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The long-standing classification scheme of ferroelectrics into either relaxor or displacive ones �the phase
transition is driven by a soft phonon mode� is too restrictive since a smooth crossover between them exists
which even admits for a coexistence of both phenomena. This crossover and coexistence is a consequence of
the varying density of polar nanoregions due to different doping levels of the respective system. The formation
of polar nanoregions is attributed here to intrinsic local modes in terms of discrete breathers.
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Relaxor ferroelectrics have been studied intensively for
many years due to their high potential for applications and
technological importance. Early on it was emphasized that
their diffuse phase transitions can be related to chemical dis-
order at the cation lattice site which may cause a spatial
distribution of local diffuse phase transitions.1 Later on it
was suggested that nanoscale fluctuating dipoles are formed
in an otherwise intact matrix giving rise to polar nanoregions
�PNRs�.2–4 Many experiments provide indirect evidence for
this scenario,5 as, e.g., in infrared and broadband dielectric
spectroscopy a two-component relaxation is observed, which
are related to the flipping and breathing of PNRs.6–8 From
similar experiments it is concluded that the local symmetry
of the relaxor state is lower than the average structural one
originating from the formation of the PNRs.6–8 The appear-
ance of diffuse inelastic scattering and the phenomenon of
the “waterfall” effect as observed by inelastic neutron scat-
tering �INS� have been speculated to arise from the scattering
of transverse acoustic or optic phonons on PNRs at critical
wave vector q= 2�

l where l is the dimension of PNRs.9–12

This scenario has been questioned and an alternative
coupled-mode analysis used to account for the waterfall,13

Using pulsed neutron inelastic scattering it was concluded
that relaxor ferroelectrics are characterized by dynamic local
polarization regions which, with decreasing temperature are
slowing down, to finally coalesce into PNRs.14 While the
above experimental results have been performed on Pb con-
taining perovskites ABO3 with either A or B site disorder,
SrTiO3 doped with either Ba or Ca and BaTiO3 doped with
Sr or Zr show a crossover from soft mode to relaxor behavior
with increasing doping.15,16 This observation suggests that
soft mode and relaxor behavior can smoothly merge into
each other and may even coexist. Similar conclusions were
reached for Li or Nb doped KTaO3, where a coexistence of a
dipolar glass behavior with conventional ferroelectricity was
observed.17,18

While experimentally the PNRs are rather well
investigated—even though their existence has only indirectly
been established—theoretically no consensus about their mi-
croscopic origin has been achieved. It has, however, been
established theoretically19 that the PNRs predominantly form
in chemically ordered nanoregions with these regions exhib-

iting a lower symmetry than the average one. The analogy of
relaxors with dipolar glasses20 has led to the proposal that a
random-field Ising model could be appropriate for the de-
scription of these compounds.21 Its extensions to the spheri-
cal random bond random-field model22 is based on the inter-
action between PNRs and accounts well for the radio
frequency response and NMR data on relaxors.23 For Li
doped KTaO3 a microscopic model to explain the relaxor
state has been formulated based on the pairwise interaction
between neighboring Li ions and a random-field
approach.24–26 However, both of these models21,22 remain
phenomenological and do not provide a microscopic basis
for the formation of PNRs. The latter microscopic model24–26

carries some resemblance with a previous study27–29 but dif-
fers from it since a pairwise interaction is not the cause of the
relaxor behavior but rather the formation of local finite-size
dipole moments.

Here, we use the strong nonlinearity inherent to these sys-
tems and show that intrinsic local mode �ILM� formation in
terms of discrete breather solutions cannot only account for
the relaxor state but also for the crossover to soft-mode dy-
namics and their possible coexistence.

Ferroelectric perovskite oxides are inherently highly an-
harmonic and their dynamics is well characterized by local
double-well potentials in the electron-ion interaction.30,31

Such kind of potentials are responsible for phonon softening
and structural instability30–34 but also carry exact nonlinear
solutions which are well suited to describing domain-wall
formation and dynamics.35–37 In addition, breather solutions
have recently been shown to exist27 with finite spatial exten-
sions of these solutions a prerequisite for their stability.
These finite and site-dependent solutions are novel as com-
pared to previous results since the double well used in Refs.
27, 30, and 31 differs from typical double wells: it is taken in
the polarizability coordinate which is a relative displacement
coordinate between the ionic core and its surrounding elec-
tronic shell. By treating the relaxor state as a two-component
system, the unpolarized intact matrix with average cubic
symmetry is modeled within the self-consistent phonon ap-
proximation �SPA� with effective temperature-dependent
harmonic coupling constants appropriate to describe soft-
mode dynamics; the regions surrounding the dopant sites are
considered in terms of the ILM solutions. Since the matrix
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and ILM dynamics are not independent of each other, a su-
perposition principle of the two types of solutions is used
which guarantees coupled dynamics.27–29 This approach also
provides a stabilization mechanism to the matrix by reducing
the soft-mode temperature dependence and the ILM solution
adopts a temperature dependence.

