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A model of a ferroelectric crystal in terms of a one-dimensional array of ferroelectric slab domains is treated
theoretically for the dynamics of the “array of domains.” Two approaches are considered. In a first, the system
is treated within a continuum limit in which the space and time evolution of the polarization of the crystal are
described by a nonlinear Klein-Gordon equation. A multiple-time-scale analysis is used to determine the linear
and nonlinear parts of the frequencies of the extended modes of oscillation of the array. An application is also
made to study these modes in the presence of impurities in inhomogeneous ferroelectric materials such as
lithium niobate. In a second approach, the discrete equations for the coupling of neighboring ferroelectric slab
domains are used to study intrinsic localized modes of the ferroelectric crystal. These are highly localized
modes that arise from their self-consistent interactions with the nonlinearity of the system.
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I. INTRODUCTION

Ferroelectricity is an important property of solids, arising
in crystal systems undergoing structural changes below a
critical temperature, leading to the development of a sponta-
neous polarization.1–8 The transition is either first or second
order and is roughly described by an appropriate Landau-
Ginzburg free energy. Real ferroelectrics occur as collections
of domains of pure ferroelectric behavior where the ferro-
electric domains �as with ferromagnetic domains� are created
and oriented by a need to minimize the free energy of the
crystal and fields. The bulk properties and domain structure
of these materials are among the classic systems treated in
statistical physics and have been extensively studied. Re-
cently, however, they have gained renewed interest for po-
tential applications in nanoscience and the design of nanode-
vices, where the focus is on properties exhibited at small
length scales.3–12 The new applications are based both on
classic ferroelectric properties and features particular to
nanostructured arrays and include applications to:9 �1� gen-
erating high dielectric coefficients over wide ranges of tem-
peratures and frequencies in the design of integrated or sur-
face mounted device capacitors, �2� using large piezoelectric
effects in electromechanical sensors, actuators, and transduc-
ers, �3� utilization of materials with high pyroelectric coeffi-
cients for infrared sensors, �4� using semiconductor ferro-
electrics in tunable thermistors and in positive temperature
coefficient resistors, �5� utilization of nonlinear dielectric
materials with field tunable permittivities and refractive in-
dices in electromechanical devices. These current interests
warrant a more detailed look at the dynamical properties of
domain arrays which may become significant features at
some of the length scales of interest and this aspect is defi-
nitely very important.

In this paper the dynamical properties of the domain
structure of a ferroelectric crystal such as lithium niobate are

studied. The focus is on a simple model of an idealized one-
dimensional layered array of domains which has been treated
in a number of previous publications.1,5,7,8 In these treat-
ments a discrete model for the interacting domains was de-
veloped and then reformulated into a continuum model. The
two formulations become of interest depending on the char-
acteristic length scale of domain excitations compared to
typical lengths of the domains and on the number of domains
forming the array. Originally these efforts focused on a study
of the properties of the static system.1,5,7 Later, the con-
tinuum model was applied to a stability analysis of solitons
of different velocities in the domain arrays.8

Both the discrete and continuum models are based on
generalizing the Landau-Ginzburg free-energy form for
ferroelectric materials. The discrete model treats domain ar-
rays in which each domain has a uniform polarization over
the finite region of the domain volume1,5,7,8 and the polariza-
tions of neighboring domains are oppositely directed. This is
convenient when the length scales of the excitations in the
system are comparable to the domain sizes. The continuum
model treats the staggered polarization as slowly varying
over a neighborhood of several domains so that the domains
are treated as a staggered polarization density. The con-
tinuum model reformulation is accomplished applying to the
discrete model a Taylor expansion in the domain slab thick-
ness which is valid for long-wavelength excitations in arrays
consisting of a large number of domains.7,8 The dynamical
equation of the continuum model has the form of a nonlinear
Klein-Gordon �K-G� equation for the staggered polarization
of the system as a function of time and the space variables
perpendicular to the ferroelectric domain slabs.

In a first study, for the extended �i.e., plane-wavelike�
modes of the array, the continuum model is treated to deter-
mine the renormalization of the mode frequencies with mode
amplitude due to the system nonlinearity. The time depen-
dence of the domain array is obtained using multiple-time-
scale analysis �MTSA� methods.13 The plane-wavelike
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modes of the nonlinear system are found to evolve from
those of the linear limit of the system such that the nonlinear
component of the interactions adds a complicated renormal-
ization of their properties. The effects of impurities in the
system on this renormalization are considered using recent
data on lithium niobate.11,12 These effects are of interest as
they occur in many ferroelectrics and may have applications
in nonlinear optical communications.

Within the continuum limit dynamics, the nonlinear
Klein-Gordon equation with second-order space and time de-
rivatives has been used in a number of studies on domain
walls, the motion of domain walls, and in some preliminary
treatments of arrays of domains �see Ref. 8 and references
therein�. It has also been mentioned in our previous analysis
of these systems for the limiting case in which the spatial
term in the Klein-Gordon equation vanishes and the resulting
system equation reduces to the nonlinear Duffing oscillator
equation.7,10 A particular facility in these treatments is that
the K-G equation is a well-known equation of mathematical
physics which exhibits a wide variety of interesting proper-
ties and has had applications to a wide variety of different
physical systems. Our treatment here of the dynamical prop-
erties of the extended modes of the Klein-Gordon equation
involves a MTSA. The MTSA and its applications in the
study of various mechanical systems have been extensively
discussed by Nayfeh,13 and more recently Das et al.14 have
presented an interesting treatment of these techniques for lin-
ear and nonlinear mechanical vibration analysis. The MTSA
allows for a determination of the frequency and amplitude of
the modes as an expansion in a series of relevant increasing
time scales, revealing both the linear limit and the nonlinear
corrections of the frequencies. It overcomes problems with
singularities that arise in the traditional perturbation expan-
sion in the nonlinearity of the system as a small parameter.

