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Spatial variability of polarization relaxation kinetics in the relaxor ferroelectric
0.9Pb�Mg1/3Nb2/3�O3-0.1PbTiO3 is studied using time-resolved piezoresponse force microscopy at room tem-
perature. Both the statistical principal component and correlation function analysis and the stretched exponent
fits of relaxation curves illustrate the presence of mesoscopic “fast” and “slow” 100–200 nm regions. The
spatial distribution of activation energies is reconstructed using a neural-network-based inversion of the relax-
ation data. The results directly prove the presence of mesoscopic heterogeneities associated with static and
dynamic components of the order parameter on the surfaces of ferroelectric relaxors in the ergodic phase.
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I. INTRODUCTION

Phase separation in strongly correlated oxides underpins
unique magnetotransport properties in doped manganites,
Mott metal-insulator transitions in vanadium oxides, ultra-
high electromechanical coupling in ferroelectric relaxors,
and superconductivity in doped cuprates.1 The study of these
phenomena by microscopic methods has established one of
the most exciting paradigms in condensed-matter physics,
allowing direct imaging of static nanoscale behavior through
the detection of the response coupled to the corresponding
order parameter or structure.2–5

Similarly to other phase separated materials, the unique
electromechanical and dielectric properties of relaxors have
made them the materials of choice for numerous
applications.6 A gamut of complex temperature-dependent
dynamic behaviors and phase transitions related to
nanophase static and dynamic inhomogeneities in relaxors
constitute one of the most challenging subjects in the physics
of ferroelectrics.7 At high temperatures, both relaxors and
normal ferroelectrics exist in a nonpolar paraelectric state.
Ferroelectrics transform into a ferroelectric phase below the
Curie temperature �TC� while relaxors undergo a transition to
an ergodic relaxor state at the Burns temperature, near which
polar nanoregions �PNRs� with random dipole moment di-
rections appear.8 With decreasing temperature, the dynamics
of PNRs slow down until they become frozen and the relaxor
transforms into a nonergodic state that lacks long-range
ferroelectric order and resembles a dipolar glass state. Alter-
natively, the transition from an ergodic relaxor to a ferroelec-

tric state may occur at TC in some relaxors.2,9

The link between the PNRs and the unusual properties of
relaxors has stimulated a number of spatially-resolved stud-
ies of mesoscopic polarization distributions using piezore-
sponse force microscopy �PFM�.10 Several studies11,12 have
reported the presence of nanoscale domains in relaxors such
as �1−x�Pb�Mg1/3Nb2/3�O3-xPbTiO3 both below and well
above TC.13 Even though the spatial resolution of PFM is
significantly larger than the estimated size of the PNRs �2–10
nm�, these static studies provide insights into the relationship
between disorder and mesoscopic ��100 nm� polar struc-
ture. Despite this progress, the unique dynamic behavior in
relaxors remains puzzling. While macroscopic techniques
such as dielectric spectroscopy,14 light scattering,15 and
nuclear-magnetic-resonance �NMR� probing of spin-lattice
relaxation16 unambiguously indicate a broad distribution of
relaxation times, the variation in local degrees of freedom of
relaxation in space has remained an enigma.17 This dearth of
knowledge is especially striking in comparison with the mul-
titude of theoretical studies of dynamic heterogeneities in
relaxors and other disordered systems.18,19

Here, we report on the direct measurements of the dy-
namic heterogeneity on the nanoscale in relaxor
0.9Pb�Mg1/3Nb2/3�O3-0.1PbTiO3 �PMN-10PT� crystals using
spatially and time-resolved PFM. The spatial correlations in
the relaxation behavior are explored using the combination
of principal component analysis �PCA� and spatial correla-
tion function analysis, yielding the characteristic length
scale. Both statistical and functional fit analysis of the data
demonstrate the presence of mesoscopic “fast” and “slow”
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regions of 100–200 nm size. Finally, we develop a pathway
for the reconstruction of local activation-energy disorder.
This study proves the presence of both static and dynamic
mesoscopic disorder in the surfaces of ergodic ferroelectric
relaxors.