The model Hamiltonian representing a pseudo-one-
dimensional system with polarizable BO3 cluster ions of
mass m1 and a rigid-ion A sublattice of mass m2 is given
by27,30,31

H =
1

2 �
i=1,2,n

�miu̇in
2 + mv�u̇1n − ẇ1n�2� +

1

2�
n
� f��u1n − u1n+1�2

+ f�u2n − u1n + w1n�2 + f�u2n−1 − u1n + w1n�2 + g2w1n
2

+
2

r
g4

�r�w1n
r � , �1�

where mv is the BO3 electronic shell mass �treated in the
adiabatic approximation� and uin are the site n-dependent
displacements of ion i=1,2. w1n is the polarizability coordi-
nate, which is the relative displacement between BO3 core
and the surrounding electronic shell. f , f� ,g2 are nearest
neighbor, second nearest neighbor, and on-site attractive har-
monic coupling constants. r defines the degree of nonlinear-
ity and g4

�r� is repulsive thereby guaranteeing the lattice sta-
bility. Typically, r=4, leading to a local double-well
potential. ILM formation takes place when a constant fre-
quency regime is observed within a spatially limited region
of the lattice, being zero everywhere else. To demonstrate the
existence of these solutions, time periodic solutions of the
following form are assumed: u1n=A�1n cos��t� , u2n
=B�2n cos��t� , w1n=C�1n cos��t�, where A ,B ,C are the
amplitudes and � ,� the related displacements. When doping
the ABO3 matrix, local displacements in the polarizability
coordinate take place which differ from those of the matrix.
Since this spatially enhanced polarizability creates a local
electric field, it has to be compensated by reversed displace-
ments of the nearest-neighbor polarizations �Fig. 1�a��.

The central-atom �doping site� polarizability amplitude C

is thus the quantity which controls the breather spatial extent:
with C large, the spatial extent is large and with C small, the
breather extends only over a few nearest-neighbor lattice
sites. In order to simulate doping, the breather amplitude is
taken as the relevant quantity where large doping levels are
characterized by large amplitudes �caused by the dense dop-
ing concentration� while small doping levels correspond to
small amplitudes �caused by the dilute dopant distribution�.
In this way a continuous doping increase is modeled through
a continuous increase in C. The constant frequency regime is
given by the solutions,

�1
2 =

1

m1
�4f� + g

C

A
� ; �2

2 =
2f

m2
�2�

with g=2g2+Crg̃4C2, g̃4
�n�=g4 / �n−nc�, and Cr cos��t�

=cosr−1��t�. nc is the lattice site at which the breather am-
plitude is zero. Note that the solution for nc=1 is unstable.
Also, note that the site dependence of g̃4 introduces site-
dependent double-well potentials and correspondingly a dis-
tribution of dipole moments within the breather spatial ex-
tent. This implies that within the ILM, inhomogeneity
controls the dynamics. Since breather solutions are only
stable in a frequency regime of the system’s characteristic
phonon frequencies, �2

2 can be ignored in the following dis-
cussion since this frequency coincides with the optic mode
zone-boundary frequency.

The interaction between the ILM and the surrounding ma-
trix is provided by the superposition of the corresponding
displacement coordinates according to u=umatrix+uILM �Fig.
1�b�. While the average dynamics remain unaffected by this
superposition, local dynamics change considerably. This has
also been observed by static38 and dynamic14,15 pair distribu-
tion function �PDF� experiments. The major effect is, how-
ever, that the ILM becomes temperature dependent, whereas
the lattice soft-mode optic frequency � f ,TO�q=0� is stabi-
lized. This stabilization depends on the ILM amplitude C,
where large values of it almost suppress any temperature
dependence of � f ,TO�q=0�, whereas small amplitudes leave a
temperature regime for mode softening and freezing. Within
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FIG. 1. �Color online� �a� ILM amplitude C as a function of the lattice site. Site 0 refers to the dopant site. �b� Superposition of the ILM
and regular lattice displacements as a function of the lattice site where, as in �a� the site 0 is the dopant site.
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the above model the squared soft-mode frequency is explic-
itly given by

