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We investigate theoretically the critical states in a long thin superconducting strip with a critical transport
current and in a perpendicular magnetic field, which is close to the field of the order-disorder transition in the
vortex lattice. In this investigation, the metastable disordered states and the self-magnetic-field of the current
are taken into account. Using the obtained results, the dependence of the dc critical current in the strip on the
applied magnetic field is found near the order-disorder transition. This dependence can be used to describe the
peak effect in low-Tc superconductors and the second magnetization peak in high-Tc superconductors, which
occur near this transition.
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I. INTRODUCTION

The peak effect, i.e., a maximum in the dependence of the
critical current density on temperature T or magnetic field H,
frequently occurs in low-Tc type-II superconductors not far
below the upper critical field Hc2�T�.1–7 A similar “fishtail
effect” or second magnetization peak, is observed in many
high-Tc superconductors but in another region of the T-H
plane.8–13 Both these effects are frequently associated with a
proliferation of dislocations in the flux-line lattice.1,2,4–6,14–22

This proliferation occurs at the order-disorder transition,23–25

which is induced by quenched disorder in the vortex system
at a certain value Bdis�T� of the local magnetic induction, see
also Ref. 26 and the papers cited therein. At this transition,
with increasing H or T the flux-line lattice transforms from
the quasiordered Bragg glass27 into the disordered amor-
phous vortex phase. Under this transformation the flux-line
pinning increases, leading to an abrupt increase of the critical
current density jc at the induction Bdis. With this increase and
the natural assumption that jc in the disordered phase de-
creases with increasing magnetic induction and temperature,
one arrives at a qualitative explanation of the peak and fish-
tail effects.

Near the order-disorder transition various unusual phe-
nomena were observed in type-II superconductors.28–35 In
the paper of Paltiel et al.,4 the following mechanism was
proposed that qualitatively explains all these phenomena: in
the presence of a perpendicular external magnetic field and
of a transport current, vortices penetrate from one edge of the
sample and leave it at the opposite edge. The penetrating
vortices are injected at the weakest points of the surface bar-
rier, thereby destroying the local order and forming a meta-
stable disordered vortex phase near the edge even at B
�Bdis. This disordered phase drifts into the sample with the
flow of the entire vortex lattice under the action of the cur-
rent flowing in the bulk. On the other hand, this drift acts as
an annealing mechanism. Thus, the state of the vortex lattice
in the superconductor is determined by the competition be-
tween the injection of the disordered vortex phase at the
edges of a platelet-shaped sample, and the dynamic anneal-
ing of this metastable disorder by the vortex motion. As a

result, a nonuniform distribution of the disordered and or-
dered phases is established in the sample. This distribution is
characterized by the annealing length La, which decreases
with increasing vortex-lattice velocity v.30,36 Note that the
role of thermal fluctuations in the annealing is completely
disregarded within this approach. This neglect of the thermal
fluctuations is well justified in low-Tc superconductors such
as NbSe2.

The described contamination-annealing model does not
change essentially if the annealing of the metastable disor-
dered phase is due to the thermal fluctuation of the vortices.
This situation is realized, e.g., in Bi2Sr2CaCu2O8+� �BSCCO�
superconductors. The order-disorder transition in these crys-
tals manifests itself as a break in the slope of the magnetic
field profiles measured on the upper surface of the
sample.23,37,38 But the magnetic induction at which the break
occurs depends on experimental conditions.39–42 This fact
points to the existence of the so-called transient �metastable�
disordered vortex states in the sample.39,40 As it was shown
in Ref. 41, the experimental data measured at different sweep
rates of the external magnetic field �at different velocities v
of the vortex lattice� can be understood within the
contamination-annealing model if one uses the following an-
nealing time �a for the metastable disordered phase at tem-
perature T and the magnetic induction B�Bdis,

�a � �0�T��1 −
B

Bdis
�−�

, �1�

where �=2.6 and �0=8�10−9 exp�326 /T� s. For B�Bdis
the disordered phase is stable and �a is infinite. In the case of
expression �1� the annealing length La=v�a increases with
increasing v, which proves that the dynamic annealing does
not play an essential role in the experiments with BSCCO
crystals.

In analyzing critical states of thin superconducting plate-
lets in a perpendicular magnetic field an essential point is to
take properly into account the self fields of the critical cur-
rents. In NbSe2 crystals, the critical current densities are
small, and so these fields are negligible in the peak-effect
region. Neglecting these fields, the critical current of a su-
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perconducting strip in the peak-effect region was theoreti-
cally analyzed in Ref. 36 within the contamination-annealing
model described above. But the fields of the currents need
not be small for all superconductors. For example, these
fields may be essential near the order-disorder transition in
BSCCO crystals. Near this transition the critical states of a
strip in an increasing or a decreasing external magnetic field
Ha were analyzed numerically43 and analytically,44 taking
into account the fields of the currents. But the analysis was
carried out only in the limit when �a, La=0 for any B�Bdis
and �a, La are infinite for B�Bdis, which means that at every
point of the strip a local equilibrium is established, i.e., the
critical value of the sheet current is determined by the local
magnetic induction,

Jc�Bz� = Jc1 for Bz � Bdis,

Jc�Bz� = Jc2 for Bz � Bdis, �2�

where Jc1, Jc2 �with Jc2�Jc1� are the sheet currents in the
ordered and disordered phases, respectively. In other words,
in this local-equilibrium model the metastable disordered
states are disregarded. But an essential feature of this model
is an extended spatial region where Bz=Bdis, and in this re-
gion a distribution of the ordered and disordered phases still
occurs although both phases are stable there. However, even
in this local-equilibrium model the critical current of the strip
was not calculated since critical states with a transport cur-
rent were not considered.