II. EXPERIMENTAL DETAILS

A. Materials

The PMN-10PT crystals are grown as described
elsewhere.20 The material undergoes a macroscopically cubic
to rhombohedral ferroelectric phase transition on cooling at
TC�280 K.21 In the crystals studied in this work, the dielec-
tric susceptibility maximum occurs at Tmax=310 K �at 1
kHz�, the Burns temperature is �650 K, and the freezing
temperature Tf �determined using Vogel-Fulcher fitting of di-
electric spectra� is 270 K. The glassy state below Tf in clas-
sical relaxors is nonergodic �as is the ferroelectric state ex-
isting in some relaxors below TC�. Accordingly, the state
existing above Tf �or TC� is conventionally called the “er-
godic relaxor phase.” The absence of macroscopic piezoelec-
tric effects22 and aging23 suggests that the room-temperature
state in PMN-10PT is really ergodic. Our x-ray diffraction
and PFM data �see Sec. IV for discussion� are in agreement
with this assumption. The surface structure is verified on the
mirror-polished �001� cut of the crystal using a combination
of focused monochromatic and polychromatic depth-
resolved micron resolution x-ray experiments on beamline
34-ID at the Advanced Photon Source as described by Lar-
son et al.24

B. PFM and relaxation measurements

The PFM measurements are performed using a commer-
cial atomic force microscope �AFM� �Veeco MultiMode with
Nanonis controller�. In PFM, a high-frequency �10 kHz–1
MHz� bias is applied to a conducting AFM probe in contact
with the surface and the resulting surface displacements
�electromechanical response� provide a measure of local po-
larization and domain structure. Typically, the spatial reso-
lution of PFM is on the order of 5–50 nm, providing an
estimate of the interaction volume.25

To probe local relaxation in the time domain, dc bias
pulses of specified magnitude and duration �1 s for single-
point measurements and 50 ms for imaging� are applied to
the conducting AFM tip in contact with the sample and the
resulting vertical electromechanical response is measured as
a function of time for a specified duration �100 s for single
point and 0.3 s for mapping�. The relaxation curves at each
pixel are fitted to a specific relaxation law, R=R0+R1f�t�.
Here, R is the measured PFM signal. The offset, R0, and
amplitude, R1, correspond to nonrelaxing �within the mea-
surement time scale� and relaxing polarization components,
respectively. The function f�t� is chosen as Debye, f�t�
=exp�−t /�D�, stretched exponential or Kolrausch-William-
Watts �KWW�, f�t�=exp�−�t /�KWW���, fractional power or
Curie-von Schweidler �CvS�, f�t�= �t /�CvS�n, or logarithmic,
f�t�=ln�t�. After least-squares fitting, the model-dependent
parameters �e.g., R0, R1, �KWW, and � for stretched exponen-

tial fit� are plotted as two-dimensional �2D� maps that can be
further correlated with local microstructure.

Macroscopic relaxation is studied in the frequency do-
main by means of dielectric spectra measurements using a
high-resolution dielectric analyzer �Novocontrol Alpha�. The
gold electrodes are sputtered on the opposite �001� faces of
the crystal and an ac measurement field of 1 V/mm is used.

C. Analysis

To determine the maximal amount of information that can
be extracted from the experimental data, we have used prin-
cipal component analysis �PCA� to determine the dimension-
ality of the free parameter space. Subsequently, we used a
neural-network algorithm to relate measured relaxation
curves to physical parameters of materials utilizing the inter-
mediate step of the projection on low-dimensional parameter
space using function fits, as described below.

1. Principal component analysis

In PCA,26–28 the relaxation curves at each pixel are rep-
resented as

PR�x,y,t� = �
i

ai�x,y�wi�t� + Y�t� , �1�

where eigenvectors wi�t� are orthonormal and ai�x ,y� are the
position-dependent expansion coefficients. The summation is
performed over the first several statistically significant com-
ponents chosen based on an eigenvalue criterion �scree
plot�.29 Y�t� is a noise term. The PCA method allows the
three-dimensional �3D� data to be represented as a sum of a
small number of uncorrelated components ranked in the or-
der of significance.