� f ,TO
2 �q = 0� = � f

2�T� = 2f�gT + 3g4C2�/���2f + gT + 3g4C2��
�3�

with � being the reduced cell mass and gT=−g2+3g4�w2	T,
where �w2	T=�q,j� / �m�q,j�wq,j

2 coth���q,j / �2kBT��. � refers
to the momentum q and phonon branch j-dependent eigen-
frequencies within the SPA. The ferroelectric transition tem-
perature is given by � f

2�Tc�=0. Thereby an implicit relation
for Tc can be derived,

gT + 3g4C2 = 0,
g2 − 3g4C2

3g4
= �

q,j

�

m�q,j
wq,j

2 coth� ��q,j

2kBTc
� ,

�4�

which differs from Tc in the purely displacive case, i.e.,


g2

3g4

= �
q,j

�

m�q,j
wq,j

2 coth� ��q,j

2kBTc
� �5�

through the stabilization of the attractive term by the ILM
amplitude. As such, the ILM modifies Tc since the attractive
core-shell interaction is reduced with increasing breather am-
plitude, i.e., increasing doping. This can lead to a complete
stabilization of the soft-mode frequency. On the other hand,
in the dilute limit, Tc is reduced as compared to the undoped
case but a phase transition can still occur, as is obvious from
Eq. �4�. However, a complete softening of � f

2 is inhibited
since in the limit gT→0 � f

2 remains pinned through the ILM
at � f

2=6fg4C2 / ���2f +3g4C2��. This incomplete softening
has been observed in a variety of relaxors6,39–41 and has been
attributed to the breaking of percolated polar clusters.6

Below Tc the potential defining parameters have to be
replaced by −2g2, −2g4, and gT→−2gT.31 This replacement
yields the typical recovery of the soft mode below Tc which
hardens with decreasing temperature. In the presence of the
ILM this dependence is reduced since now—analogous to
the paraelectric phase: 2g2→2g2+6g4C2. To make things ex-
plicit, the temperature dependence of � f

2 in the ferroelectric
phase is given by

� f
2�T � Tc� =

2f�2g2 − 3g4�2�w2	T − C2��
��2f + 2g2 − 3g4�2�w2	T − C2��

. �6�

From Eq. �6� it becomes clear that the soft-mode hardens
below Tc but its temperature dependence can be quite differ-
ent from the case of a displacive ferroelectric caused by the
temperature reducing effect from the ILM amplitude. A typi-
cal T dependence of � f

2�T� is shown in Fig. 2 where with
increasing ILM amplitude the temperature dependence of � f

2

is systematically reduced. The Curie constant is substantially
suppressed with increasing ILM amplitude as seen
experimentally15,42–45 and outlined in detail below. Below Tc
the soft-mode hardens and this hardening gets less pro-
nounced with increasing breather amplitude

The renormalization of the ILM mode caused by the cou-
pling to the matrix modifies Eq. �2� in the following way: if
a transition to a polar state �the dilute case� still occurs in the
presence of the breather, the breather frequency changes for
T	Tc like

FIG. 2. �Color online� Temperature dependence of the squared
soft-mode frequency without ILM renormalization �black� Tc

=200 K, small ILM amplitude �red�, large ILM amplitude �green�,
and the extremely dense ILM case �blue�.

FIG. 3. �Color online� Fluctuation induced renormalized ILM
amplitude C �C is implicitly defined in Eq. �7�� in the vicinity of
T=Tc. The renormalization due to fluctuations is almost lost for T
	Tc+3 K.

FIG. 4. �Color online� Dispersion branches of the lowest trans-
verse optic �black line� and acoustic �red line� branches below TB.
TB is the temperature where the ILM branch splits off from the
optic branch, i.e., T�TB. The blue line refers to the ILM. The ILM
distribution is dense. The inset shows the small q dispersion of the
optic and ILM mode in order to demonstrate the small splitting of
both in this regime which is not obvious from the main figure.
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�1
2 =

1

m1
�4f� + �2gT + Crg̃4C2�

C

A
� , �7�

i.e., the ILM mode becomes T dependent in an analogous
way as the soft mode as long as the amplitude is small. In the
vicinity of Tc substantial fluctuations in the breather mode
amplitude take place caused by the nonlinear temperature
dependence of C whereas for elevated temperatures an al-
most linear T dependence is realized. The renormalization
due to this effect is shown in Fig. 3 for temperatures close to
Tc where precursor type dynamical fluctuations govern the
renormalized breather amplitude.