In a second study, a set of intrinsic localized modes
�ILMs� of the domain array will be investigated. These are
highly localized pulses in space and are found in the discrete
nonlinear model formulation. Unlike the plane-wavelike
modes, ILMs have no counterparts in the linear system, but
exist only because of the system nonlinearity in a periodic
lattice.15–17 They are formed as a self-consistent interaction
between the mode and the system nonlinearity so that an
ILM modifies the local properties of the system at the ILM
peak through the system nonlinearity, and the modified local
properties of the system provide the environment for the
ILM to exist. The existence of ILM have been proposed
theoretically in a wide variety of discrete many-body sys-
tems, and they have been observed experimentally in a num-
ber of different types of such systems.16 Detailed discussions
of ILM have been reviewed extensively in the works of Siev-
ers et al.16,17 and Segev and co-workers.15 For our discus-
sions we use a simple and general formulation given origi-
nally by Sievers and Page17 for the treatment of ILM in
nonlinear vibrational systems. The formulation is appropriate
to highly localized pulses having widths that are not large
compared to the domain widths so that the continuum limit
formulation cannot be applied to their study.

Some important works �in a nonexhaustive literature
search� related to the above proposed direction of research
are now briefly mentioned. These focus mainly on bulk prop-

erties of pure and impure ferroelectric systems and with the
nature of intrinsic localized modes compared to the con-
tinuum limit soliton solutions. From a theoretical standpoint,
Corso and co-workers18 did an extensive study using density-
functional perturbation theory of the dynamics of lattices in a
variety of materials, including ferroelectrics. They employed
a nonlinear approach, mainly evaluating the exchange and
correlation energy, to determine the nonlinear optical suscep-
tibility of a material at low frequency.19 The phonon-
dispersion relation of ferroelectrics was also studied exten-
sively by Ghosez et al.20,21 These studies, however, were
related more to understanding the structure and metal-
oxygen bonds of certain ferroelectric materials rather than to
a determination of the domain modes of vibration or soliton
motion in the system. Comparisons of nonlinear treatments
of localized modes in continuum and discrete systems, how-
ever, were made by Kivshar et al.22,23 giving an impressive
study of “intrinsic localized modes,” i.e., so-called lattice
solitons and their oscillations in a discrete system. These
studies were based on the perturbed nonlinear Schrodinger
equation and the Peirls-Nabarro potential. They showed that
some of the properties of the discrete nonlinear lattices, e.g.,
modulation instability of continuous wave solutions, are ex-
hibited through some of the novel features that are intro-
duced solely by the “discreteness”23 �see the references
therein�. An impressive work by Willis’ group on the nonlin-
ear response of the sine-Gordon equation to an ac field24 is
also noted in this context. From an experimental standpoint,
anharmonic vibrations were experimentally dealt with by
Brennan and Nelson25 in both lithium niobate and lithium
tantalate crystals through “impulsive” stimulated Raman
scattering measurements �see the references therein�. In ad-
dition, for localized modes an extensive description of ILM
and the implication of discreteness for such modes have been
recently given by a voluminous review by Flach and
Gorbach.26

In Sec. II, a review of the discrete model system and its
Hamiltonian is given. The time-dependent continuum limit
�nonlinear Klein-Gordon equation� is obtained and dis-
cussed. In Sec. III, the nonlinear dispersion relation of the
plane-wavelike modes of the array of domains is obtained
using the MTSA. This is followed by a treatment of ILM in
the discrete system. In Sec. IV, results are presented for pa-
rameters appropriate to lithium niobate. Conclusions are
given in Sec. V.

II. MODEL

We consider an idealized model of a one-dimensional ar-
ray of N identical ferroelectric domains layered along the x
axis1,5,7,8 �see Fig. 1�. In the ground state the array of polar-
ized domains is antiferroelectrically ordered. The domains
are rectangular parallelepipeds of length L1 in the x direction,
of height d�NL1 in the z direction, and translationally in-
variant in the y direction. Between neighboring domains are
domain walls of length WL�L1, d, and the total length of the
array along the x direction is L2=NL1. For simplicity the
polarization of each domain is oriented along the z axis and

denoted in the ith domain by P̃i. The polarization vector P̃i

BANDYOPADHYAY et al. PHYSICAL REVIEW B 81, 064104 �2010�

064104-2



can be either positive or negative to indicate an orientation
along the + or −z axis and can be expressed in terms of a

slowly varying staggered polarization, Pi, as P̃i= �−1�iPi.
In a previous treatment a time-dependent formulation for

the dynamics of the domain array was obtained as a gener-
alization of the Landau-Ginzburg free-energy form1,7

G = − �1P2/2 + �2P4/4 − E0P �1�

for a uniform single-domain ferroelectric. The nearest-
neighboring domains were taken to interact by a harmonic
potential with a phenomenological spring constant k so that
the resulting Hamiltonian for the staggered polarization is
given by:7

H =
1

2md
�
i=1

N

pi
2 + �

i=1

N �−
�1Qd

2

2
� Pi

Qd
�2

+
�2Qd

4

4
� Pi

Qd
�4�

+ �
i=1

N � kQd
2

4
� Pi

Qd
−

Pi−1

Qd
�2

− Qd� Pi

Qd
��E0� + �− 1�i+1E1�	� .

�2�

Here

pi = �md

Qd
�Ṗi, �3�

where Qd and md are phenomenological inertial constants set
by the response of the ferroelectric domains to a perturbation
of the Pi, E0� is a staggered electric field, and E1� is an applied
external electric field.