In PCA, the spectroscopic image of N�M pixels formed
by a spectra containing P points is represented as a superpo-
sition of the eigenvectors wj, PRi�tj�=aikwk�tj�, where aik
�ak�x ,y� are the position-dependent expansion coefficients,
PRi�tj�� PR�x ,y , tj� is the image at a selected time, and tj
are the discrete times at which the response is measured. The
eigenvectors wk�t� and the corresponding eigenvalues �k are
found from the covariance matrix, C=AAT, where � is the
matrix of all experimental data points Aij = PRi�tj�, i.e., the
rows of A correspond to individual grid points
�i=1, . . . ,N ·M� and columns correspond to time points,
j=1, . . . , P. The eigenvectors wk�tj� are orthogonal and are
chosen such that corresponding eigenvalues are placed in
descending order, �1��2�¯. The eigenvalues and eigen-
vectors are determined through singular value decomposition
of the A matrix �using the svd function of MatLab�.

2. Neural net fit

The family of theoretical relaxation curves, Pm�t ,Emax�, is
generated in the time interval corresponding to experimental
measurements using the appropriate theoretical model. The
obtained set of relaxation curves, Pm�t ,Emax�, is fitted using
the KWW functional form and the resulting 	�m ,�m
�Emax�
parameter vector was used to train a �2,4,1� feed-forward
neural net with a sigmoidal transfer function in a hidden
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layer. Thus the trained network serves as a universal interpo-
lator that allows the 	�m ,�m
 parameters of a KWW model in
the selected time interval to be related to a corresponding
activation energy cutoff, Emax. On the analysis stage, the ex-
perimental KWW parameters are fed into the neural net to
extract Emax�x ,y�. This scheme allows effective minimization
of model-dependent errors and can be directly extended to
high-dimensionality material models. This approach also
avoids uncertainties related to the choice of the fitting time
interval. The software is implemented using Neural Network
Toolbox for MatLab.

III. RESULTS

A. Depth-resolved x-ray diffraction

Shown in Fig. 1�a� is the �006� x-ray diffraction intensity
as a function of depth below the PMN-10PT surface obtained
using a monochromatic microbeam �12.307 keV�. The peak
intensity lies along a horizontal line, indicating a constant
value for the c-lattice parameter within the error bar of
�d /d= �10−4. These data are also plotted in Fig. 1�b�, along
with results from fitting depth-resolved, polychromatic �8–23
keV� Laue diffraction patterns �strain resolution �d /d
�10−4 and micron-scale angle �	�0.03°�. These data dem-
onstrate that the average micron-scale crystal lattice remains
cubic from the surface down to �20 
m below the surface.

B. Domain imaging and local relaxation measurements

Typical surface topography and polarization domain pat-
terns of the �001� PMN-10PT crystal surface are shown in
Fig. 2. The labyrinthine domain pattern prior to the switching
experiment is indicative of the local deviation of surface
symmetry from cubic and is often observed on ergodic re-
laxor surfaces. The presence of induced polarization was es-
tablished using a PFM switching experiment �Figs.
2�d�–2�f��, illustrating that a uniform domain pattern can be
created on a surface.

The measured dielectric spectra, averaged over the bulk
of the PMN-10PT crystal are shown in Fig. 3�a�. To probe
local relaxation �Fig. 3�b��, dc bias pulses of specified mag-

nitude and duration �10 V, 50 ms for mapping and 1 s for
single point� are applied to the conducting AFM tip in con-
tact with the sample and the resulting vertical electrome-
chanical response is measured as a function of time for a
specified duration �100 s for single point and 0.3 s for
imaging�.17 To prove the detection signal does not affect the
relaxation, measurements are performed for several Vac am-
plitudes �1–3, 10Vpp�, and the relaxation is found to be simi-
lar.

