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Microscopic model for the formation of nanodomains in relaxor materials
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A microscopic relaxor model is presented and its properties are studied by means of numerical simulations.
No “a priori” random interactions or random fields are considered. The sole interaction of mobile charges with
the dipoles of a highly polarizable medium is responsible for the appearance of typical relaxor properties such
as a smeared transition, a glassy ground state with no macroscopic polarization, an external field frequency-
dependent dielectric constant, and a field-induced ferroelectric behavior. The model shows no statistical dif-
ference between the relaxor and the ferroelectric formation of polar nanoregions at high temperature. However,
for the relaxor, there is a temperature (which we associate with the Burns temperature) below which some
dipoles, neighbors to the charges, get frozen with a net square polarization different from zero. These dipoles
are the precursors of stable boundaries from which ferroelectric clusters grow when approaching the glassy
phase. These frozen dipoles are responsible for the frequency dispersion of the dielectric constant and for the

smearing of the transition.
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I. INTRODUCTION

Relaxor materials are a special class of ferroelectric crys-
tals with an intrinsic disordered structure. In recent years, the
field of research devoted to the study of relaxors has experi-
enced a revival of interest owing to their extraordinary di-
electric and piezoelectric properties.! Applications range
from piezoelectric/electrostrictive actuators and sensors to
elasto-optic and photorefractive elements. The relaxor
behavior was first observed in perovskites with disorder of
nonisovalent ions Pb(Mg,;3Nb,,3)O5 (PMN).? It has been
also observed in Pb(Sc,,Ta;;»)05 (PST) (Ref. 3) and in
nonstoichiometric solid solutions such as
Pb,_ La(Zr;_,Ti));_,4O; (PLZT).** Also, many homovalent
solid solutions such as Ba(Ti,_,Zr,)O; (BTZ) (Refs. 6 and 7)
and Ba(Ti;_,Sn,)O; (BTS) (Ref. 8) exhibit relaxor behavior.
Other examples of relaxor ferroelectric are complex perovs-
kites such as Pb(Zn;;3Nb,3)O0; (PZN), Pb(Mg,;3Tay3)O05
(PMT), Pb(Sc;;;Nb;,)O3  (PSN), solid solutions,
[(1-x)Pb(Mg;3Nb,,3)O3—xPbTiO; (PMN-PT) and
(1-x)Pb(Zn,;3Nb,,3)0;—xPbTiO; (PZN-PT)] and uniaxial
Sr,Ba;_Nb,O4 (SBN).

Relaxors possess several features not found in ordinary
ferroelectrics: (i) the dielectric permittivity response is fre-
quency dependent, (ii) the transition at a so-called maximum
temperature T, is diffusive, (iii) there is an absence of both
spontaneous polarization and structural macroscopic symme-
try breaking, and (iv) ferroelectric response is obtained after
field cooling.’ The origin of these relaxor properties seems to
lie in two essential ingredients, the existence of lattice disor-
der and the existence of polar nanoregions (PNRs) at high
temperatures above T,,. The existence of PNRs is well docu-
mented but their structure and origin are still subject of
controversy.'?

The lattice defects or the chemical substitution in some
relaxors induce extra charges. When cooling from high
enough temperatures, these charges may lead to the forma-
tion of small polar nanoregions below the so-called Burns
temperature 7,.!" These polar nanoregions grow as tempera-

1098-0121/2010/81(6)/064114(7)

064114-1

PACS number(s): 77.80.B—, 61.43.Bn, 75.10.Hk, 81.40.Rs

ture decreases usually leading to an isotropic state at
T<T,, with randomly oriented polar domains, preventing the
system from ferroelectricity or antiferroelectricity. It is not
clear whether these PNRs are due to phase fluctuations par-
ticularly localized in some regions of the crystal where the
phase-transition temperature is higher'>!3 or if the stability
of the domain state is due to local fluctuations of the
quenched microscopic field."* Many theoretical approaches
to the nature and roles of PNRs based on random fields and
random bond models have been proposed.'4-!3