Equation �2� gives a good general treatment of the mode
dynamics in the array, particularly for modes which are
strongly localized over a small number of the domains in the
array. For extended modes and modes which are localized,
and slowly range over a large number of consecutive do-
mains, Eq. �2� can be approximated by a continuum treat-
ment. In this limit, expressed in dimensionless units, Eq. �2�
yields a nonlinear Klein-Gordon equation with an ac driving
and staggered field given by:7,8

�2P

�t2 − k̄
�2P

�x2 + �̄
�P

�t
− �̄1P + �̄2P3

− �E0 + E1 sin�n��	cos��t� = 0 �4�

for the dynamics of the staggered polarization P�x , t�. Here
0�x�N is the position in the array measured in units of L1;
P�x , t�= P��x , t� / Ps, where P��x , t� is the polarization at x of

the ith domain, where i−1�x /L1� i and Ps is the saturation
polarization of the ferroelectric; t= t� / tc, where t� is the time

and tc= 1
Qd

mdPs

Ec
is the characteristic time constant for pertur-

bations of the equilibrium polarization to relax; and �̄1
=�1Ps /Ec and �̄2=�2Ps

3 /Ec, where Ec is the coercive field of
the P-E ferroelectric hysteresis curve.4 The coefficients as-
sociated with the variation in the second-order spatial term
and that for first-order time variation in Eq. �4� are given by

k̄ =
kPs

2Ec
�5�

and

�̄ =
�Ps

tcEc
, �6�

where � is a decay constant relating the loss of polarization
due to internal friction during its motion in the system, and

the fields have been normalized such that E0=
E0�
Ec

and E1

=
E1�
Ec

. In addition, in our later discussions of lithium niobate
we will take �1=�2Ps

2 in Eq. �4� which is appropriate for
bulk lithium niobate at room temperature.

III. MULTIPLE-TIME-SCALE ANALYSIS

A. Defining terms

The MTSA is a perturbation-theory approach for the dy-
namics of nonlinear oscillator equations based on observa-
tions originally put forth in the Lindstedt-Poincare
technique.13 Specifically, it is found that in an expansion in
the small nonlinearity of the system the nonlinearity of the
frequency of the oscillator must explicitly be taken into ac-
count in the course of the calculation. Otherwise a poorly
behaved perturbation series is obtained.

If � is a small parameter characterizing the nonlinearity in
Eq. �4�, then the MTSA formally treats the staggered ferro-
electric polarization P�x ,� , t� as a function of multiple time
scales P�x ,� , t0 , t1 , t2 , . . . , tn�, where the ti are defined by13,14

t0 = t, t1 = �t, . . . , tn = �nt, . . . �7�

For the system in Eq. �4� the small parameter is taken to be
proportional to the mode amplitude. In addition, the stag-
gered polarization is also expanded in � of the form

P = P0 + �P1 + �2P2 + �3P3 + ¯ , �8�

where P0=
 �̄1

�̄2
is the equilibrium staggered polarization and

the Pi’s for i	0 are functions of x , t0 , t1 , . . . , tn, etc., describ-
ing fluctuations about the equilibrium system. A solution for
P�x ,� , t0 , t2 , . . .� is then obtained using Eqs. �7� and �8� in
Eq. �4�. This gives an expansion in � for P�x ,� , t�, correctly
handling the nonlinear oscillator frequency, and avoiding an
ill-behaved perturbation series.

Applying the MTSA to Eq. �4�, the partial derivative with
respect to t becomes

FIG. 1. Schematic of the polarization domains in the discrete
case. The lengths of the domains along the x axis are L1, the length
of the array is L2=NL1, and the domain walls are lines.
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�

�t
=

�

�t0

�t0

�t
+

�

�t1

�t1

�t
+ ¯ = D0 + �D1 + �2D2 + ¯ ,

�9�

where the time differential operators are defined as follows:
D0=� /�t0, D1=� /�t1, D2=� /�t2, etc. The second partial de-
rivative in t is then given by

�2

�t2 = D0
2 + 2�D1D0 + �2�D1

2 + 2D0D2� + O��3� �10�

Using Eq. �8� through Eq. �10� in Eq. �4�, we find

�D0
2 + 2�D1D0 + ¯��P0 + �P1 + �2P2 + ¯� − k̄��

�2P1

�x2

+ �2�2P2

�x2 + ¯� + �̂�2�D0 + �D1 + ¯��P0 + �P1 + �2P2

+ ¯� − �̄1�P0 + �P1 + �2P2 + ¯� + �̄2�P0 + �P1 + �2P2

+ ¯�3 − �Ê0 + Ê1 sin��x�	�3 cos��t0� = 0. �11�

Here we have taken �̄, E0, and E1 to be of the following

form: �̄= �̂�2, E0= Ê0�3, and E1= Ê1�3. This assumes a weak
interaction of the fields with the system, along with a weak
decay rate measured by �̄, and is consistent with our �→0
discussions involving these parameters in Eq. �6� of our pre-
vious work.7 In addition, the driving external electric field in
Eq. �11� is assumed to have an ac driving frequency � of the
form �=
+�2�0+¯. For example, taking terms of second
order, the cosine term in Eq. �11� becomes

cos�
t0 + �2�0t0� = cos�
t0 + �0t2� =
1

2
�ei�
0+�0t2� + c.c.	 .

�12�

We now investigate the perturbation series obtained from
Eqs. �11� and �12�, solving the system in powers of �. In our
treatment we begin by assuming that the coefficient
P1�x , t0 , t1 , . . .� in Eqs. �8� and �11� has the general form

P1 = �A�t1,t2, . . .�exp�i
t0� + A��t1,t2, . . .�exp�− i
t0�	X1�x� .