The first insight into local relaxation dynamics can be
obtained from single-point relaxation data collected in the
time interval from 10 ms to 100 s �Fig. 3�c��. The relaxation
can be well described by the KWW law, R=R0+R1f�t�,
where R0 and R1 are the nonrelaxing and relaxing polariza-
tion components, and f�t�=exp�−�t /�KWW���. The local
KWW exponent is ��0.4, much larger than the macro-
scopic value determined from the dielectric spectra ��
�0.09�. Note that relaxation curves acquired at different spa-
tial location show clear variability in dynamic behavior.
Power-law and exponential relaxation curve fitting could not
fit the data.

C. Relaxation mapping

To study spatial variability of the relaxation behavior, the
measurements are performed on a closely �50 nm� spaced
40�40 grid. A setting pulse of 10 V amplitude is applied to
the probe for 50 ms and then the bias is turned off for the
following 300 ms. The measurements are performed at 1.1
MHz to minimize the influence of probing bias on the relax-
ation process. The relaxation curve is sampled with 103 time
points and the results are averaged over three repetitions.

1. Spatial correlations in relaxation behavior

The spatially-resolved relaxation measurements provide a
3D array PR�x ,y , t� of relaxation curves at each spatial grid
point. To establish the presence of spatial correlations in the
data without a priori assumptions on the functional form of
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FIG. 1. �Color online� �a� Monochromatic �006� x-ray diffrac-
tion intensity as a function of surface normal scattering vector, Q,
and depth below the PMN-10PT crystal surface. �b� Lattice param-
eters extracted from the monochromatic �squares� and polychro-
matic Laue �triangles� x-ray microdiffraction measurements as a
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(a)

(b) (c)400 nm

(e) (f)(d) 1 �m

[010]

[100]

FIG. 2. ��a� and �d�� Surface topography, ��b� and �e�� PFM
amplitude, and ��c� and �f�� PFM phase images of the PMN-10PT
crystal surface. ��a–c�� Pristine domain structure. ��d–f�� Changes in
domain structure after time-resolved PFM mapping �different
location�.
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the relaxation law, we use PCA. The scree plot of �i �Fig.
4�a�� illustrates that the first six components contain the most
statistically significant information in the image. The corre-
sponding eigenvectors �Fig. 4�b�� represent the time-
dependent spectral components. The third and fourth eigen-
vectors are dominated by �spatially uncorrelated� 60 Hz
noise. The real-space images �Figs. 4�e�–4�g�� and spatial
correlation functions �Fig. 4�c�� of the ai�x ,y� maps illustrate
that the first two components contain data with clear spatial
correlations. The characteristic decay length of spatial corre-
lation functions for PCA 1 and 2 is identical and corresponds
to �200 nm. Remarkably, the correlation functions for the
full measurement interval, T, and the first segment of 0.1T
are virtually identical, suggesting the observed behavior is
stationary in time �Fig. 4�d��. The combined PCA and corre-
lation function analysis allow the presence of spatial corre-
lations in the spatially-resolved relaxation data to be estab-
lished unambiguously without making any assumptions

about the physical mechanisms of relaxation. In particular, it
indicates the presence of a characteristic mesoscopic length
scale on which relaxation parameters are correlated.

It should be emphasized that the dimensions of the static
labyrinthine domains and the dynamic fast and slow regions
as well as the size of regions probed in a single-point experi-
ment ��30 nm� are much larger than the expected PNR size
��2 nm�.30 Hence, the measured data are the result of aver-
aging over several PNRs. At the same time, the measured
“hot” and “cold” spots with varying relaxation behavior are
significantly larger than the tip size, suggesting the presence
of a mesoscopic disorder that controls the relaxation behav-
ior in PMN-10PT. These maps thus provide direct experi-
mental evidence for the presence of dynamic heterogeneity
on the surfaces of ergodic relaxors.