II. MODEL

The objective of this paper is to propose a relaxor model
as simple as possible, with no “a priori” disorder included
such as random fields or random interactions, to deeply study
PNRs formation in relaxor systems. The model is based
solely on the following two ingredients: (i) a highly polariz-
able lattice and (ii) charge disorder. The simplest polarizable
lattice is a two-dimensional Ising system. The Ising model
has a well-defined second-order phase transition from para to
ferro state at a critical temperature different from zero and no
field applied. As corresponding to a second-order phase tran-
sition, spontaneous polarization and symmetry breaking ap-
pears at the critical temperature and the behavior of both,
order parameter and susceptibility, is given by a well-known
set of critical exponents (i.e., there is no smeared transition).
Ising model corresponds to a pure system with no disorder,
however, when a mixed system is considered charge disorder
may show up. A well-known example is the SBN crystals
where negative excess charges are produced by vacancies in
the bronze-tungsten structure. These charges are mobile if
the temperature is high enough. For example, in SBN:Ce, the
dark conductivity increases by 2 orders of magnitude at T
=145 °C when compared to its value at room temperature.'”
Based on these ideas, we consider a two interpenetrated layer
system. One of the lattices is the polarizable Ising model
with coupling constant J and the other lattice is where itin-
erant charges move (see Fig. 1). Dipoles are fixed at (i,j)
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FIG. 1. (Color online) Relaxor model based on two interpen-
etrated lattices. Regular Ising dipoles are fixed at odd (i, /) positions
(thick continuous lattice) while positive charges (white circles) and
negative charges (black circles) are free to jump among empty
neighboring even (i,j) positions (thin discontinuous lattice). The
two different gray colors represent the two possible different dipole
orientations in the Ising lattice.

lattice positions with i and j odd (in uniaxial SBN, the di-
poles correspond to the ferroelectrically active Nb>* ions)
while charges carriers are free to jump among the different
empty-lattice sites (i, ) with i and j even. To preserve charge
conservation and continuity equation, charges are never cre-
ated or annihilated. Also, electroneutrality is maintained dur-
ing the simulations.

Nearest-neighbor dipoles interact with the usual Ising
Hamiltonian,

Hs=_J E

(i,j) eodd

s PIs(+2,)) +5(i,j+2)] (1)

with s(i,j)= = 1 depending on the dipole orientation.
Charges and nearest-neighbors dipoles interact with each
other via a coupling constant J,,

qu—Jq(' ')E g )sGi=1,j+1)+s(i+1,j+1)
L,]) eeven
-s(i-1,j-1)=s@+1,j-1)] (2)

with g(i,j)=1 if the charge is positive and ¢(i,j)=—1 other-
wise. If there is no charge then ¢(i,j)=0. The order-disorder
and uniaxial nature of the Ising matrix proposed make this
model particularly useful for SBN-like relaxors which lack
of any optic soft mode?® and can be mapped onto models
with short-range interactions and negligible dipolar
corrections.?! However, for other nonuniaxial displacive re-
laxors, such as PMN, long-range dipolar forces should be
considered. In general, dipole-dipole long-range interactions
should be considered in our model for the ferroelectric (non-
relaxor) limit. These interactions are needed to obtain first-
order phase-transition properties?> and spatially modulated
structures producing depolarizing fields*> which may have
important implications when considering the boundary-
conditions’ peculiarities of thin-layer phase transitions.?*
Also, the extension of this model to mimic more compli-
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FIG. 2. (Color online) Interactions scheme for the model pro-
posal. Next-neighbor Ising dipoles pointing into the same direction
interact with a —J coupling constant. If the dipoles point toward
different directions then the interaction is positive +J. A negative
charge (black circle) interacts solely with the four next-neighbor
Ising dipoles. The interaction coupling is —J, if positive parts of the
dipoles point toward the negative charge and +J, otherwise. For a
positive charge, the situation is just the opposite (not shown). Note
how itinerant charges act like domain-boundary seeds.

cated, first order, relaxor systems may be performed by con-
sidering alternative polarizable statistical models such as the
Potts model.

The only physical basic idea used to propose this Hamil-
tonian is that negative charges attract positive parts of the
dipoles while positive charges do the opposite. (see Fig. 2).
Since electric fields produced by the charges are local and
strongly screened,?! no extra interaction among charges or
long-range interactions between charges and dipoles are con-
sidered. The total energy on our system is given by

H=H +H,. (3)

By considering this simple model, we will answer the
following question: do these two simple basic ingredients (a
highly polarizable lattice and charge disorder) induce a re-
laxor behavior? If the answer is positive then we may extract
some information about the relaxor PNRs formation mecha-
nism using this model.

