-
tric Curie temperatures, Tc

M and Tc
P, respectively� there can

be no ME coupling effects predicted by a Landau theory in
zero applied field. In magnetodielectric materials, magnetic
correlations have been shown to have an important effect on
dielectric constants.7,8 In this paper, we theoretically study
the effect that magnetic correlations may have on spontane-
ous electric polarization through ME coupling. We find that
the electric ordering temperature is shifted, even when it is
above the ferromagnetic ordering temperature. We also dis-
cover the possibility for thermal hysteresis in P for multifer-
roic systems when a particular ME coupling term is allowed.
While calculations published in the last few years go beyond
Landau theory,9–12 they fail to identify this effect.

The more general problem of understanding how correla-
tions affect second-order phase transitions in systems with
coupled order parameters has been approached in the past,13

particularly using techniques from renormalization-group
theory.14 For a one-dimensional system, the coupled param-
eters can be calculated exactly15 but for more general sys-
tems this is not the case. Our Green’s-function technique

�GFT�, which in this paper only includes transverse magnetic
correlations, represents a unique approach. It also gives
meaningful results for all temperatures, unlike the
renormalization-group method which can only give informa-
tion on the critical behavior.

In Sec. II we detail the Green’s-function technique with
random-phase approximation �RPA� and derive a free energy
for a ferromagnetic ferroelectric bulk material, which can be
utilized to solve for the coupled order parameters M and P,
as well as other thermodynamic quantities. In Sec. III we
provide some results for ME coupling which is both linear
and quadratic in the order parameter P. We show how the
coupling linear in P leads to the possibility for thermal hys-
teresis by altering the free energy of different local energy
minima. In Sec. IV we summarize the results, discuss the
limitations of the current theory, and provide an outlook on
future work.

II. GREEN’S-FUNCTION METHOD

A model ferromagnetic ferroelectric system with so-called
“isotropic” or “exchange” ME coupling3 is treated. The
methods presented can be extended to treat multisublattice
magnets but become much more complicated. We assume
that Tc

M �Tc
P since this is the case for the majority of multi-

ferroic materials3 and also since then the effects of magnetic
correlations on P will be more significant.

The ferroelectric system is modeled using Landau theory
for second-order phase transitions with free-energy density
given by

FFE =
1

2
�P2 +

1

4
�P4 − EP , �1�

where E is an applied electric field parallel to the spontane-
ous polarization, �=AkB�T−Tc�, A and � are phenomeno-
logical constants, kB is Boltzmann’s constant, and T is tem-
perature. Tc is the ferroelectric Curie temperature in the
absence of ME coupling. Landau theory is valid near phase
transitions so we assume that Tc

M and Tc
P are sufficiently

close for the results to be valid. P is treated as a scalar
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quantity. Its direction relative to the magnetization is not
relevant in this simple model.

We aim to write a free energy for the magnetic system
with ME coupling to combine with Eq. �1� in order to solve
for both order parameters simultaneously. We start with a
microscopic Hamiltonian and use a GFT with a RPA to de-
rive the free energy.

The starting spin Hamiltonian is

Ĥ = − h�
i

Ŝi
z −

1

2
�J + �P + �P2��

�i,j	
Ŝi · Ŝ j


 − h�
i

Ŝi
z −

1

2
�J + �P + �P2��

�i,j	
�Ŝi

+Ŝj
−

+ Ŝi
z�Sz	 + Ŝj

z�Sz	 + �Sz	2� , �2�

where the first term is the Zeeman interaction with h
=g	BH0 and H0 is an applied magnetic field. The second
term represents the exchange interaction with a Taylor-series
expansion for the weak contribution from electric polariza-
tion P. Sushkov et al.16 recently used a Hamiltonian of simi-
lar form to describe how the magnetic-exchange interactions
together with magnetostriction in RMn2O5�R=Y,Bi� couple
strongly the magnetic system to a soft phonon mode associ-
ated with a spontaneous electric polarization. The sum is

over nearest-neighbor pairs of spins at sites i and j and Ŝi



= Ŝi
x
 iŜi

y. The constants � and � describe the ME coupling
strength that is linear and quadratic, respectively, in the spa-
tially averaged order parameter P. We assume for a ferro-
magnet that all sites i are equivalent.

