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Recent study on doping effects in the heavy-fermion superconductor CeCoIn5 has shown that a small
amount of doping induces unexpectedly large broadening of the transition into the high-field and low-
temperature �HFLT� phase of this material. To resolve this observation, effects of quenched disorder on the
second-order transition into a longitudinal Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state are examined. The
large broadening of the transition is naturally explained as a consequence of softness of each FFLO nodal
plane. The present results strongly support the scenario identifying the HFLT phase of CeCoIn5 with a longi-
tudinal FFLO state.
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Understanding the high-field and low-temperature �HFLT�
phase1–3 realized in the heavy-fermion superconductor
CeCoIn5 in the parallel field configuration is an issue under
hot debate on unconventional superconductivity. Based on a
large paramagnetic depairing of this material and on close
examination on the phase diagram, the HFLT phase has been
identified1,2 with a Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� �Refs. 4 and 5� vortex lattice with a modulation par-
allel to the field,6 which will be dubbed hereafter the longi-
tudinal FFLO state. This FFLO scenario naturally explains
most of properties relevant to the HFLT phase, such as the
striking reduction of the vortex tilt modulus in the HFLT
phase2,7 and the second-order character of the transition
�HAT� between the HFLT and the ordinary Abrikosov lattice8

phases. On the other hand, following a recent observation of
a transverse3 antiferromagnetic �AFM� order, much attention
have been paid to magnetic properties and have led to an
alternative scenario against the FFLO one, in which HAT is
identified with the onset of a Q phase, which is a pair-density
wave with no longitudinal modulation and accompanied by a
bulk AFM order9,10 �see also Ref. 11�. It has been
speculated12 and demonstrated,13 however, that the observed
AFM order may be an event localized around the transverse
nodal planes in the longitudinal FFLO state.12 Besides this
AFM ordering, a striking doping effect on HAT has been
reported in heat-capacity measurements:14,15 for both of
AFM dopants �Hg and Cd� and a nonmagnetic �Sn� one,
even an extremely small amount of doping has induced a
transition broadening and a dramatic reduction of the heat-
capacity jump at HAT, suggesting that an ordering occurring
through HAT is highly fragile. This is qualitatively and quan-
titatively different from the familiar electronic impurity ef-
fects on a unconventional pairing transition16 and a FFLO
transition17 in which just a shift of the transition point is
expected.

In this work, we examine quenched disorder effects on
HAT between the longitudinal FFLO and the ordinary Abri-
kosov vortex lattices and explain the observed broadening of
the heat capacity near and below HAT �Refs. 14 and 15� with
the help of numerical details of a microscopically derived
Ginzburg-Landau �GL� Hamiltonian.7 A soft tilt rigidity7 of
the FFLO nodal plane is found to be the main origin of the
dramatic broadening of heat-capacity curves.14,15 For com-
parison, the same analysis is also performed for a GL model

appropriate for the Q-phase scenario9–11 of the HFLT phase.
In the latter, the primary effect of quenched disorder is al-
ways a simple shift of the transition point unaccompanied by
a notable impurity-induced broadening. Based on these re-
sults, the validity on the picture1,2,6 identifying the HFLT
phase with the longitudinal FFLO state is stressed.

We consider the Hamiltonian H=N�0��2��0�3Tc
2�h0+hp�,

where

h0 =� d3r��Q2�r� +
�

2
Q4�r� + ��

i�z

��is�r��2

+
1

2
�ui�ijuj + �Q2 div u�� �1�

and

hp =� d3r�2h�r�Q0s�r� + f · u� �2�

are dimensionless and valid in the Larkin-Ovchinnikov �LO�
vortex state with the pair field �superconducting order param-
eter� ��r�=	2��x ,y�cos�Q0z+s�r�� near HAT. Here, N�0� is
the density of states on the Fermi surface in the normal state,
Tc is the zero-field superconducting transition temperature of
the undoped system, Q=Q0+�zs is the FFLO order param-
eter expressing the inverse of the local period of FFLO
modulation parallel to the applied field H 
 ẑ, s=sẑ is the
displacement field of the nodal planes lying in the x-y plane
in equilibrium, u� ẑ is the compressional displacement of
the vortex lattice arising from ��x ,y�, �ij is an elastic matrix
of vortices to be defined later, and �, �	0. In Eq. �1�, the
first two terms describe the mean-field ordering of the longi-
tudinal FFLO state, while other terms expressing the elastic-
ity of the nodal planes and the vortices and the coupling
between them have been examined elsewhere.7 Any length
was already normalized by 2��0, where �0 is the coherence
length in T=0 limit. In calculating the heat capacity, numeri-
cal data7 of the dimensionless coefficients �, �, and � will be
used �see below�.18 Among possible roles of impurities, we
focus hereafter on their quenched disorder effects on the
order-parameter fields described by Eq. �2�, and the elec-
tronic impurity effects will be commented on at the end of
this Rapid Communication. The random-field terms in Eq.