The following values are used for the parameters on the
simulations, J=1/T,, being T, the critical temperature of the
two-dimensional Ising model obtained by Onsager,?
J4=10/T. corresponding to a charge-dipole exchange inter-
action one order of magnitude stronger than the dipole-
dipole interaction. Polarization and susceptibility of the sys-
tem versus temperature are calculated by extensive Monte
Carlo simulations.

For each temperature, the polarization is calculated as an
average of the polarization of 50 different relaxor realiza-
tions (each realization with a different initial state of dipoles
and charges positions). For each realization and temperature
polarization is calculated as

(Py=(l/Ns) 2, X

n=1,Ns (i,j) eodd

s(i.j), 4)

where Ns represents the total number of Monte Carlo
steps (MCS) (we consider Ns=10 000 and Nt=10 000 steps
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FIG. 3. Normalized susceptibility vs normalized temperature for
different values of the charge-carrier density. The “transition” tem-
perature 7, at each density value is given by the maximum of the
susceptibility.

for thermalization between each temperature). All values are
normalized to Py=L X L being L=80 the lateral size of the
dipole’s system.

Susceptibility is calculated as thermal fluctuations of the
polarization S=(1/T)[(P*)—(P)?] and frequency dependence
of relaxor’s susceptibility is calculated considering that only
fast dipoles, compared to the frequency applied, fully con-
tribute to the susceptibility.”® Before average calculations are
performed, the number of flips (n;,,) of each dipole are
calculated during 500 MCS. Assigned frequency is defined
as w=Np;,,/(500 MCS). The maximum measuring fre-
quency on our system is given by w=1 (a flip at every at-
tempt) and the minimum is given by the equilibrium w=0
value. For a given frequency, i.e., for a Ng;,, given value, if
the number of flips of a particular dipole is 1, <Ng;,,; then
the contribution to the averaged susceptibility of this dipole
is weighted by n;,/ Ny;,. For w=0, every dipole contributes
equally.

III. RELAXOR PROPERTIES
A. Smearing of the phase transition

In Fig. 3, we plot the susceptibility for different values of
the charge-carrier density p. Charge-carrier density p is de-
fined as the total number of charge carriers (positive or nega-
tive) divided by the total number of sites available (L X L) or
total number of dipoles. It is a dimensionless occupation ra-
tio ranging from zero to one,

> gl (5)

i,j) eeven

PeLxr,

Note how the transition is smeared as the amount of
charge disorder is increased. This behavior is very similar to
the one found by Glass for relaxor Sr,Ba;_,Nb,Og4 (Ref. 27)
where the maximum of the dielectric constant and the critical
temperature decrease as randomness increases in the sample
by adding Sr. p values smaller than one are related to relaxor
samples with a smaller amount of disorder such as, for ex-
ample, (Sr,Ba,Na)Nb,Og (Ref. 28) where a decrease in the
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FIG. 4. Normalized polarization vs normalized temperature for
different values of the charge-carrier density.

relaxor behavior has been found when vacancies (negative
excess charges) are substituted by sodium atoms.

B. Absence of spontaneous polarization and field-induced
ferroelectric behavior

In Fig. 4, we plot the polarization vs temperature for dif-
ferent charge-carrier densities. Spontaneous polarization at
T=0 decreases as the amount of randomness is increased till
almost no spontaneous polarization is found. As correspond-
ing to a relaxor with remanent polarization, the slope dP/dT
at T,, decreases as the amount of charge disorder is in-
creased. The value dP/dT # o at the transition for the case
with p=0 is merely due to the finite-size effects of the simu-
lation.

It is well known that ferroelectric behavior in a relaxor
may be obtained by field cooling. Actually Granzow et al.'’
used electric fields at high temperatures to induce a preferred
direction in the relaxor SBN crystal leading to a reorientation
of the domains and to a ferroelectric phase at low tempera-
tures. They found that reorientation worked only if the tem-
perature was applied below the so-called Burns temperature.
To study if our model mimics this behavior, we polarized our
system by applying a high electric field at different tempera-
tures 7. We consider the strong relaxor with p=0.25. Nu-
merical results are shown in Fig. 5, compared to the nonpo-
larized result. Note how, in order to obtain a change in the
spontaneous polarization at 7=0, we must apply our fields at
temperatures below 7Ty/T.,~3. So we may estimate
T,~ 2T, as the Burns temperature of the system.