�13�

B. Linear analysis, terms of order ε

Collecting the lowest order terms �terms of order �� in Eq.
�11� gives

D0
2P1 − k̄

�2P1

�x2 − �̄1P1 + 3�̄2P0
2P1 = 0 �14�

for P1�x , t0 , t1 , . . .� subject to the vanishing of the polarization
at the ends of the ferroelectric domain array, i.e., P�x
=0, t0 , . . .�=P�x=N , t0 , . . .�=0. The solutions of Eq. �14� give
the linear limit of the modes of the system with frequencies
independent of �. A solution satisfying the boundary condi-
tions is

P1 = �A�t1�exp�i
t0� + A��t1�exp�− i
t0�	sin�n�x

N
� ,

�15�

where n=1,2 ,3 , . . ., X1�x�=sin� n�x
N �, and


 = �2�̄1 + �n�

N
�2

k̄�1/2
�16�

gives the “dispersion relation” of the nth linear mode.
It is known from previous studies7,8 that the Landau co-

efficients, �̄1 and �̄2, are important in determining the dy-
namics and stability of both the general polarization modes
and the soliton modes that are generated within ferroelectric
systems.7,8 It is not surprising that the above treatment of the
linear limits of our system through MTSA shows that �̄1 and
�̄2 determine the regions of standing-wave and decaying-
wave solutions in a fundamental way. We now turn to the
treatment of the nonlinear modes which have higher order
terms in � and to a determination of how the coefficients of
the Landau equation affect the physics generated in these
terms.

C. Nonlinear analysis

Collecting terms of order �2 in Eq. �11� we find

D0
2P2 + 2D0D1P1 − k̄

�2P2

�x2 − �̄1P2 + 3�̄2�P0P1
2 + P0

2P2� = 0.

�17�

A solution for P2 is obtained by taking
�A�t1�

�t1
=0 in Eq. �13�

and P2 of the form

P2 = B0�t1� + C0�t1�cos�2n�x

N
�

+ �B2
�t1� + C2
�t1�cos�2n�x

N
��ei2
t0

+ �B2

� �t1� + C2


� �t1�cos�2n�x

N
��e−i2
t0, �18�

where the linear frequency 
=
2�̄1+ k̄� n�
N �2. The P2 correc-

tion then only involves zero-frequency and 2
-frequency
terms. Substituting Pi for i=0,1 ,2 into Eq. �17� and collect-
ing terms of the same frequency, we find

B0 = −
3

2

�̄2

�̄1

�A�2, �19a�

C0 =
3
�̄1�̄2�A�2

�2n�

N
�2

k̄ + 2�̄1

, �19b�

B2
 =
3

2


�̄1�̄2A2

4
2 − 2�̄1

, �19c�
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C2
 =
3

2


�̄1�̄2A2

− 4
2 + �2n�

N
�2

k̄ + 2�̄1

, �19d�

where A=A�t2 , t3 , . . .� so that B0, C0, B2
, and C2
 are inde-
pendent of t1.

Collecting terms of order �3 in Eq. �11� gives

D0
3P3 − k̄

�2P3

�x2 − �̄1P3 + 3�̄2P0
2P3 = − 2D0D2P1 − �̂D0P1

− �̄2�P1
3 + 6P0P1P2	 + �Ê0 + Ê1 sin��x�	cos��t0� ,

�20�

where use is made of the fact that D1P2=D1
2P1=0. Substitut-

ing P0=
 �̄1

�̄2
and P1 and P2 from Eqs. �13� and �18� into Eq.

�20�, multiplying by X1�x�e−i
t0, and integrating over t0� �
−� ,�	 and x� �0,N	 gives

i
�A�

A
+

�̂

2
�

= 3�̄2�A�2�1 +
6�̄1

2

�k̄�2n�

N
�2

+ 2�̄1��k̄�2n�

N
�2

+ 6�̄1�
+

1

2
� Ê0

n�
�1 − �− 1�n	 +

Ê1

2
�n,N� A�

�A�2
ei�0t2, �21�

where A�=
�A�t2�

�t2
. Equation �21� is the condition needed to

remove contributions on the left-hand side of Eq. �20� which
would give rise to singularities in the solution of Eq. �20�.

Writing A�t2� in the form

A�t2� =
1

2
�t2�ei��t2� �22�

for real  and � and substituting in Eq. �21�, we find from the
real part of Eq. �21�

− 
�� =
3�̄22

4 �1 +
6�̄1

2

�k̄�2n�

N
�2

+ 2�̄1��k̄�2n�

N
�2

+ 6�̄1�
+

1

2
� Ê0

n�
�1 − �− 1�n	 +

Ê1

2
�n,N� cos�� − �0t2�


�23�

and from the imaginary part of Eq. �21�

� = −
�̂

2
 −

1

2
� Ê0

n�
�1 − �− 1�n	 +

Ê1

2
�n,N� sin�� − �0t2�



,

�24�

where ��= ��
�t2

and �= �
�t2

. We now discuss the solutions of
Eqs. �23� and �24� for a number of cases of interest.

Case I. Ê0= Ê1= �̂=0

In the case that Ê0= Ê1= �̂=0,  is a constant and

� = − �23�̄22

4
 �1 +
6�̄1

2

�k̄�2n�

N
�2

+ 2�̄1��k̄�2n�

N
�2

+ 6�̄1�t .

�25�

Consequently, the nonlinear frequency, 
NL, arising from the

linear frequency 
=
2�̄1+ � n�
N �2k̄ is given by


NL =
−�23�̄22

4
 �1+
6�̄1

2

��2n�

N
�2

k̄ + 2�̄1���2n�

N
�2

k̄ + 6�̄1� .