PHYSICAL REVIEW B 81, 060510�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/81�6�/060510�4� ©2010 The American Physical Society060510-1

http://dx.doi.org/10.1103/PhysRevB.81.060510


�2�, for instance, follow from the conventional random
Tc term ��rw�r���r�2 in the superconducting GL
Hamiltonian,6 and the presence of the factor Q0 in the nodal
plane pinning term proportional to h�r� may be justified from
the model w�r�=�
w
��3��r−r
�. A possible randomness of
� implying spatial inhomogeneities of the HAT temperature
is of a higher order compared with the h term and thus was
neglected.

To examine the free-energy density F in the FFLO state
near HAT, thermal fluctuations of s and u will be neglected.
Then, the method used by Larkin and Ovchinnikov19 for a
second-order transition will be adopted and extended here in
a self consistent manner to obtain F. After taking variations
of H with respect to Q0, u, and s and keeping the contribu-
tions up to O�s2� in the Q4 term, the variational equations

�Q + �Q0
3 + �h +

�

2
��−1�ij�z�i f j�s

= − Q0�3���zs�2 −
�2

2 �
i,j�z

��i�zs���−1�ij�� j�zs�� , �3�

and

��� + 3�Q0
2��z

2 + Q0
2�2��−1�ij�z

2�i� j + ���
2 �s

= Q0�h +
�

2
��−1�ij�z�i f j� �4�

follow. By taking the random average of Eq. �3�, the self-
consistent equation determining Q0,

�Q0
2 =

I1 − �

1 + 3I2
�5�

is obtained, where

I1 =� d3k

�2��3

�0

Dk
,

I2 =� d3k

�2��3�0�1 −
�2

6�
�−1�k�k�

2 �Dk
−2, �6�

and Dk= �I1+��2−3I2−�2�−1�k�k�
2 /��Q0

2�kz
2+�k�

2 . Here,
�ij�k� was isotropized in the way �ij� with �
=H2k2 / �4�N�0�Tc

2�, �0 denotes the random average of
hkh−k+�−2kz

2k · fk2 /8, and, for brevity, its k dependence
has been neglected. After the k integrals in Eq. �6�, an upper
momentum cutoff kc of order unity will be absorbed into the
bare disorder strength via its redefinition, �0kc / �4�2�→�0.
The resulting expressions can be simplified further because
the �-dependent terms appearing through the u variation are
quantitatively negligible. In fact, using typical values of
� ��0.015� and � ��0.004� obtained elsewhere6,7 through
the study of the phase diagram of CeCoIn5 near Hc2�0�,
�2N�0�4�Tc

2 / �6H2�� is estimated at most as �10−2kBTc /EF,
where EF is the Fermi energy. For this reason, any
�-dependent terms will be neglected below. Then, we have

I1 =
2�0

�
�m

�
− 1�−1/2

tan−1�	m

�
− 1� , �7�

and I2=−�I1 /�m, where m= I1+ �2−3I2��Q0
2.

It should be stressed that, although effects of the vortex
displacement are negligible, the presence of the field-induced
vortices is not negligible because the nonvanishing �
��0.002� �Ref. 7� used in our analysis is a consequence of
the orbital pair breaking. On the other hand, the soft nodal
plane implied by such a small � is a reflection of the large
paramagnetic depairing in CeCoIn5 and, in the impure case,
has a crucial impact on the thermodynamics near HAT. Note
also that the nodal plane is softer in more anisotropic sys-
tems such as the organic superconductors because a mass
anisotropy enhances the paramagnetic effect in the same field
configuration.