Since the acoustic zone-boundary lattice mode frequency
is given by

�TA
2 �q = 2�/a� =

1

m1
�4f� +

2fgT

2f + gT
� �8�

strong acoustic-ILM mode coupling can set in with decreas-
ing temperature and an anomalous dispersion of the elastic
constants maybe a consequence.46 For temperatures below Tc
and in the dilute case, the ILM adopts a temperature depen-
dence where—like the soft mode—hardening is expected. In
the dense case, no transition will occur since—as is obvious

from Eq. �4�—the attractive coupling can be fully compen-
sated by the coupling to the ILM.

Above the Burns temperature TB, which is defined as the
temperature where the refractive index deviates from a linear
in T dependence,20 the ILM solutions remain above the fre-
quency of acoustic phonon mode at the Brillouin-zone
boundary thus giving rise to a random distribution of breath-
ers. However, they split off from the spectrum below TB and
form in-gap coherent states which exhibit self-organized pat-
terns. A typical shape of phonon and breather branches in the
Brillouin zone is shown in Fig. 4.

It is important to emphasize that the ILM solution is re-
alized in a spatially limited region. Obviously, optic and
acoustic modes exhibit quite conventional dispersions, as ob-
served by INS for high temperatures. There is, however, a
splitting of the ILM from the optic mode close to q=0 �see
the inset to Fig. 4� which gives rise to diffuse scattering,
phonon frequency shifts, and novel features in the phonon
linewidth. In order to calculate the linewidths of the above
modes, the approaches of Refs. 47–49 are used where mul-
tiphonon processes are considered to become important for
the phonon �j� temperature �T�-dependent linewidth. The re-
sults of these calculations are shown in Fig. 5 where the case
shown in Fig. 4 is considered.

The diagram shows the intensities of the three branches of

(a) (b)

FIG. 6. �Color online� �a� Frequency and momentum dependence of the linewidth intensities of the modes shown in Fig. 4 but at a higher
temperature than in Fig. 5, however still below TB. The ILM distribution is dense. �b� The same as in the left panel, however, showing some
distinct q values as indicated in the figure.

(a) (b)

FIG. 5. �Color online� �a� Frequency and momentum dependence of the linewidth intensities of the modes shown in Fig. 2, however, well
below TB but above Tc. The ILM distribution is dense. �b� The same as in the left panel, however, showing some distinct q values as
indicated in the figure.
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Fig. 4 as a function of momentum q and frequency �. These
intensities are related to the dielectric loss in the q=0 limit.
While the acoustic mode dispersion can be followed clearly
in momentum space up the middle of the Brillouin zone, the
optic mode is damped at small momentum and develops as a
shoulder. This shoulder stems from the ILM and its interac-
tion with the optic mode. Approaching the zone boundary,
the mode damping is even more pronounced, whereas the
ILM separates from the optic mode and develops an almost
independent response. As can be seen, the crossing of the
acoustic and the ILM modes halfway between q=0 and q
=2� /a leads to an additional anomaly, where both modes are
no longer individually distinguishable. Note that the above
case refers to a dense breather distribution at temperatures
well below TB. Upon increasing the temperature to TB, the
optic mode damping increases, its intensity decreases �Fig.
5�, and the mode dispersion is followed well through the
Brillouin zone. It should be underlined that such unusual
increase in soft-mode damping with increased temperature
was indeed observed in terahertz �THz� and IR spectra of all
lead-based relaxors but only above TB and upon approaching
this temperature scale from above,6,7,39,40 which implies that
the soft-mode damping exhibits maximum at TB.

A similar analysis has been made for the case of a dilute
system �Fig. 6�, where the doping and, correspondingly, the

ILM amplitude are small. A typical dispersion for this case is
shown in Fig. 7 where the ILM completely splits off from the
optic mode and crosses the acoustic mode at small momen-
tum. In this case the system is almost in the displacive limit
and the temperature dependence of the soft mode is reminis-
cent of the uncoupled soft mode. This leads to a complicated
frequency-dependent damping profile, where both acoustic
and optic modes are overdamped with the acoustic mode
showing an anomalous line-shape asymmetry �Fig. 8� caused
by the coupling with the ILM.