�26�

Case II. Ê0= Ê1=0 and �̄�0
In this case, the solution of Eq. �24� gives

 = 0e−�̂�2t/2 = 0e−�̄t/2 �27�

so that from Eqs. �22�, �23�, and �25� we find for small �̄
= �̂�2 that

A =
1

2
0ei�
NL+i�̂�2/2	t. �28�

The resulting nonlinear frequency of the plane-wavelike
modes is complex, given by


NL��̂ � 0� = 
NL��̂ = 0��=0
+ i

�̄

2
, �29�

where 
NL��̂=0� is from Eq. �26�.
Case III. Ê0, Ê1�0, and �̄=0
For this case it is useful to define �=�−�0t2 so that Eqs.

�23� and �24� become

�� = − �0 − Q2 − R cos �/ �30�

and

� = − R sin � , �31�

where

Q =
3

4

�̄2


 �1 +
6�̄1

2

�k̄�2n�

N
�2

+ 2�̄1��k̄�2n�

N
�2

+ 6�̄1�
�32�

and

R =
1

2

� Ê0

n�
�1 − �− 1�n	 +

Ê1

2
�n,N� . �33�

In the limit that �0� �Q2+R cos � /� the solution of Eqs.
�30� and �31� gives �=�0 and =0− R

�0
cos��0−�0t2�, where

0 and �0 are constants. The time dependence of the fields is
just impressed on the amplitude of A.

Another interesting limit is given by the fixed points of
the system in Eqs. �30� and �31�. For ��=�=0 we find the
fixed points at �=�−�0t2=m� for m� I and  given by the
solutions of the cubic equation, Q3+�0+ �−1�mR=0. For
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these fixed point solutions the angular variable in A is �
=m�+�0t2 and  are from the real solutions of the cubic
equation. Some important simple cases are: �a� in the limit
that ��� � R

Q �1/3, = �−1�m+1R /�0 and �b� in the limit that
�0� �QR2�1/3, = �−1�m+1 R

Q � Q
R �2/3. These give fixed points for

high-frequency and low-frequency driving fields, respec-
tively. The stability of these fixed points is easily determined
by linearizing about them in Eqs. �30� and �31�. At the fixed
point �0 ,�0�, we find linearized solutions of the form �

−�0=��0 exp��
BCt� and −0= �

BC

B ��0 exp��
BCt�,
where B= �−20

3Q+ �−1�mR	 /0
2, C= �−1�m+1R, and ��0 sets

the amplitude of the displacement from the fix point at t=0.

D. ILM

In this section we consider the discrete form of the equa-
tions from Eq. �2� describing the array of domains.16,17 These
equations are important in the limit that the space wave func-
tions of the excitations in the system change rapidly over
length scales comparable to the domain widths. This is ex-
pected to be the case for ILM that are highly localized
pulses. The pulse intensity of ILM solutions uses the nonlin-
earity of the media to create a self-consistent change in the
environment which in turn supports the localized pulse in-
tensity.

In the notation of Eq. �4�, the equations of motion, from
Eq. �2�, for the discrete domains in the absence of external
fields becomes

P̈n − �̄1Pn + �̄2Pn
3 − k̄�Pn+1 − 2Pn + Pn−1� = 0. �34�

Discrete, intrinsic localized mode solutions are obtained

from Eq. �34� by writing Pn=
 �̄1

�̄2
+Sn, where at equilibrium

Pn=
 �̄1

�̄2
and Sn=S0,ne−i
t+c.c. is the deviation from equilib-

rium that arises from the presence of an intrinsic localized
mode of frequency 
. Following Sievers and Page17 we look
for an intrinsic localized mode solution of the form

S0,0 = � , �35�

S0,n = ��− 1�nAe−��n�−1�q, for �n� � 1. �36�

This form supposes a highly localized pulse in the system
with parameters fixed by the difference equations of Eq.
�34�. Substituting Eqs. �35� and �36� into Eq. �34� for n=0, 1,
and n→�, gives three nonlinear equations17 for A, e−q, and

. These equations are

cosh q − A =
3�̄2

2k̄
�2, �37a�

k̄�Aeq − 1	 = 3�̄2�2A3, �37b�

and


2 = 2�̄1 + 2k̄�1 + cosh q	 . �37c�

Equations �37� are solved for the envelope parameters of the
wave function and the mode frequencies, 
, as functions of

�, �̄1, and k̄.

IV. RESULTS AND DISCUSSION

In this section the formulas obtained in Sec. III are evalu-
ated for lithium niobate and its various impurity structures
studied in Refs. 4, 11, and 12. Considerations are given to
both the MTSA for wavelike modes and the ILM solutions.
A focus is on the effects of impurities in inhomogeneous
ferroelectrics as these are of great current interest for pos-
sible device applications. Systems both in the absence and in
the presence of an external driving term of the form E
=E0 cos 
t are treated for temperatures well below the Curie
point, e.g., at room temperature. In this limit thermal fluctua-
tions are minimized.

First results in the linear limit of the system are consid-
ered. This is followed by a treatment of the MTSA of the
fully nonlinear system and finally by ILM results.