Based on the expressions obtained above, the change of
free energy accompanying the FFLO ordering follows sim-
ply from the random average of H, and F is given by

F = −
1

2�
N�0�Tc

2 1 + 6I2

�1 + 3I2�2 �� − I1�2. �8�

The resulting heat-capacity C�T� curves below Ts��0� are
given in Fig. 1 as a function of �0, where the heat capacity is
normalized by its value at Ts in the pure ��0=0� case in the

form C̄�T��C�T� /C�T=Ts ,�0=0�, and Ts��0� is the HAT

temperature. The fact that C̄�T� is significantly broadened
and depressed by a small amount of disorder seems to be
consistent with the feature seen around HAT in CeCoIn5.14,15

According to Eq. �7�, this sensitivity of C to quite a small �0
is a consequence of the fact that the effective disorder
strength is not �0 but �0 /�. A smaller � enhances the disorder
effect and leads to a more dramatic broadening of the tran-

sition. Further, note that a large depression of C̄ value also

������
��

������
�	


�����
��

������

��

���

���

��	

���
����

�

FIG. 1. Results of normalized heat capacity C̄�T� �thick solid
curves� below Ts��0� and at a fixed magnetic field following from
Eq. �8� for �0=8.5�10−8 �top�, 3.0�10−7, 1.0�10−6, and
2.0�10−6 �bottom�. Data in Ref. 7 on the coefficients in Eq. �1� at
H=0.5Horb

�2D��0� have been used, where Horb
�2D��0�=0.560 / �2��0

2� is
the two-dimensional �2D� orbital-limiting field, and 0 is the flux
quantum. The right end of each curve corresponds to the result at

each Ts��0�. The thin solid line denotes C̄�T� below Ts=0.354Tc in
the pure ��0=0� case.
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implies that the period �Q0
−1 of the FFLO modulation re-

mains macroscopically long even at lower temperatures.
Two crucial features are seen in this figure in relation to

the broadening: first, Ts increases with �0 up to �102�0Tc /�,

and further, a broad peak appears in C̄�T� which, as far as
�0 /�	2.5�10−5, lies much below Ts. In fact, this broad
peak occurs in the region where m	�, and hence transverse
spatial variations �k�� kz� of the nodal planes are domi-
nant. Thus, the broadening accompanied by the suppression
of the peak in Fig. 1 is a consequence of the softness of each
nodal plane. We note that the present approach is not appli-
cable to the so-called critical region in the close vicinity of
Ts because of the neglect of nonlinear corrections in Eq. �2�,
which may play important roles when m��0 /�, or equiva-
lently Ts−T�1.5�10−2Tc. In fact, other nonperturbative
approaches are necessary to describe the behaviors in T
	Ts including the Griffiths regime.20 However, the disorder-
induced broadening, which is our main focus, is a feature far
below the critical region and thus, is believed to be reason-
ably captured within the present approach.

To explain whether or not the impurity-induced broaden-
ing seen in Fig. 1 is peculiar to the FFLO to Abrikosov
lattice transition, it is instructive to repeat the same analysis
in the Q-phase scenario9–11 on HAT of CeCoIn5 in which the
HFLT phase is identified with a spin-triplet pair-density wave
accompanied by an AFM order with a transverse modulation
wave vector Q. In this case, after being minimized with re-
spect to the coupled AFM order, the resulting GL Hamil-
tonian takes a form typical of a “two band” superconductor
expressed by the d-wave pair field and a triplet pair field �
with no Q modulation in which the ordered d-wave vortex
solid plays roles of a periodic potential for �. Thus, an en-
ergy cost due to a mismatch between the vortex positions of
the d-wave pair field and � leads to a gradient term for the
latter. If we only have to focus on the amplitude fluctuation
�+ of � �see below�, the resulting GL Hamiltonian for
slowly varying components of � is equivalent to the familiar
random Tc model for the Ising spin system and is expressed
by

Hu = N�0��2��0�3Tc
2� d3r���0

2 +
��

2
�0

4

+ �� + 3���0
2��+

2 + �+���+�2 + 2h��0�+� �9�

to the leading orders in �+, where �0 is a real and constant
amplitude of the equilibrium lattice solution of �, and the
length scales were isotropized. The phase fluctuation of �
neglected above is that of “interband” Josephson phase
which remains massive.22 It leads only to a small
T-independent contribution to � in the first term of Eq. �9�,
which can safely be omitted in examining the heat capacity.
Equation �9� may be obtained in the Abrikosov’s mean-field
analysis8 and its extension21 focusing on the lowest Landau-
level modes of �. Then, the expression corresponding to Eq.
�5� can easily be obtained, which becomes