C. Dielectric dispersion

In Fig. 6, we compare the dispersion of the susceptibility
for a ferroelectric (p=0) and a relaxor (p=0.125). In agree-
ment with experiments,?® the relaxor exhibits a strong fre-
quency dispersion while the ferroelectric shows no disper-
sion at all (see inset in Fig. 6). The relationship between the
temperature of the maxima and the frequency of the electric
field applied may be fitted by a Vogel-Fulcher relationship as
corresponding to a relaxor glassy behavior*® with parameters
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FIG. 5. Normalized polarization vs normalized temperature for a
charge-carrier density value p=0.25. The electric field used to po-
larize the sample is applied at different polarization temperatures
Tg. The polarization behavior with Tr/T.=4 and Ty/T.=5 coin-
cides with the one corresponding to no field applied (white circles).

given by a static maximum temperature 7,,=0.6257, and an
activation energy 0.325T...

D. Departure from the Curie law

In experiments, Burns temperature is sometimes obtained
as the onset of departure from a linear temperature depen-
dence of the inverse static susceptibility. We have calculated
inverse static susceptibility for the ferroelectric system and
for the relaxor with p=0.25. Results are shown in Fig. 7.
Note how the behavior of the ferroelectric is the typical lin-
ear Curie behavior with null value at 7~ T... For the relaxor,
the situation changes completely and a clear departure from
the linear behavior is found for temperatures below
T/T.~3, which is in agreement with the Burns temperature
previously estimated by field-induced ferroelectric behavior
calculations.

IV. NANODOMAINS FORMATION AND THE ORIGIN OF
THE BURNS TEMPERATURE

Once we have checked how our Ising model with a
charge-carrier density different from zero shows the most
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FIG. 6. Normalized susceptibility vs normalized temperature for
p=0.125 and p=0 (inset) considering different w frequencies.
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FIG. 7. Inverse static susceptibility versus normalized tempera-
ture for (a) p=0 and (b) p=0.25. Departure from a linear behavior
is found for p=0.25 at temperatures close to the Burns temperature
T, Rounding found at the critical temperature 7. is due to the
interaction between individual spins in the Ising model.

important relaxor properties, we are going to study how
ferroelectric nanodomains are formed and how they affect to
the relaxor. Numerical calculations allow us to explicitly cal-
culate the averaged cluster size at every temperature for
p=0.125 and for the ferroelectric case (p=0). Results are
shown in Fig. 8. Note how, when the system is cooled down
from high temperature, almost no difference is found be-
tween the ferroelectric and the relaxor till the phase-
transition critical temperature 7, is reached, then the ferro-
electric monodomain is formed for the (p=0) model. The
size of the clusters is very similar for both systems and no
appreciable high-temperature domains formation is found for
the relaxor model when compared to the ferroelectric. Actu-
ally, there is no special change on cluster size at the previ-
ously estimated Burns temperature 7,~27,. We have ana-
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FIG. 8. Averaged cluster size vs normalized temperature for p
=0 and p=0.125. Note how the high-temperature behavior is the
same for both ferroelectric and relaxor systems. However, when the
transition temperature is approached, the averaged cluster size tends
to one for the ferroelectric (monodomain state) and grows slightly
for the relaxor (glassy multidomain state).
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FIG. 9. Histogram of cluster sizes. The histogram is calculated
by considering the number of times a cluster with a given size is
formed in a Monte Carlo run at a given temperature. Temperatures
considered are T/T.=7 (a) ferroelectric (e) relaxor, T/T,=1.1 (b)
ferroelectric (f) relaxor, T/T.=1 (c) ferroelectric (g) relaxor, and
T/T,=0.25 (d) ferroelectric (h) relaxor. Note how domains with
appreciable sizes are formed for the relaxor only at the glassy phase
but not at high temperature.

lyzed not just the averaged size but the complete histogram
of cluster sizes (see Fig. 9). Temperatures considered are:
high temperature 7/7.=7, close to the critical temperature
T/T.=1.1 at the critical temperature 7/7T,.=1 and below the
critical temperature 7/7,.=0.25. Formation of nanodomains
with appreciable sizes are only found when the system is
already at a temperature smaller than 7,,.