A. Linear regime

In the linear regime the modal dispersion is given by 
L
2

=2�̄1+ k̄� n2�2

N2 �, where n=1,2 , . . . ,N and N is the number of
domains in the array. An idea of the value of �̄1 is obtained
using the parameters in Ref. 7 for lithium niobate with an
impurity concentration of 0.133 mol. %.11,12 We find �1
=1.8849�109 V mC−1, Ec=40 kV /cm, and Ps
=0.75 C /m2 giving a value for the dimensionless parameter

�̄1=353.42. Values of k̄ are more difficult to estimate, but it
is found that the results for the system are not overly sensi-

tive to k̄ over a significant range. �This point will be ad-
dressed again in Sec. IV B.� In addition, we shall assume that

the dependence of k̄ on impurity concentration is the same as
that for the switching field, Ec. This is not unreasonable as
both of these parameters measure similar responses of the
array of domains to changes in the domain polarization. Re-

sults are presented assuming a range of k̄�10 and �100,

demonstrating the lack of sensitivity in k̄ and at the same
time showing the qualitative behaviors expected in the sys-
tem. In addition, lithium niobate exists in various states of
intrinsic defect concentrations, displaying a concentration-
dependent Ec. This is the origin of a concentration depen-
dence in �̄1. We shall take into account the concentration
dependence of �̄1 through Ec which has recently been mea-
sured by Yan, et al.12 These authors found a large set of
experimental data points for Ec fit by the general form

Ec = 114.�x − 0.06�1/3. �38�

Here Ec is in kilovolt per centimeter and 0.0�x�1.0 is the
molar % concentration of NbLi

4+ defects. Both Eq. �38� and
the experimental data points for Ec given by Yan et al.12 are
used in our later discussions. The values of �1 and Ps given
above will be assumed to be independent of x.

In Fig. 2 the linear frequency modes are presented versus
x for a series of n /N, with results shown for a system in
which �̄1= �̄2 �see the end of Sec. II�. The lines in the figure
are obtained from Eq. �38� and the points are obtained using
the experimental data given in Yan et al.12 The data from
Ref. 12 use to obtain the points in Fig. 2 and later in Fig. 3

are shown in Table I. The results in Fig. 2�a� are for k̄=10
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and those in Fig. 2�b� are for k̄=100. In Fig. 2�a� modes are
presented for n /N=0.1, 0.2, 0.5, and 1.0. At fixed concentra-
tion the frequency is seen to increase with increasing n /N. In
Fig. 2�b� modes are presented for n /N=0.1, 0.2, 0.5, 1.0, and
again at a fixed concentration the frequency increases with
increasing n /N. In both cases the linear frequency modes are
insensitive to x until the immediate neighborhood of x
�0.06 is approached. From Eq. �38� it is seen that Ec→0 in
this limit. In both figures, for finite N, the frequency spec-
trum at fixed x is a discrete set of N different frequencies

within the range 
2�̄1�
L�
2�̄1+ k̄�2.
In Fig. 2 for x�0.1, the frequency of the modes sharply

decrease with increasing impurity content. This region cor-
responds to values of Ec�40 kV /cm which are values that
Gopalan and co-workers4 found easiest to work with in their
studies of the hysteresis of samples of the appropriate thick-
nesses. Outside this region, at larger impurity concentrations,
the curves slowly decrease in frequency with increasing con-
centration. The sharp fall of mode frequency in the region of
low impurity concentration correlates with the onset of do-
main pinning. This correlation follows from the parameter
�̄1=�1Ps /Ec where the x dependence of the frequency enters

through the functional dependence of Ec. As the rotation of
the domains becomes difficult, the coercive field Ec in-
creases, and �as we see� the mode frequencies soften. Con-
sequently, an analysis of the linear modes of vibrations might
act as a confirmation of stiffening of domain rotation.

(b)

(a)

FIG. 2. The linear limit of the frequency of the normal modes of
vibrations versus the impurity concentration �mole%� in lithium
niobate given by x. The points are from the data points of Yan et al.

�Ref. 12� and the lines are from Eq. �38�. In �a� results are for k̄
=10 with n /N=0.1, 0.2, 0.5, and 1.0 from bottom to top and in �b�
results are for k̄=100 with n /N=0.1, 0.2, 0.5, and 1.0 from bottom
to top. For a fixed x, results for the Yan, et al. data points �see Table
I� with different point styles are for n /N=0.1, 0.2, 0.5, and 1.0 from
bottom to top.

(b)

(a)

FIG. 3. Plot of the slope, 1
�2

d
NL

d2 , versus the impurity concentra-
tion �mole%� in lithium niobate given by x. The points and lines are

as Fig. 2. In �a� results are for k̄=10 with n /N=0.1, 0.2, 0.5, and 1.0

from bottom to top and in �b� results are for k̄=100 with n /N
=0.1, 0.2, 0.5, and 1.0 from bottom to top. For a fixed x, results for
the Yan et al. data points �see Table I� with different point styles are
for n /N=0.1, 0.2, 0.5, and 1.0 from bottom to top. In both plots the

lower limiting curve of 1
�2

d
NL

d2
for k̄=0 are presented. For the scale

of the plot in Fig. 3�a�, the n /N=0.1 and k̄=0 curves cannot be
distinguished.

TABLE I. Data for Ref. 12 used to generate points shown in
Figs. 2 and 3. Ec is in kilovolt per centimeter.

x1 Ec �̄1

0.06658 8.0 1767.09

0.09998 30.0 471.23

0.13298 40.0 353.42

0.26525 44.0 321.29

0.31114 50.0 282.74

0.33113 85.0 166.31

0.43616 76.0 186.01

0.75509 112.0 126.22

0.76802 125.0 113.09
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B. Nonlinear plane-wavelike modes

In this section results are presented for the nonlinear cases
I, II, and III of plane-wavelike modes in the lithium niobate
system. These modes evolve from the linear limit of the sys-
tem and are renormalized by the nonlinearity. Due to the
nonlinear terms in the Hamiltonian, the frequencies of the
plane-wavelike modes depend on their mode amplitudes.
This behavior is illustrated in the plots given in Fig. 3 for the
corrections to the linear frequencies arising from the nonlin-
earity of representative plane-wavelike modes.

In Fig. 3 results from Eq. �26� for the slope, 1
�2

d
NL

d2 , of the
nonlinear frequency with respect to the squared modulus of
the wave amplitude are plotted against the impurity concen-
tration for a system with �̄1= �̄2. The plots are made of
curves labeled by n /N using the same parameters as in Fig.