���0
2 =

I1� − �

1 + 3I2�
, �10�

where the integrals In� �n=1, 2� are given by I1�=�0��1
−��m� / ��+kc

2��1/2 /2� with an upper momentum cutoff kc,
and I2�=−�I1� /�m�, where �0� is the random average of hk�h−k�
multiplied by kc

3 / �2�2�, and m�=�+3���0
2. In addition, the

free-energy density is given by Eq. �8� with In replaced by In�.
The resulting heat-capacity curves in the �0�0 state are
given in Fig. 2. Although, for simplicity, the combination
�+kc

2 has been set to be unity in Fig. 2, qualitative results are
independent of the �+-value because it can be absorbed into
the effective value of disorder strength. The figure shows that
no dramatic broadening occurs even for a moderate strength
of disorder, and a deviation from the pure ��0�=0� case is
noticeable just near the critical region. Clearly, the main ef-
fect of disorder is to shift the transition point.

Figures 1 and 2 show that the transition broadening in-
duced by a small amount of dopings in CeCoIn5 �Refs. 14
and 15� is consistent only with the case in which its HFLT
phase is a vortex lattice with a longitudinal modulation. As
already mentioned, the broadening is seen experimentally ir-
respective of the type of the doped element. This fact indi-
cates that the broadening should be ascribed not to a change
of electronic details but rather to a quenched disorder effect
due to the dopants.

On the other hand, the measurements show that depen-
dences of the nominal position of HAT on the type of dop-
ants are nonuniversal: for the magnetic doping such as Hg
and Cd, the position of the broad peak of C�T� is shifted
rather to higher temperatures with doping,14 while the doping
of the nonmagnetic element Sn has shifted the broad peak to
lower temperatures.15 According to Fig. 1, however, the peak
position lies markedly below the actual transition point
Ts��0�, and this deviation between those two temperatures is
enhanced with increasing �0. Besides this, the conventional
electronic impurity effect due to a nonmagnetic doping in-
duces a suppression of the transition temperature into an un-
conventional pairing state16 or the FFLO state.23 Incorporat-

��� ��� ����
���

��	

���

��

���
�


�����
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�����
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FIG. 2. Results corresponding to Fig. 1 in the Q-phase scenario.
The same � as in Fig. 1 is used, while �+ is T independent. Al-
though Ts of the �0�=2.0�10−3 curve is almost the same as that of
the �0=2.0�10−6 one in Fig. 1, no notable broadening is seen in
this figure.
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ing this electronic effect on Ts in Eq. �1� is easily performed
simply by redefining � and does not affect the transition
broadening in Fig. 1 induced by quenched disorder. Then,
due to the coexistence of such two impurity effects on Ts
competitive with each other, it is not easy to predict the
actual HAT point in real materials. At least, the reduction in
the broad peak position due to the Sn doping15 suggests the
presence of a remarkable Ts reduction of an electronic
origin.23 For the magnetic doping,14 however, the broad peak
position seems to increase with doping, suggestive of the
presence of an electronic mechanism leading to a slight in-
crease of Ts. A separate study on electronic details is needed
to explain the increase of the broad peak position and of the
corresponding Hc2�T� �Ref. 15� due to a magnetic doping.

The present result also has implication on the issue of
FFLO phases in strongly anisotropic organic super-
conductors.24 In these materials, a longitudinal FFLO state
like that in CeCoIn5 has not been observed, and instead, only
a transverse modulation in the plane perpendicular to the
field has been argued to appear.24 Theoretically, however, the
possible FFLO vortex state at higher temperatures is pre-
dicted to be the longitudinal one.6 The present result leads to

the conjecture that, due to the strong anisotropy, the � value
in those systems which are closer to the vortex-free Pauli
limit than CeCoIn5 is extremely low so that the transition
into the longitudinal FFLO state is dramatically broadened
and becomes invisible due only to a small amount of impu-
rities. In other words, the period of the spatial modulation
parallel to the field remains significantly long even at lower
temperatures. Further discussion on organic materials based
on the present picture will be given elsewhere.

In conclusion, the doping-induced large broadening of the
transition between HFLT and the ordinary Abrikosov lattice
phases in CeCoIn5 definitely shows that, in contrast to the
proposed Q-phase, the HFLT phase has a spatial modulation
parallel to the field, and that the longitudinal FFLO vortex
lattice is its best candidate of such a highly fragile HFLT
phase. The present result is also relevant to the issue on
FFLO phases to be observed in organic materials in high
fields.
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