Not only is the acoustic mode overdamped with line-
shape anomalies but also the optic mode is anomalously
broadened due to spectral weight transfer to the ILM. How-
ever, its dispersion can still be followed clearly through the
full Brillouin zone. The dilute case, just discussed, refers to
low temperatures and, as discussed above, the almost displa-
cive limit. When increasing the temperature the ILM and the
optic mode both shift to higher frequencies and the crossing
between the acoustic and the ILM mode takes place at larger
momentum. Since the optic mode also moves to higher fre-
quencies, it does not show any crossing and, as already ob-
served for the dense case, becomes well defined but strongly
damped. This is shown in Fig. 9.

Experimentally it has been observed6,7,39,40 that the soft-
mode damping has a maximum at TB and diminishes above
TB in an unexpected manner. The above results for tempera-
tures smaller than TB are consistent with these data. For T
	TB we suggest that the incoherence of the ILM and its
splitting off the phonon spectrum diminishes the damping
and indeed will produce in this way the observed damping
maximum at the Burns temperature. Details about the tem-
perature evolution of the damping for T	TB will be pub-
lished in another work. Also, it is worth mentioning that the
dielectric relaxations below the phonon spectrum cannot be
evaluated within the present approach, however, it is impor-
tant to emphasize that the relaxation contribution to the per-
mittivity is essential below TB in relaxor ferroelectrics.

The dense and dilute cases of ILMs in a polarizable ma-
trix have distinct effects on the temperature dependencies of
all modes. With a dense distribution, the large amplitude
breather stabilizes the soft-mode temperature dependence
and inhibits a structural instability �Fig. 10�a��. On the other

FIG. 7. �Color online� Momentum dispersion of the lowest
transverse optic �black line� and acoustic mode �red line� frequen-
cies. The blue line refers to the ILM. The ILM distribution is dilute
thus leaving space for almost displacive optic mode softening.

(a) (b)

FIG. 8. �Color online� �a� Frequency and momentum dependence of the linewidth intensities of the modes shown in Fig. 7. The ILM
distribution is dilute. The temperature is well below TB but still above Tc. �b� The same as in the left panel, however, showing some distinct
q values as indicated in the figure.
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hand, the breather adopts a T dependence whereas the acous-
tic zone-boundary mode frequency which typically is also
rather strongly temperature dependent, greatly decreases this
T dependence and is almost pinned to a fixed value. It is,
however, seen �Fig. 10�a�� that a crossing of acoustic and
ILM modes takes place at intermediate temperatures, signal-
ing the onset of increased elastic softness and the possibility
for an elastic instability. In the opposite case of a dilute small
amplitude ILM distribution �Fig. 10�b��, the zero-momentum
optic mode shows typical softening, as observed in displa-
cive ferroelectric systems. An instability is possible in this
case which is very much reminiscent of a true ferroelectric
phase transition, however with the distinction the complete
mode softening is inhibited as discussed above. Also the
related zone-boundary acoustic mode shows the typical
displacive type temperature dependence. Near Tc, strong
mode coupling of acoustic and optic modes takes place
which induces an anomalous dispersion of the acoustic mode
at small wave vector, which experimentally shows up as
anomalies in Brillouin-zone scattering and anomalous elastic
behavior.46,50–54 The breather mode, on the other hand, is
much less affected by temperature as compared to the dense
case and decreases from the highest to zero temperature by
only 1.22 THz �3.32 THz in the dense case�.

The two limiting cases discussed above can adopt all in-
termediate possibilities since the ILM amplitude varies con-

tinuously with doping. This means that a smooth crossover
from the purely displacive to the relaxor case is possible, as
also suggested from experiments.15,16 In the extreme dilute
case, considered above, even a coexistence of relaxor and
soft-mode dynamics can occur. The observation of inhomo-
geneous polar nanodomains, discussed here in terms of local
mode formation, is not tied to TB but is expected to be pos-
sible above TB. At these high temperatures, coherence, which
causes ILM formation, of the polar nanoregions is not yet
achieved making it difficult to observe them. They should,
however, be observable through local probe techniques such
as NMR, PDF, or extended x-ray-absorption fine structure
�EXAFS�. The dynamics of the matrix are expected to be
“normal.” Only, when the breather frequency reaches the
phonon spectrum at either the zero-momentum optic phonon
or the transverse-acoustic zone-boundary mode, namely, at
TB, coherence takes place and the polar nanoregions are ob-
servable by conventional scattering techniques.