Longitudinal spin terms Si
zSj

z are ignored in Eq. �2� but
transverse terms Si

+Sj
− are kept. The reason for ignoring the

longitudinal correlations is that RPA is known to produce
spurious solutions for �Si

zSj
z	.17,18 Although this does not

cause significant problems when calculating the magnetiza-
tion M ��Sz	, it does introduce significant error in the sub-
sequent calculation of the free energy. More advanced decou-
pling procedures may be used to gain better results for the
longitudinal correlations17 but here we demonstrate possible
effects of including transverse correlations as a first step. It
should be noted that Callen decoupling19 has the same prob-
lems as RPA with regard to longitudinal correlations and was
specifically designed to improve RPA only when treating
weak single-site anisotropies. We ignore anisotropies here
since we will do the calculation for a spin-1

2 system.
We define retarded Green’s functions,20,21

Gij�t� � ��Si
+;Sj

−		 � − i��t���Si
+�t�,Sj

−�	 , �3�

where the square brackets indicate a commutator such that
�A ,B�=AB−BA, the single angled brackets indicate a statis-
tical thermal average and the ��t� function is a unit step
function. The time Fourier transform of Eq. �3� is given by

Gij��� � ��Si
+;Sj

−		� =
1

2

�

−�

+�

dtGij�t�e−i�t. �4�

Then the equation of motion for the time Fourier-
transformed Green’s function is

�Gij��� =
�ij

2

��S+,S−�	 + ���Si

+,H�;Sj
−		�, �5�

where �ij is the discrete Kronecker delta function. Substitut-
ing Eq. �2� into Eq. �5� gives

�Gij��� =
�ij

2

�2Sz	 + �h + z�J + �P + �P2��Si

z	�Gij��� − �J

+ �P + �P2��
l

��Si
zSl

+;Sj
−		�, �6�

where z is the number of nearest neighbors to a site. The sum
over l is over the nearest neighbors to site i.

The last term in Eq. �6� represents a higher-order Green’s
function which can be approximated using RPA,

��Si
zSl

+;Sj
−		� 
 �Sz	��Sl

+;Sj
−		� = �Sz	Glj��� �7�

in order to obtain a solution for Gij���. We perform a spatial
Fourier transform

G��,k� = �
ri−rj

Gij���e−ik·�ri−rj�, �8�

Gij��� =
1

N
�

k
G��,k�eik·�ri−rj�, �9�

where the sum over ri−r j is over all displacements from site
i to site j, and solve Eq. �6�,

G��,k� =
�Sz	


�� − �k�
, �10�

�k = �J + �P + �P2�z�Sz	�1 − �k� + h . �11�

The structure factor �k� 1
z �ie

ik·ai, where ai is the displace-
ment from the reference site to its neighbor i, should not be
confused with the coefficient for ME coupling �.

Equation �11� gives the dispersion relation for magnons
within the RPA. The average electric polarization can be
seen to alter the dispersion and application of an electric field
will be able to shift the frequencies via the isotropic ME
coupling. The possibility to tune spin-wave dispersion using
electric fields may have potential application in spin-wave
logic devices.22,23 If our model allowed for fluctuations in the
electric polarization, rather than just the magnetization, then
the resonant modes may be “electromagnons” with a dual
magnetic/electric nature.

The transverse correlation function between neighboring
spins i and j is calculated from Eq. �10� using the spectral
theorem21 with the aid of complex variable methods,

�Sj
−Si

+	 = i lim
�→0

t→0

1

N
�

k
e−ik·�ri−rj��

−�

�

d�
e−i�t

e�/kBT − 1

� 
 �Sz	

�� + i� − �k�

−
�Sz	


�� − i� − �k��
=

1

N
�

k

2�Sz	e−ik·�ri−rj�

�e�k/kBT − 1�
. �12�
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For spin 1
2 the magnetization is given by20,24

M � �Sz	 =
1

2
�1 + 2��−1, �13�

where �= 1
N�k�e�k/kBT−1�−1. For general spin the result is19

M =
�S − ���1 + ��2S+1 + �S + 1 + ���2S+1

�1 + ��2S+1 − �2S+1 . �14�

Having found a self-consistent equation for M, we need
also to find an equation for P using the free energy. We
follow the workings in Appendix A of Ref. 25 to derive the
free energy.