These results indicate that no special high-temperature
formation of nanoclusters is found for the relaxor when com-
pared to the ferroelectric. Then, what are the microscopic
differences between the ferroelectric and the relaxor? Why
optic measurements,!! diffusive scattering,” and high-
resolution piezoresponse force microscope experiments?!
find nanodomains formation only for the relaxor?

To answer this question, it is important to take into ac-
count that no stability criterion or lifetime duration is con-
sidered on the numbering of clusters so every cluster formed
is taken into account on our simulations. Next, we analyze
not just the cluster size but the lifetime of the cluster. To do
so0, we calculate the percentage of slow dipoles (dipoles that
flip less than 25% in a Monte Carlo run) versus temperature.
In this case, the high-temperature behavior of the relaxor is
clearly different from the ferroelectric and close to the tem-
perature previously proposed as the Burns temperature,
T,~2T.>T,, the number of slow dipoles increases dramati-
cally (see Fig. 10). On the other hand, the ferroelectric di-
poles are frozen just at T=T, because of the phase transition.
So we may say that high-temperature clusters are the same
for both, relaxor and ferroelectric models, but slow dipoles
(detectable from the experimental point of view) are only
found in the relaxor at 7<<T,. How these frozen dipoles form
nanoclusters with a net polarization different from zero at the
glassy phase?

Snapshots of the relaxor at different temperatures 7/T,
=2,1.5,1.3,1.1,1,0.5 are shown in Fig. 11. Itinerant charges

PHYSICAL REVIEW B 81, 064114 (2010)

R
0.8 |
. —p=0(D)
& [ — p=0.125(2) 1
S 0.6+ B
d% L |
= 0.4l i,
504 7
wnn
020 i,
I Il \2 ]
| L L
% 1 2 3 4 5
/T

FIG. 10. Percentage of slow flipping-rate dipoles (see text) ver-
sus normalized temperature for p=0.125 and p=0. For the relaxor,
slow dipoles are found well above the transition temperature.

are plotted together with slow dipoles. At the Burns tempera-
ture, some dipoles get trapped by the charges and first slow
dipoles show up. As the system gets cooler, the number of
these slow dipoles increases. The dipoles trapped by the
charges form stable boundaries which will be the precursors
of the ferroelectric microdomains found at the glassy phase
at T<T,,. When the temperature approaches the critical tem-
perature 7=T,, domains grow from the border toward the
inside of the cluster. These clusters are stable, i.e., they are
formed by dipoles with a low flipping rate. Each nanodomain
is completed at a different temperature but at low enough
temperature, all clusters are formed and the typical glassy
state with charges trapped at the boundaries®?> shows up (see
Fig. 11). The model shows how stable nanodomains (mea-
sured at T<T,) are really the stable boundaries (and the
precursors) of the domains found at the glassy state. It is
impossible to find these stable boundaries in a regular ferro-
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FIG. 11. (Color online) Snapshots of a relaxor (p=0.125) at
different temperatures (a) 7/T.=2, (b) T/T.=1.5, (c) T/T.=1.3, (d)
TIT.=1.1, (e) T/T,=1, and (f) T/T.=0.5. Positive and negative
charges (white and black circles) are represented together with up
and down slow dipoles (dark and light gray squares).
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FIG. 12. Charge mobility (see text) vs normalized temperature
for a relaxor system with p=0.25. Inset: detail at low temperatures.

electric material because there are no itinerant charges to trap
the dipoles. From the point of view of dielectric dispersion
with frequency, these slow dipoles contribute to the suscep-
tibility only when the frequency of the electric field applied
is low enough. If the frequency increases, slow dipoles are
unable to follow field variations. Again it is impossible to
find this effect in a ferroelectric, where no dipoles get
trapped by the charges and no slow dipoles exist.