A direct probing of the continuous crossover from strong
mode softening in ferroelectrics to an incomplete softening
relaxor as predicted in Fig. 9 is still lacking, even though the
incomplete mode softening has been observed by infrared
and broadband dielectric spectroscopy in various relaxor
systems.6,7,39,40 Indeed, observing the continuous crossover
would require a full set of single crystals in a solid solution
�for example, the BaTi1−xZrxO3 �BTZ�� solution. Reliable IR,

(a) (b)

FIG. 9. �Color online� �a� Frequency and momentum dependence of the linewidth intensities of the modes shown in Fig. 7 but at a higher
temperature as compared to Fig. 8, however below TB, the ILM distribution is dilute. �b� The same as in the left panel, however, showing
some distinct q values as indicated in the figure.

(a) (b)

FIG. 10. �Color online� Temperature dependence of the squared optic �q=0; black line�, acoustic �q=� /a; red line and breather �q=0;
blue line� mode frequencies in �a� the dense ILM case and �b� the dilute ILM case.
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Raman, and inelastic neutron scattering would then be avail-
able. Since, however, such high quality single crystals are
still missing, TO phonon investigations in ceramics samples
could not evidence the required slowing down.44 An alterna-
tive way can be found in the high-temperature extrapolation
of the dielectric permittivity in a set of ceramics like BTZ.
Indeed, through the Lyddane-Sachs-Teller equation, the low-
frequency permittivity is directly related to the TO mode
softening: 
�T�� �� f�T��−2 where this relation is valid for T
	TB in relaxor ferroelectrics. Instead of focusing the atten-
tion to the critical temperature range where either true ferro-
electric or dispersed relaxor behavior occurs, we investigated
the temperature range where the Curie-Weiss law is valid in
both instances,


�T� =
CCW

�T − Tc�
�9�

with CCW being the Curie constant and Tc is an extrapolated
temperature which loses its meaning in the case of relaxors
because it is first frequency dependant and second the devia-
tion from Eq. �9� precludes any reliable fitting of the permit-
tivity data.

Usually, it is this deviation which is used to assign the
occurrence of a relaxor state. On the basis of the breather
model we will rather restrict our attention to the temperatures
where Eq. �9� is valid for ferroelectrics as well as for relaxor,
i.e., for the latter systems above TB. Plotting the inverse of

�T� versus T is the correct way to evidence the Curie-Weiss
law. This is done in Fig. 10 for some key compositions in the
BTZ family. As the critical temperature range has been omit-
ted in these plots, only the computed slope CCW of the lines
is the parameter of interest. This Curie constant is reported in
Table I for several BTZ compounds together with their ferro-
electric or relaxor characteristic transition temperatures.15 In
the same table typical Curie constants for KNbO3 and
PbTiO3 ferroelectrics are also included. Obviously, the Curie
constants split into two groups: the one of displacive type
ferroelectrics with CCW	1.5�105 K and the one of relax-
ors with CCW1.1�105 K. Even if this difference is not
huge, it is systematically observed in the BaTiO3 based com-
pounds including the BaCaTiZrO ferroelectric/relaxor com-
positions �Table I�. This is an indirect confirmation of the key
model expectation of Fig. 10 calling for an incomplete soft-
ening of � f

2 in relaxors. The clue here is that the variation in
Curie constants is quite sharp when shifting from the ferro-

(a) (b)

FIG. 11. �Color online� Curie-Weiss behavior of a ferroelectric Ba�Ti0.80Zr0.20�O3 and a relaxor Ba�Ti0.60Zr0.40�O3 taken from the whole
family of materials reported in Table I. The lines are obtained through a fit to Eq. �9�. The data have been taken at 1 THz.

TABLE I. Curie constants CCW of several ferroelectric �F� and relaxor �R� materials in the same BaTiO3

family; some other ferroelectric materials are listed for reference. Tc and Tm are the real, respectively,
extrapolated transition temperatures.

Composition
Tc or Tm

�K�
Curie constant CCW

�K� Reference

BaTiO3 �F� 400 1.5�105 45

Ba�Ti0.85Zr0.15�O3 �F� 340 1.5�105 43

Ba�Ti0.80Zr0.20�O3 �F� 314 1.6�105 43

Ba�Ti0.63Zr0.37�O3 �R� 194 1.06�105 43

Ba�Ti0.60Zr0.40�O3 �R� 188 1.03�105 43

Ba0.88Ca0.12�Ti0.63Zr0.37�O3 �R� 169 9.9�104 43

Ba0.90Ca0.10�Ti0.70Zr0.30�O3 �R� 209 8.2�104 43

KNbO3 �F� 691 2.4�105 45

PbTiO3 �F� 763 4.1�105 45

Pb�Zn1/3Nb2/3�O3 �R� 388 2.69�105 55, 56

Pb�Mg1/3Nb2/3�O3 �R� 265 1.25�105 57
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electric to relaxor compositions while the critical tempera-
tures are continuously decreasing without any sign of criti-
cality for many lead free solid solutions.15 This a very strong
support for the breather model—whether diluted or dense—
being a microscopic precursor of two different behaviors
which are only macroscopically distinguishable close to the
critical temperature. The agreement between these experi-
mental findings and the model predictions becomes clear by
comparing Figs. 11�a� and 11�b�.