2, and the results in Figs. 3�a� and 3�b� are for k̄=10 and 100,
respectively. �Note: for our later discussions, the lower lim-

iting curve for k̄=0 is also presented in Figs. 3�a� and 3�b�.	
For both k̄=10 and 100 it is seen that, at a fixed concentra-
tion, the absolute value of the slope of the nonlinear fre-
quency decreases with increasing mode index so that the
effects of the nonlinearity decreases with an increase in n /N.
This is understood physically as follows. The space depen-
dence of the nth mode is given by sin� n�x

N � over x� �0,N	 so
that P�sin� n�x

N � in Eq. �4�. The nonlinear source term in Eq.
�4� is then proportional to P3�sin3� n�x

N � so that as n /N in-
creases, the oscillations of P3 over a fixed interval of x
� �0,N	 tend to average to a net zero effect. This decreases
the effects of the P3 term on the system properties for in-
creasing n.

The absolute values of the slopes are also found to in-
crease rapidly as Ec approaches zero for percentage impurity
concentrations less than x=0.1. Above these concentrations
�i.e., for x	0.1� the slope shows a mild concentration de-
pendence. Again, as with the linear frequency modes, the
behavior of the slope corrections for the nonlinearity corre-
late with Ec and the concentration dependence of the slope
arises solely from the concentration dependence of Ec. The
absolute value of the slope, for a fixed concentration, exhib-

its a mild decrease with increasing k̄ so that as the coupling
between the domains is increased the effects of the nonlin-
earity on the dispersion relation are decreased. As discussed
in Sec. III, the effects of dissipation �entering through �̂� can
be easily accounted for by adding a complex term.

As an indication of the moderate influence of the value of

k̄ on our perturbation results, consider the k̄=0 and k̄→�

limits of Eq. �26�. With k̄=0 we find that the slope 1
�2

d
NL

d2 =

− 9
8

 �̄1

2 , and when k̄→� the slope 1
�2

d
NL

d2 →0. In both Figs.

3�a� and 3�b� we have plotted as a function of x the k̄=0
curve of 1

�2

d
NL

d2 . This curve gives the lower bound of the

slope as functions of k̄. The upper bound of the slope as

functions of k̄ is then given by the 1
�2

d
NL

d2 =0 axis. For each

value of x, 1
�2

d
NL

d2 as a function of 0� k̄�� lies within the
region between these two curves. Our theory then provides
for limits on the rate of change in the nonlinear frequency

with changes in the amplitude treated as a function of k̄.
Another set of useful relationships is obtained by looking at

these two limiting behaviors for the form given by 


�2

d
NL

d2 .

For this form, the k̄=0 limit gives 


�2

d
NL

d2 =− 9
8 �̄1 and the k̄

→� limit gives 


�2

d
NL

d2 =− 3
4 �̄1. These relationships offer a

much more restrictive set of conditions on the dependence of
the change in frequency with amplitude in our system. This

is good as k̄ is a phenomenological constant that depends on
many of the complex features of domain-wall formation and
motions which are currently a topic of much research interest
for their understanding in terms of microscopic mechanisms,
i.e., see Refs. 4, 5, and 12. It is hoped that our phenomeno-

logical treatment will provide, for general values of k̄, some
understanding of the limitations on the amplitude depen-
dence of the frequency arising from these interaction.

In Fig. 4 results are presented which indicate the relative
importance of the nonlinear correction term as a function of
concentration. The relative change given by �
L−
NL� /
L
between the linear �denoted L� and nonlinear �denoted NL�
frequencies is plotted for �=0.1 as a function of n /N using

Eq. �38�. To make a comparison, curves are shown for k̄

=10 �upper curve� and k̄=100 �lower curve� in Fig. 4�a� for
x=0.1 and Fig. 4�b� for x=0.6. The relative corrections are
found to decrease with increasing n /N, and the decrease is

more pronounced with increasing k̄.

(b)

(a)

FIG. 4. Results for �
L−
NL� /
L versus n /N for k̄=10 �upper�
and k̄=100 �lower� for: �a� x=0.1 and �b� x=0.6.
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C. Nonlinear intrinsic localized modes

In Fig. 5 results are presented for the intrinsic localized
modes from the solutions of Eq. �37�. The solutions for the
ILM mode frequency 
 and the wave-function parameters A
and q are given at �̄1=335 for k̄=10 and 100 and are plotted
as functions of the mode peak height �. The total staggered

polarization is given from Sec. III D by Pn=
 �̄1

�̄2
+Sn so that

the ILM rides on a background of uniform staggered polar-
ization.

In Fig. 5�a� the frequency of the ILM is given as a func-
tion of ILM peak height, �, in the region 0.1���0.2 for

both k̄=10 �lower solid line� and k̄=100 �upper dashed line�.
As a comparison, the band limits of the linear frequency
modes are at the lower limit 
2�̄1=25.9 in both the con-
tinuum and discrete models and at the upper limit

2�̄1+ k̄�2=27.7 for k̄=10 and 40.7 for k̄=100 in the con-

tinuum model but at 
2�̄1+ k̄4=26.65 for k̄=10 and 32.71

for k̄=100 in the discrete model. The discrete model upper
limit is more relevant for a comparison with the ILM disper-
sion in the following discussions as it contains the dispersion
introduced by the discrete nature of the lattice which is im-
portant at the high-frequency edge of the band. It is found,
for the data presented, that the frequencies of the ILM fall
above the region of the band of linear modes in the discrete
model. The ILM may then exist as an excitation separate
from the plane-wave modes as it is outside the band of states.
In both continuum and discrete models, the discrete frequen-
cies of the plane-wave modes �given by the set of ratios n /N
that are possible in the system� will be different from the
frequency of the ILM and may not support a rapid decay of
the ILM. For the limit of an infinite array of domains the
increased number of modes may facilitate the decay of the