2. Functional fits

The alternative approach to analyze the data is a fit using
a defined functional form of the relaxation law, similar to the
well-adopted approach in macroscopic relaxation studies in
the time domain. Here, the electromechanical response is fit-
ted using the KWW model. The resulting parameter maps are
shown in Figs. 5�a�–5�f�. In the writing process �Figs.
5�a�–5�c��, the induced polarization, R1, shows large-scale
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FIG. 3. �Color online� �a� Macroscopic frequency dependencies
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features associated with strong contrast variation within the
image ��30%�, partially associated with topographic details
�Fig. 2�a��. At the same time, the spatial maps of relaxation
time, �KWW, and exponent, �, are generally featureless, with
an effective noise level higher than the large-scale contrast.

The 2D maps corresponding to zero-field relaxation �read-
ing� illustrate different dynamics �Figs. 5�d�–5�f��. The relax-
ation amplitude image shows pronounced contrast similar to
that observed during writing. The relaxation time, �, image
in Fig. 5�e� illustrates the presence of slow and fast regions
on the length scale of 100–200 nm. The response time differs
by a factor of 4. Similarly, � images show large spatial vari-
ability, with the exponent ranging between 0.5 and 0.3, de-
pending on the position. Both visual inspection and cross-
correlation analysis suggest the 2D maps contain
complementary information on local properties. This indi-
cates that the amount of polarization that relaxes within the
time interval of the measurements is clearly position
dependent.

The statistical distributions for some of the parameters are
shown in Figs. 5�g� and 5�h�. The relaxation-time distribu-
tions for both writing and reading processes are rather broad.
An order-of-magnitude difference in writing and reading re-
laxation times is expected and related to the fact that a com-
paratively large dc bias field is applied during the writing
process, which effectively reduces the activation energy for
the relaxation. The values of �KWW in reading measurements
are significantly smaller than in the single-point experiment
in Fig. 3�c�. This is because the duration of the dc bias pulse
in the former case �50 ms� is not long enough to excite the
long-time degrees of freedom and consequently the relax-
ation spectrum is cut from the long-time side. The values of
� of �0.4 for the reading process correspond to a virtually
flat distribution of relaxation times. Shown in Fig. 3�d� are

two additional relaxation spectra which have been fitted to
the KWW relaxation law showing variation in � and �KWW
between dissimilar points on the sample surface.

D. Macroscopic relaxation measurements using
dielectric spectroscopy

To complement microscopy studies, the macroscopic re-
laxation behavior was studied using dielectric spectroscopy.
The measured dielectric spectra of the PMN-10PT crystal are
shown in Fig. 3�a�. To determine the parameters of macro-
scopic relaxation these spectra are fitted to the KWW relax-
ation pattern which is valid for local relaxation in PMN-
10PT �see Sec. III B�, as well as for macroscopic �dielectric�
relaxation in pure PMN crystals.14 To perform fitting, the
frequency-domain dependencies of real and imaginary parts
of the complex dielectric permittivity, ��-i��, are represented
as the Fourier transform of the derivative of the stretched
exponential function, exp�−�t /�KWW��� �for a detailed de-
scription of the fitting procedure, see Ref. 14�. The best-fit
values of parameter �, which is related to the width of
frequency-domain relaxation-time distribution and the char-
acteristic relaxation time, �KWW, are found to be equal to
0.09 and 0.2 s, respectively.

IV. DISCUSSION

To interpret the local relaxation behavior in terms of ef-
fective material properties, we consider a local distribution
of relaxation times, g���=g�� ,x ,y�, or, equivalently, activa-
tion energies, G�E���g���, at each point of the surface. The
local relaxation time depends on activation energy, E, in ac-
cordance with the Vogel-Fulcher relationship, ��E�
=�0 exp�E / �T−Tf��. Assuming Debye dynamics dP /dt
=−P /� for each relaxation time, �, the overall local relax-
ation law is

�P
 = P0�
Emin

Emax

dEG�E�exp�−
t

��E�� . �2�

The distribution functions G�E���T−Tf�−1��E�g���E�� can
be reconstructed from the relaxation-time distribution g���
using an inverse Laplace transformation of the experimental
data,

g��� =
1

2�i
�−i


v.p.

i
 dt

�2

�P�t�

P0

exp� t

�
� . �3�

Practically, the reconstruction of the relaxation-time distribu-
tion, g���, or equivalent activation energy distribution G�E�
��g��� using Eq. �2� is a typical example of an ill-defined
problem, for which direct inversion results in a spurious in-
crease in noise features.31 The classical approach for solving
these problems involves the introduction of regularization
constraints �e.g., Tikhonov regularization� that impose re-
quirements on the smoothness of the deconvoluted function.