The expectation value of the single-site Hamiltonian, de-
rived from Eqs. �2� and �12�, gives the intrinsic energy E per
magnetic lattice site,

E = �Hi	 = − h�Sz	 −
z

2
�J + �P + �P2��Sz	

� 
�Sz	 +
1

N
�

k

�k

�e�k/kBT − 1�� . �15�

From the intrinsic energy, we can derive an expression for
the free energy F by making use of the relations

F = E − TS , �16�

S = � �F

�T
�

M

, �17�

where S is the entropy. Rearranging these we obtain

F�T� = E�0� − T�
0

T

d�
E��� − E�0�

�2 . �18�

This free energy is not a function of M ��Sz	 since M must
be constant in the definition of S which we use �Eq. �17��.
Substituting Eq. �15� into Eq. �18� and using the fact that

�
0

T

d���2�e�k/kB� − 1��−1 = −
kB

�k
ln�1 − e−�k/kBT� , �19�

we obtain the free energy. Adding it to the ferroelectric free
energy �Eq. �1��, the total free energy per magnetic unit cell
of volume V is given by

FGFT = V�1

2
�P2 +

1

4
�P4 − EP� − h�Sz	 −

z

2
�J + �P + �P2�

��Sz	 � 
�Sz	 +
2kBT

N
�

k

�k

�k
ln�1 − e−�k/kBT�� . �20�

This expression is true for general spin. The last term in Eq.
�20� represents the contribution from the transverse correla-
tions and at low temperatures gives the free energy of a gas
of noninteracting magnons, proportional to kBT�kln�1
−e−�k/kBT�. A solution for P can be found by numerically
minimizing Eq. �20�.

To find M�T� and P�T� we use an iterative procedure,
starting at low temperatures and using M0= 


1
2 as an initial

point. Substituting M0 into Eq. �20� and minimizing, we ob-

tain P1. Substituting P1 into the right-hand side of Eq. �13�,
we obtain M1. This process is repeated n times until there is
no longer a change in Mn and Pn to the required precision.
For higher temperatures, the most useful starting point for
iteration is the solution already found for lower temperatures.

We will compare our results to those found using mean-
field theory �MFT� in order to examine the effect that the
transverse magnetic correlations have on the solution. MFT
corresponds to ignoring the transverse correlation term be-

tween neighbors, Ŝi
+Ŝj

−, in Eq. �2� and thus corresponds to
reducing the problem to a single-particle problem. The re-
sulting free energy for spin 1

2 can be found simply using the
magnetic partition function Z,

FMFT = FFE − kBT ln Z

= FFE − kBT ln� �
Si

z=
1/2

�Si
z�e−Ĥi/kBT�Si

z	�
= V�1

2
�P2 +

1

4
�P4 − EP� −

z

2
�J + �P + �P2��Sz	2

− kBT ln�cosh
h + z�Sz	�J + �P + �P2�
2kBT

�� . �21�

This free energy may be minimized with respect to both M
and P, unlike Eq. �20�, to solve for the order parameters at a
given temperature T.

III. RESULTS

A. Changes to critical temperatures

In Fig. 1 the magnetization �panel �a�� and electric polar-
ization �panel �b�� are plotted as a function of normalized