V. ITINERANT CHARGES MOVEMENT

The meaning of the Burns temperature may be also ana-
lyzed from the point of view of itinerant charges. Next we
will study charge mobility versus temperature. Charge mo-
bility is defined as the averaged number of accepted flips
between sites divided by the total number of flip attempts.
Results are shown in Fig. 12 for p=0.25. By cooling, mobil-
ity decreases smoothly until approximately 7=T,, then it re-
mains almost constant. However, when the ferroelectric
dipole-dipole interaction takes place at T=T7,, charge mobil-
ity decreases abruptly due to the multidomain formation at
the glassy phase, reaching a maximum slope at 7=T,,. To

£202r -
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— L | | |
O0 1 2 3 4 5

FIG. 13. Charge mobility (thick line) vs normalized temperature
for a relaxor system with p=0.25 and no ferroelectric interaction
J=0. Thin line represents the derivative of charge mobility with
temperature. Note how mobility reaches a minimum at 7=T,.
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FIG. 14. (Color online) Snapshot of a multidomain relaxor con-
figuration. Up and down configurations are shown by dark and light
gray, respectively, while white and black circles represent positive
and negative itinerant charges. Charges may move only along do-
main’s border (see circle). Charges get stacked at the boundaries
when slow dipoles border lines are formed.

clearly detect how the Burns temperature affects to charge
mobility, we may set to zero the ferroelectric interaction in
our simulations (/=0). Charges dipole J, is now the only
remaining interaction in the system. Results are shown in
Fig. 13 together with the derivative of mobility with tem-
perature. Now, the Burns temperature gets clearly defined as
the temperature where mobility reaches its minimum, keep-
ing constant by cooling. At T=T,, when boundaries start to
be formed, charges get trapped between different oriented
dipoles. They may move along the borders but not crossing
the boundaries in the direction of the dipoles (see Fig. 14).
That is the reason why, when a monodomain is formed in a
relaxor by an electric field, the stability of such a mon-
odomain depends on whether this field is applied at a tem-
perature Ty above or below the Burns temperature 7,.'° If
Tp<T, charges get trapped at boundaries of the ferroelectric
monodomain and the monodomain turns stable by cooling.
However, if Tp> T, itinerant charges may move across the
main boundary forming new borders and a multidomain with
net polarization equal to zero. Finally, we have also studied
the charges drift velocity in the paraelectric region by study-
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FIG. 15. Normalized susceptibility vs normalized temperature
for a system made of domains with random lateral sizes ranging
from L=2 to L=L,,,,. Inset shows the behavior of the susceptibility
for L,,,,=15 in detail (thick line) together with the susceptibility
curves of all domains averaged (light gray)
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ing charges mobility when an external electric field is ap-
plied. Conductivity has been measured in the linear depen-
dence region and an increase by increasing the temperature
has been found. This behavior is not expected in metallic
conductors but it is typical of insulating relaxor materials.'

VI. NANODOMAINS FORMATION AND THE ORIGIN OF
THE MAXIMUM TEMPERATURE

In this section, we analyze the existence of a maximum
temperature 7,, that depends on charge-carrier density and
the origin of the smearing of the transition in a relaxor. When
the number of itinerant charge carriers is increased, the num-
ber dipoles belonging to a border line between domains
grows and the average size of the domains gets smaller. We
may simulate a multidomain system where size of the do-
mains changes randomly between 2X2 and a fixed maxi-
mum size. Total susceptibility is obtained by averaging the
susceptibilities coming from all the domains in the system
which may be calculated separately on our simulations. Re-
sults for different values of the maximum domain size are
shown in Fig. 15 compared to the monodomain (L=280)
ferroelectric case. Clearly, as the size of the domains de-
creases, the temperature where susceptibility reaches its
maximum tends to lower values (see inset). This is due to the
lost of energy caused by the frustration of the dipoles at the
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boundaries of the domains. A strong dispersion in domain
sizes produces a strong dispersion in the susceptibility curves
and a smeared average response of the system. The maxi-
mum temperature 7T, is the averaged value coming from the
temperatures where each domain is formed.

VII. CONCLUSIONS

Using Monte Carlo calculations, we have analyzed the
behavior of a microscopic relaxor model where no random
interactions or fields are considered. The interaction between
mobile charges and the dipoles of a highly polarizable me-
dium is responsible for the appearance of relaxor properties.
The model shows a temperature 7,; below which the flipping
rate of some dipoles, neighbors to the charges, decreases
dramatically. These dipoles form stable boundaries from
which ferroelectric clusters grow when approaching to the
glassy phase. These frozen dipoles are also responsible for
the frequency dispersion of the dielectric constant, smearing
of the transition, and trapping of itinerant charges. 7; may be
then associated to the Burns temperature.
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