To interpret the PFM relaxation data and gain insight into
local material behavior, we utilize the fact that for a stretched
exponential relaxation law with ��0.5 the activation energy
distribution is almost uniform, G�E���Emax−Emin�−1 in the
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energy interval Emin�E�Emax �Figs. 3�e�–3�g��. The ob-
served relaxation behavior with small � in PMN-10PT sug-
gests that the local activation energy distribution can be well
approximated as uniform and thus the energy disorder, Emax,
can be introduced as a single parameter describing local dy-
namic heterogeneity in this material and also provide a regu-
larization condition for the inversion of Eq. �2�. Physically,
Emax can be interpreted as the maximal energy barrier present
in the local volume of �10–30 nm probed by a PFM tip.
This choice of relaxation-time distribution allows regulariza-
tion of the solution for Eq. �2�, avoiding unphysical jumps in
the reconstructed G�E�.

To extract the energy disorder, Emax�x ,y�, from the experi-
mental relaxation curve, we utilize the deconvolution method
based on combining a nonlinear projection with neural-
network interpolation, as shown in Fig. 6.32,33 The resulting
maps for writing and reading processes are shown in Figs.
7�a� and 7�b�. The random spatial distribution of energy bar-
riers during writing and the well-defined areas with high and
low maximal activation energies during reading are clearly
seen. The characteristic length scale of these features is close
to that directly extracted from the statistical analysis and
KWW fit of relaxation data.

The labyrinthine domain pattern observed a long period of
time after switching off the bias was practically the same as
before applying the bias �in agreement with previous PFM
experiments of relaxors in an ergodic relaxor phase12�. The
values of R0 in any particular pixel were also practically the
same. These observations confirm that the studied state is
really ergodic �after any excitation the ergodic system should
return to the initial equilibrium state�.

The microscopic origin of the observed relaxation can be
understood in the framework of a model assuming the exis-
tence �in an ergodic relaxor phase� of two types of PNRs:
static and dynamic.15,34 The PNRs are embedded into a non-
polar matrix and their size is much smaller than the size of
the labyrinthine domains observed by PFM before the appli-
cation of the external field �Figs. 2�b� and 2�c�� and the size
of slow and fast relaxation regions �Fig. 5�e��. Therefore,
labyrinthine domains are in fact frozen spatial fluctuations of
polarization caused by the density fluctuations of static PNRs
having dipole moment directions up or down. Recent switch-
ing spectroscopy PFM experiments35 showed that static
PNRs cannot be switched by an electric field of �10 V �i.e.,
by the bias used in our present work�. On the other hand, the
dynamic PNRs give rise to the observed relaxation. The writ-
ing dc pulse triggers the reorientations of the dynamic PNRs
and probably the increase in the PNR size. Additional long-
living polarization appears as a consequence which makes a
significant ��R1� contribution to the piezoresponse �Figs.
2�e� and 2�f��. After switching off the dc field, the dynamic
PNRs relax to the initial distribution causing a KWW-type
decrease in the PFM signal. Spatial variation in local relax-
ation parameters may be attributed to random interactions
among the dynamic PNRs and random static electric and/or
elastic fields inherent in disordered structure. Note that re-
cent NMR experiments also confirmed the existence of static
�on the 10−4 s scale� PNRs along with dynamic ones in the
nonergodic relaxor phase.16

The main contribution to the relaxation observed in di-
electric spectroscopy experiments in relaxors is also attrib-
uted to the reorientation of the PNRs.7,23 Note that the mea-
sured dielectric response �shown in Fig. 3�a�� is averaged
over the bulk while PFM examines the surface layer �
�20–50 nm� of the sample. However, the parameters of
dielectric relaxation in the ergodic phase of PMN crystals
and thin �200 nm� films have been reported to be very
similar,36 indicating that the same processes are responsible
for the relaxation near the surface and in the bulk. In con-
junction with surface x-ray data, this suggests that the direct
comparison of dielectric �macroscopic� and PFM �local� data
is meaningful in this respect.