FIG. 1. �Color online� The �a� magnetization and �b� electric
polarization plotted as a function of normalized temperature kBT /zJ
of a ferromagnetic ferroelectric with isotropic ME coupling that is
quadratic in P, calculated using mean-field theory �solid lines� and
using Green’s-function method �dots�. The parameters used are �
=AkB�T−Tc�, kBTc /zJ=1 /3, A=�=1, �=0, �=0.05zJ, and h
=0.0017zJ. A simple cubic lattice is assumed.
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temperature kBT /zJ for a S= 1
2 ferromagnetic ferroelectric

with isotropic magnetoelectric coupling that is quadratic in
P. The MFT results �Eq. �21�� are shown by the solid lines
and the GFT results are shown by the dots. The material
parameters used are �=AkB�T−Tc�, kBTc /zJ=1 /3, A=�=1,
�=0, and � /zJ=0.05. The coupling strength � is unphysi-
cally large but allows the effects of the isotropic coupling to
be seen clearly. Also, a small applied field given by h /zJ
=0.0017 is applied in order that the magnetic Green’s func-
tion is defined at all temperatures.

From Fig. 1�a�, the GFT gives a value for the Curie tem-
perature Tc

M lower than the mean-field value. The reason is
that an introduction of correlations results in less thermal
energy being necessary to flip spins, thereby lowering the
critical temperature. From Fig. 1�b�, we see that the Green’s
function with RPA treatment for the spin system gives a criti-
cal ferroelectric temperature which is also lower than the
mean-field prediction. Most strikingly, the magnetic trans-
verse correlations affect the ferroelectric system above the
magnetic Curie temperature and cause a reduction in the
spontaneous polarization.

In Fig. 1 only the solutions corresponding to M �0 and
P�0 are shown. However, there are four solutions which
correspond to local energy minima for the ferromagnetic
ferroelectric system in the four different quadrants of the
phase space given by �M , P�. Because of the symmetry-
breaking applied field h�0, the two solutions with �M
�0, P�0� and �M �0, P�0� �call them S++ and S+−, re-
spectively� are degenerate and correspond to the lowest-
energy solutions for isotropic coupling that is quadratic in P.
Applying a symmetry-breaking positive electric field breaks
the degeneracy and makes S++ the equilibrium solution for
all temperatures. This is not the case when we consider a
multiferroic system with isotropic magnetoelectric coupling
that is linear in P.

B. Thermal hysteresis

In Fig. 2 we show two solutions S++ �both M and P posi-
tive� and S+− �M positive and P negative� as a function of
normalized temperature kBT /zJ when the ME coupling is
linear in P. S++ has magnetization plotted in panel �a� and
polarization in panel �b�. S+− has magnetization plotted in
panel �c� and polarization in panel �d�. The solid lines show
the MFT results and the dots show the GFT results. The
parameters used are given in the figure caption. The coupling
linear in P is extremely rare in ferromagnets since it relies on
broken inversion symmetry. However, it may exist in frus-
trated spin structures, as are typical for multiferroic materi-
als.

The most interesting deviation from the MFT results is
that S++ no longer exists above a temperature of kBT /zJ

0.25 when transverse correlations are included �see Figs.
2�a� and 2�b��. This local free-energy minima ceases to exist
and there is a discontinuous ferroelectric transition from one
solution to the other. To explain this result, we need to con-
sider the free energy of the solutions.

In Fig. 3 we show the free energy of the two solutions
illustrated in Fig. 2 as a function of normalized temperature.

S++ is shown by solid lines and S+− is shown by dashed lines.
The MFT free energies �Eq. �21�� of the two solutions are
shown in gray �red online� and converge at high tempera-
tures. The GFT results �Eq. �20�� are shown in black. When
correlations are ignored, the MFT results show that S++ is
always the lowest-energy solution. This is because the cou-
pling gives rise to an effective symmetry-breaking electric
field Eeff=

�zM2

2V �0 �see Eq. �21��. This is also the case in the
GFT for low temperatures. However, at higher temperatures
where the transverse correlations become large, the situation
is different.

Solutions S++ and S+− have different effective exchange
interactions Jeff=J+�P. In consequence, the contributions to
the free energy due to transverse correlations are different in
each case. The energy associated with the correlations can be
deduced by subtracting the MFT free energy from that found
using the GFT �see Fig. 3�. Solution S+− has a lower ex-

FIG. 2. �Color online� Two solutions for �M , P� in a ferromag-
netic ferroelectric with isotropic ME coupling that is linear in P,
calculated using mean-field theory �solid lines� and Green’s-
function methods �dots�. Panels �a� and �b� show the magnetization
and polarization as a function of temperature corresponding to so-
lution S++, which has positive P. Panels �c� and �d� show the mag-
netization and polarization as a function of temperature correspond-
ing to solution S+−, which has negative P. The material parameters
used are �=AkB�T−Tc�, kBTc /zJ=1 /3, A=�=1, �=0.05zJ, �=0,
and h=0.0017zJ. A simple cubic lattice is assumed.