The above model for relaxor ferroelectrics and their rela-
tion to displacive ferroelectrics provides a natural explana-
tion of many as yet unexplained phenomena. These phenom-
ena are especially: the strong diffuse scattering, observed in
all of these compounds;10–14 the appearance of an extra
mode,6,7 in spite of missing symmetry breaking; the observa-
tion of a soft mode together with relaxor properties; the
anomalous line shapes of acoustic and optic modes; and the
waterfall phenomenon9–12 and the observation of acoustic
mode and elastic constant anomalies.46,50–54

To conclude, we have shown that relaxor and displacive
dynamics are intimately related to each other and stem from
the same dynamics. The strong nonlinearity, inherent to both
types of ferroelectrics, gives rise to local mode formation in
terms of breathers, which are intrinsically inhomogeneous
and are the origin of polar nanoregions. These regions are
present at all temperatures but manifest themselves only
when they achieve coherence, i.e., appear in the optic-
acoustic mode gap. The spatial extensions of these solutions
are dependent on their amplitude related to the dopant den-
sity. In order to clearly identify them, we suggest investigat-
ing the local structure of relaxors by means of EXAFS tech-
niques which should be able to detect the suggested
patterning.
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gratefully acknowledged.

1 G. Smolenski and A. Agarnovskaya, Sov. Phys. Solid State 1,
1429 �1960�.

2 D. Viehland, S. J. Land, L. E. Cross, and M. Wuttig, J. Appl.
Phys. 68, 2916 �1990�.

3 C. Randall, Ph.D. thesis, University of Essex, 1987.
4 L. E. Cross, Ferroelectrics 76, 241 �1987�.
5 For a recent review see, G. A. Samara, J. Phys. Condens. Matter

15, R367 �2003�, and references therein.
6 J. Macutkevic, S. Kamba, J. Banys, A. Brilingas, A. Pashkin, J.

Petzelt, K. Bormanis, and A. Sternberg, Phys. Rev. B 74,
104106 �2006�.

7 S. Kamba, D. Nuzhnyy, V. Bovtun, J. Petzelt, Y. L. Wang, N.
Setter, J. Levoska, M. Tyunina, J. Macutkevic, and J. Banys, J.
Appl. Phys. 102, 074106 �2007�.

8 S. Tsukada and S. Kojima, Phys. Rev. B 78, 144106 �2008�.
9 P. M. Gehring, S. Wakimoto, Z.-G. Ye, and G. Shirane, Phys.

Rev. Lett. 87, 277601 �2001�.
10 P. M. Gehring, S.-E. Park, and G. Shirane, Phys. Rev. B 63,

224109 �2001�.
11 P. M. Gehring, S.-E. Park, and G. Shirane, Phys. Rev. Lett. 84,

5216 �2000�.
12 P. M. Gehring, H. Hiraka, C. Stock, S.-H. Lee, W. Chen, Z.-G.

Ye, S. B. Vakhrushev, and Z. Chowdhuri, Phys. Rev. B 79,
224109 �2009�.

13 J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C. A. Randall, and S. J.
Zhang, Phys. Rev. Lett. 91, 107602 �2003�.

14 W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F.
Trouw, and T. Egami, Phys. Rev. Lett. 100, 137602 �2008�.

15 A. Simon, J. Ravez, and M. Maglione, J. Phys. Condens. Matter
16, 963 �2004�.

16 M. Tyunina and J. Levoska, Phys. Rev. B 70, 132105 �2004�.
17 J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L.

A. Knauss, Phys. Rev. Lett. 68, 232 �1992�.
18 J. Toulouse and B. Hennion, Phys. Rev. B 49, 1503 �1994�.
19 B. Burton, Phase Transitions 79, 91 �2006�.
20 G. Burns and F. H. Dacol, Solid State Commun. 48, 853 �1983�.