Besides the probing volume scale difference, the dielec-
tric spectroscopy and PFM data are different in terms of the
magnitude of electric field used for excitation. Small-signal
dielectric relaxation is compared with the relaxation after
switching off the PFM bias. Nonlinear effects may be impor-
tant in the latter case. Microscopically these effects can be
related to a number of mechanisms. For instance, the bias-
induced transformation to a metastable ferroelectric phase is
possible due to the closeness of the transition temperature TC
�this requires the magnitude and duration of the bias pulse to
be large enough�. The other possible relaxation mechanism is
the field-induced motion of the PNR boundaries �in other
words, the variation in PNR size�. This is known to give a
comparatively small contribution to the small-signal dielec-
tric response of relaxors, which is not described by KWW
function.14,37 However, in large fields it can become signifi-
cant.

We found that both macroscopic dielectric relaxation and
local relaxation observed in PFM experiments follow the
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same KWW pattern. Furthermore, the dielectric characteris-
tic relaxation time �KWW�0.2 s is close to the mean PFM
reading time �KWW�0.1 s �see Fig. 5�g��. This finding is in
agreement with the suggestion that both types of relaxation
are related to the same process, i.e., flipping of the dipole
moments of the dynamic PNRs. In contrast, the dielectric
value of �=0.09 is significantly smaller �i.e., the distribution
of relaxation times is wider� than the PFM values of �
=0.3–0.4 �see Fig. 5�h��. This is expected because the PFM
values are the local parameters which characterize the
relaxation-time distribution inside the probed nanoscale re-
gions �with the dimensions of �30 nm� and the characteris-
tic relaxation times of these regions are, in turn, widely dis-
tributed �see Fig. 5�g��. However, the influence of nonlinear
effects on the values of local relaxation parameters we mea-
sured cannot be excluded.

V. SUMMARY

To summarize, we have studied the static and dynamic
heterogeneity on the surface of an ergodic PMN-10PT crys-
tal. The measurements over four orders of magnitude in time
indicate that local polarization relaxation dynamics follows
the KWW law. The macroscopic relaxation spectrum is much
wider than the local spectrum due to averaging over mesos-
copic spatial inhomogeneities linked to the internal fields,
reflected in the difference in KWW exponents. These spec-
troscopic imaging results provide strong evidence for the si-
multaneous presence of static and dynamic PNRs at the sur-
faces of ergodic relaxors. The static PNRs are responsible for
the formation of labyrinthine domains �frozen polarization
fluctuations� which exist before the application of the exter-
nal field �Fig. 2�c�� while dynamic PNRs give rise to the
observed relaxation. The observed dynamic heterogeneity
provides information on random fields caused by quenched

disorder and by static PNRs.38–40 The comparison of bulk
and thin-film studies and depth-resolved x-ray studies sug-
gests this behavior should be typical for macroscopically
thick ��100 
m� layers also.

Note that non-Debye relaxation dynamics is common to
many systems with structural �glasses and polymers�, mag-
netic �spin glasses�, or polar �dipole glasses� disorder. The
strong coupling between polarization and strain �reversible
lattice deformation� in relaxors allows us to study the dy-
namics locally using PFM and makes relaxors an ideal model
for studying general relaxation principles in disordered sys-
tems. The combination of imaging studies and spatially-
resolved optical, current, or energy-loss spectroscopy will
allow the dynamic heterogeneities in other materials systems
to be probed, including bias-induced melting of charge order
in doped manganites and local metal-insulator transitions in
materials such as vanadium oxides.
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