FIG. 3. �Color online� The free energy corresponding to solu-
tions S+− �dashed lines� and S++ �solid lines� for the ferromagnetic
ferroelectric with isotropic ME coupling. The GFT predictions are
shown in black and the MFT predictions are shown in gray �red
online�. Material parameters used are the same as those in Fig. 2.
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change energy associated with correlations and also a lower
Curie temperature than S++. This means that at kBT /zJ

0.2, the lowest free-energy state changes from S++ to S+−

�see Fig. 3�. Also, for kBT /zJ�0.25, the transverse correla-
tions add an additional energy that makes S++ unstable.

An intriguing consequence is the possibility of thermal
hysteresis. The state of the system depends not only on its
temperature but also on the temperature it has had in the
past. If the system is heated to above kBT /zJ
0.25 then it
must have solution S+− since S++ vanishes. If it is then cooled
back down to below kBT /zJ
0.2, the system may remain in
solution S+− even though it is now a metastable solution �see
Fig. 3�. There is a probability that thermal fluctuations may
take the system back to state S++ with a characteristic time
for switching � which depends on the temperature and the
height of the energy barrier separating the solutions. If � is
quite large then we have a long-lived two-state system which
may be implemented for information storage, provided the
thermal hysteresis occurs in a region spanning room tem-
perature. The application is to thermally assisted ferroelectric
recording, where the coupling to magnetic correlations has
enabled there to be thermal hysteresis of the electric polar-
ization P. As far as multiferroics are concerned, the only
experimental evidence of thermal hysteresis in P that we are
aware of as yet is at commensurate-incommensurate spin-
density wave transitions in DyMn2O5 at low temperature.26

We must question how our results would be changed if
longitudinal correlations were included in the theory. We ex-
pect our result of thermal hysteresis to still hold because of
the following argument. At very low temperatures, S++ is the
stable solution of the system and both the MFT and GFT
agree on this result �see Fig. 3�. At high temperatures T
�T++

M ,T+−
M and with h→0, �Si

zSj
z	= �Si

xSj
x	 due to symmetry

considerations. So we can expect that the difference in the
free energy of the two solutions would have the same sign
and would be larger if longitudinal correlations were in-
cluded. Therefore, at high temperatures the result that S+− is
the stable solution seems robust. With the low-temperature
and high-temperature results assumed correct, the system
necessarily switches from one solution to another at interme-
diate temperatures.

IV. CONCLUSION

We have presented a model which goes beyond Landau
theory of second-order phase transitions to examine the ther-
modynamic properties of a system with coupled order pa-
rameters. We use a Green’s-function theory with random-
phase approximation to include the effect of transverse
magnetic correlations on the free energy of a multiferroic
system with magnetization M and polarization P. We find
that the ferroelectric transition temperature is shifted as com-
pared with mean-field predictions that ignore magnetic cor-
relations. This has implications when estimating ME cou-
pling strength in experiments that measure a shift in
ferroelectric polarization on application of a magnetic field at
finite temperature. We also show that if a ME coupling that is
linear in P is symmetry allowed in a system, then there is the
possibility for thermal hysteresis of P. Which free-energy
minimum represents the lowest-energy state switches from
one solution to another at finite temperature due to each so-
lution having different exchange energy contributions.

Our method has the advantage of being well defined at all
temperatures, unlike renormalization-group methods. How-
ever, longitudinal magnetic correlations are ignored to sim-
plify the theory and also any fluctuations in the ferroelectric
system are ignored as a first approximation. More sophisti-
cated decoupling procedures exist to include longitudinal
magnetic correlations without creating spurious results for
the free energy.17 Also, it is possible to go beyond the Lan-
dau treatment of the ferroelectric system using, say, a Hub-
bard model which is suitable for displacive ferroelectrics
�see, for example, Ref. 27�.