21 V. Westphal, W. Kleemann, and M. D. Glinchuk, Phys. Rev. Lett.
68, 847 �1992�.

22 R. Blinc, J. Dolinsek, A. Gregorovic, B. Zalar, C. Filipic, Z.
Kutnjak, A. Levstik, and R. Pirc, Phys. Rev. Lett. 83, 424
�1999�.

23 R. Blinc, V. Laguta, and B. Zalar, Phys. Rev. Lett. 91, 247601
�2003�.

24 B. E. Vugmeister and P. Adhikari, Ferroelectrics 157, 341
�1994�.

25 B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62, 993
�1990�.

26 J. Toulouse, B. E. Vugmeister, and R. Pattnaik, Phys. Rev. Lett.
73, 3467 �1994�.

27 A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B 70,
184303 �2004�.

28 A. Bussmann-Holder, A. R. Bishop, and T. Egami, Europhys.
Lett. 71, 249 �2005�.

29 A. Bussmann-Holder and A. R. Bishop, J. Phys. Condens. Mat-
ter 16, L313 �2004�.

30 R. Migoni, H. Bilz, and D. Bäuerle, Phys. Rev. Lett. 37, 1155
�1976�.

31 H. Bilz, G. Benedek, and A. Bussmann-Holder, Phys. Rev. B 35,
4840 �1987�.

32 M. Stachiotti and R. Migoni, J. Phys. Condens. Matter 2, 4341
�1990�.

33 M. Stachiotti, R. Migoni, and U. Höchli, J. Phys. Condens. Mat-
ter 3, 3689 �1991�.

34 A. Bussmann-Holder, H. Bilz, and G. Benedek, Phys. Rev. B 39,
9214 �1989�.

35 G. Benedek, A. Bussmann-Holder, and H. Bilz, Phys. Rev. B 36,
630 �1987�.

36 A. Bussmann-Holder, A. R. Bishop, and G. Benedek, Phys. Rev.
B 53, 11521 �1996�.

37 A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B 56, 5297
�1997�.

38 I.-K. Jeong, Phys. Rev. B 79, 052101 �2009�.

BISHOP et al. PHYSICAL REVIEW B 81, 064106 �2010�

064106-8



39 S. Kamba, M. Kempa, V. Bovtun, J. Petzelt, K. Brinkman, and
N. Setter, J. Phys. Condens. Matter 17, 3965 �2005�.

40 J. Hlinka, J. Petzelt, S. Kamba, D. Noujni, and T. Ostapchuk,
Phase Transitions 79, 41 �2006�.

41 J. Toulouse, F. Jiang, O. Svitelskiy, W. Chen, and Z.-G. Ye, Phys.
Rev. B 72, 184106 �2005�.

42 R. Farhi, M. El Marssi, A. Simon, and J. Ravez, Eur. Phys. J. B
9, 599 �1999�.

43 J. Ravez, C. Broustera, and A. Simon, J. Mater. Chem. 9, 1609
�1999�.

44 A. Simon �private communication�.
45 T. Mitsui and S. Nomura, Ferroelectrics and related substances,

Landolt Börnstein �Springer-Verlag, Berlin, New York, 1981�.
46 S. G. Lushnikov, A. I. Fedoseev, S. N. Gvasaliya, and S.

Kojima, Phys. Rev. B 77, 104122 �2008�.
47 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 �1962�.
48 P. G. Klemens, Phys. Rev. 148, 845 �1966�.

49 M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928
�1983�.

50 R. Laiho, S. G. Lushnikov, S. D. Prokhorova, and I. G. Siny,
Sov. Phys. Solid State 32, 2024 �1990�.

51 I. G. Siny, S. G. Lushnikov, C.-S. Tu, and V. H. Schmidt, Fer-
roelectrics 170, 197 �1995�.

52 S. G. Lushnikov, J.-H. Ko, and S. Kojima, Appl. Phys. Lett. 84,
4798 �2004�.

53 M. Ahart, A. Asthagiri, Z.-G. Ye, P. Dera, H.-K. Mao, R. E.
Cohen, and R. J. Hemley, Phys. Rev. B 75, 144410 �2007�.

54 G. A. Smolenski, N. K. Yushin, and S. I. Smirnov, Sov. Phys.
Solid State 27, 801 �1985�.

55 G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527 �1983�.
56 A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856

�1998�.
57 D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B

46, 8003 �1992�.

COMMON CHARACTERISTICS OF DISPLACIVE AND… PHYSICAL REVIEW B 81, 064106 �2010�

064106-9