ILM. As the coupling k̄ between the domains is increased, it
is seen in Fig. 5�a� that the frequency of the ILM and its
band of linear modes increases, but the ILM remains at
higher frequencies than the band of linear modes. The gen-
eral features of the mode dispersion appear to be qualita-

tively independent of k̄.
In general, the ILM are found to increase in frequency

with increasing �, exhibiting a mild dependence on the peak
height. This is different from the wavelike solutions which
are found to decrease in frequency with increasing mode
amplitude. In Fig. 5�b� the wave-function parameter A,
which sets the field intensity at the sites adjacent to the maxi-
mum peak height, is presented as a function of �. The curves

are for k̄=10 �lower solid� and 100 �upper dashed�. It is seen
to decrease mildly with an increasing peak height of the
ILM. In Fig. 5�c� the decay parameter of the wave function,

q, is plotted versus �. The curves are for k̄=10 �upper solid�
and k̄=100 �lower dashed�. It is observed to increase with
increasing peak height. The wave function of the intrinsic
localized mode is then consistent with a highly “localized
pulse excitation” with a frequency above the band of linear
plane-wave excitations in the domain array. As � increases
the pulse of the ILM tends to become more localized. The

pulse becomes more delocalized with increasing k̄.

V. CONCLUSIONS

Two different types of excitations in arrays of ferroelectric
domains have been investigated within the context of a
model of a one-dimensional array of ferroelectric slabs.
These include plane-wavelike modes and pulse-type intrinsic
localized modes. The model gives a simple treatment of fi-
nite arrays of domains which may typically occur in ferro-
electric systems, and the qualitative behaviors it displays
may be expected in types of systems that have become of
interest in the context of the study of nanostructures.

(b)

(a)

(c)

FIG. 5. Results for the intrinsic localized modes plotted as a
function of the peak height, �. Plots are for: �a� the mode frequency,


 �lower line for k̄=10 and upper line for k̄=100�, �b� the wave-

function parameter, A �lower line for k̄=10 and upper line for k̄

=100�, and �c� the wave-function parameter, q�upper line for k̄

=10 and lower line for k̄=100�.
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The multiple-time-scale analysis was shown to give a use-
ful insight into the linear and nonlinear plane-wave modes
under different conditions of external driving force and
damping. The analysis is based on the continuum limit non-
linear Klein-Gordon equation. This is a natural extension of
the Landau free energy and would be valid for large domain
arrays and for excitations with wavelengths larger than the
typical domain size. The modes in the linear regime show an
important variation with the impurity content in lithium nio-
bate, indicating the start of stiffening of the rotation of do-
mains and domain walls at Ec values around 40 kV/cm. This
correlates with our previous work on domain-wall widths.

In the nonlinear regime, without any field and without any
damping, the nonlinear frequency is found for �̄1= �̄2 to de-
crease with increasing wave amplitude. This behavior is con-
sistent with results found on nonlinear oscillators with both
quadratic and cubic nonlinearities. In our model, damping
enters as a simple imaginary contribution to the complex
frequency and driving fields exhibit fixed point behaviors.
ILM are found as localized pulses, occurring above the band
limits of the finite number of plane-wavelike modes.

The present paper represents an extension of work in
Refs. 5, 7, and 10 on a dynamical model for ferroelectric
domains which is based on the Ginzberg-Landau free-energy
form. The Ginzberg-Landau form used was taken to be ap-
propriate to systems with second-order phase transitions, and
this is why we have focused on lithium niobate systems. In
addition to having a recent importance for technological ap-
plications, lithium niobate also has a set of very nice data11,12

which facilitates the discussions of our theory. In Refs. 5 and
10 a treatment of the complex nonlinear motion of single
domains, the values of Ec, and the domain-wall energies and
widths between two neighboring domains in lithium niobate
were given in terms a form of the Ginzberg-Landau-based
theory which did not directly take into account the interac-
tions between the separate domains. In Ref. 7 the model was
generalized to include phenomenological terms for the inter-
action between separate ferroelectric domains and was then
used in a discussion of the continuum limit of domain-wall
solitons.

The present work applies the model from Ref. 7, for in-
teractions between domains, to a system of multiple interact-
ing ferroelectric domains and determines the nonlinear dy-
namics of extended wavelike modes and discrete intrinsic
localized modes that exist as excitations of the array of do-
mains. The extension in this work is then to go from a sys-
tem of a single domain or a set of two domains with a focus
on the interdomain wall to treat a full array of N interacting
domains. The motion of the array of N ferroelectric domains
discussed in this paper should be of importance to recent
interests in nanoscience. Here the effects of the individual
motions of the domains become visible as systems with de-
sign features that are made on increasingly smaller length
scales are formulated. On such scales the modal behaviors of
the domains of the system are no longer an academic concern
but may be of technological importance, and our work here
suggests that the nonlinearity found in the array dynamics is
composed of a number of different types of excitations
which can factor into such considerations. The extended
waves and intrinsic localized modes have similar excitations
frequencies so that both are expected to be dynamical factors
of equal importance. The two types of excitations are further
seen to be distinguished from one another as their frequen-
cies renormalize in opposite ways under increasing excita-
tion amplitude. Experimentally speaking, this should be
valuable in distinguishing between these two types of exci-
tations in the system. Since our model is only restricted in its
considerations to systems based on the Ginzberg-Landau
form for second-order phase transitions, we expect that the
qualitative nature of the solutions presented here for lithium
niobate carry over to other systems that have second-order
phase transitions. Our results should be qualitatively found in
all such systems.
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