If the method were to be used to model a specific multi-
ferroic material, then an extension to treat multisublattice
magnets would be necessary. This would be possible using
existing Green’s-function methods for antiferromagnets �see,
for example, Ref. 28 or 29�.

ACKNOWLEDGMENTS

We acknowledge funding from the Hackett Student Fund,
Seagate Technologies and the Australian Research Council.
K.L.L. thanks Peter Fröbrich for useful advice.

1 A. I. Mitsek and G. A. Smolenski�, Sov. Phys. Solid State 4,
2620 �1963�.

2 G. M. Nedlin, Sov. Phys. Solid State 4, 2612 �1963�.
3 G. A. Smolenski� and I. E. Chupis, Sov. Phys. Usp. 25, 475

�1982�.
4 C. J. Fennie, Phys. Rev. Lett. 100, 167203 �2008�.
5 C. Ederer and C. J. Fennie, J. Phys.: Condens. Matter 20,

434219 �2008�.
6 J. J. Betouras, G. Giovannetti, and J. van den Brink, Phys. Rev.

Lett. 98, 257602 �2007�.
7 J. F. Scott, Phys. Rev. B 16, 2329 �1977�.
8 G. Lawes, A. P. Ramirez, C. M. Varma, and M. A. Subramanian,

Phys. Rev. Lett. 91, 257208 �2003�.

9 C. Zhong and Q. Jiang, J. Phys.: Condens. Matter 14, 8605
�2002�.

10 I. Apostolova and J. M. Wesselinowa, Solid State Commun. 147,
94 �2008�.

11 J. M. Wesselinowa and I. Georgiev, Phys. Status Solidi B 245,
1653 �2008�.

12 J. M. Wesselinowa and I. Apostolova, J. Appl. Phys. 104,
084108 �2008�.

13 A. I. Larkin and S. A. Pikin, Sov. Phys. JETP 29, 891 �1969�.
14 A. Aharony, Phys. Rev. B 8, 4314 �1973�.
15 Y. Imry, D. J. Scalapino, and L. Gunther, Phys. Rev. B 10, 2900

�1974�.
16 A. B. Sushkov, M. Mostovoy, R. Valdes Aguilar, S.-W. Cheong,

EFFECT OF TRANSVERSE MAGNETIC CORRELATIONS ON… PHYSICAL REVIEW B 81, 064403 �2010�

064403-5



and H. D. Drew, J. Phys.: Condens. Matter 20, 434210 �2008�.
17 R. A. Tahir-Kheli, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green �Academic, London, 1976�,
Vol. 5B, pp. 259–341.

18 R. A. Tahir-Kheli, Phys. Rev. 159, 439 �1967�.
19 H. B. Callen, Phys. Rev. 130, 890 �1963�.
20 N. N. Bogolyubov and S. V. Tyablikov, Sov. Phys. Dokl. 4, 589

�1959�.
21 D. N. Zubarev, Sov. Phys. Usp. 3, 320 �1960�.
22 M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven, and B.

Hillebrands, Appl. Phys. Lett. 87, 153501 �2005�.

23 R. de Sousa and J. E. Moore, Appl. Phys. Lett. 92, 022514
�2008�.

24 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 �1962�.
25 P. Fröbrich and P. J. Kuntz, Phys. Rep. 432, 223 �2006�.
26 C. dela Cruz, B. Lorenz, and C. Chu, Physica B 403, 1331

�2008�.
27 S. Ishihara, T. Egami, and M. Tachiki, Phys. Rev. B 49, 8944

�1994�.
28 F. B. Anderson and H. B. Callen, Phys. Rev. 136, A1068 �1964�.
29 P. J. Jensen, K. H. Bennemann, D. K. Morr, and H. Dreyssé,

Phys. Rev. B 73, 144405 �2006�.

K. L. LIVESEY AND R. L. STAMPS PHYSICAL REVIEW B 81, 064403 �2010�

064403-6