In this paper, we theoretically study the critical current of
the superconducting strip near the order-disorder transition in
the general case, taking into account both the metastable dis-
ordered states and the self-magnetic-fields of the current. But
we begin our investigation with solving the appropriate criti-
cal state problem within the local-equilibrium model ��a,
La→0 at Bz�Bdis� and calculating the critical current Ic in
this special case. Then, we consider the contamination-
annealing model ��a�0,La�0�, taking into account the self
fields of the currents, and show how the analytical results
obtained in the local equilibrium approximation are related
to the general results at finite �a and La. In our analysis we
consider the situation when an increasing external magnetic
field Ha is first switched on, and then the critical transport
current is applied to the sample. For definiteness, we also
assume that the thermal fluctuations play the main role in the
annealing process and use the dependence �Eq. �1�� with �
=2.6 for �a�Bz�. Beside this, throughout the paper, we imply
the relationship B=�0H between the magnetic induction B
and the magnetic field H, that is, we neglect the equilibrium
magnetization. For simplicity, Jc1 and Jc2 are considered as
constants independent of Bz until the final section of the pa-
per.

II. LOCAL EQUILIBRIUM MODEL

Consider a superconductor that has the shape of infinitely
long strip of width 2w and of thickness d�w, with the x axis
being along the width of the strip �−w	x	w�, and with the
z axis being normal to the strip plane �inside the strip one has
−d /2	z	d /2�. The external magnetic field Ha is applied

along the z axis. Let a local equilibrium occur in the sample.
In other words, the local critical sheet current is determined
by the local value of Bz according to Eq. �2�. Let us calculate
the critical current of the strip, Ic�Ha�, taking into account the
self fields of the critical currents. According to the Biot–
Savart law, the magnetic field in the strip is expressed in
terms of the sheet current J�x� �the current density integrated
over the thickness d� as follows:

Hz�x� = Ha +
1

2

�

−w

w J�x��dx�

x� − x
. �3�

This equation should be supplemented by the critical state
conditions,

J�x� = Jc2 for − w 	 x 	 a1, �4�

Hz�x� = Hdis for a1 	 x 	 a2, �5�

J�x� = Jc1 for a2 	 x 	 w . �6�

Here x=a1 defines the boundary of the region where J�x�
=Jc2 and Hz�x��Hdis, i.e., where the disordered vortex phase
exists, while x=a2 describes the boundary of the ordered
phase region where J�x�=Jc1 and H�x��Hdis, Fig. 1. At
these boundaries the field H reaches Hdis. At a1	x	a2 one
has H�x�=Hdis, while the sheet current lies in the interval
Jc1	J	Jc2. In this region, a mix of the ordered and disor-
dered phases exists. Note that the regions of the completely
ordered and disordered phases do not contact each other im-
mediately, i.e., a1�a2. Otherwise, the condition �2� for local
equilibrium would not agree with Eqs. �4�–�6�.44,45 Eqs.
�3�–�6� lead to a linear singular integral equation with
Cauchy-type kernel for the current J�x� at a1	x	a2. Simi-
larly to Ref. 44, we find the solution of this equation using
the theory of such singular integral equations.46 Here, we
present the final results.
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FIG. 1. Profiles of the critical sheet current J�x� and of the
magnetic field Hz�x� in the strip within the local equilibrium model.
The sheet current and the magnetic field are measured in units
of Jc2. Here Jc1 /Jc2=1 /3 and �Ha−Hdis� /Jc2=0.114. This gives
a1=−0.6w and a2=0.3846w.
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The sheet current at a1	x	a2 has the form,

J�x� =
2Jc1



arctan

	w − a2
	x − a1

	w − a1
	a2 − x

+
2Jc2



arctan

	w + a1
	a2 − x

	w + a2
	x − a1

, �7�

�while J�x�=Jc1 at w�x�a2, and J�x�=Jc2 at a1�x�−w�.
The magnetic field outside the interval a1	x	a2 is given by

Hz�x� = Ha +
Jc1



ln

	
w − x
�	w − a1 + 	w − a2�
	w − a1

	
a2 − x
 + 	w − a2
	
a1 − x


+
Jc2



ln

	w + a2
	
a1 − x
 + 	w + a1

	
a2 − x

	
w + x
�	w + a2 + 	w + a1�

, �8�

�while Hz�x�=Hdis at a1	x	a2�. The region boundaries a1
and a2 are found from the equations,

a2

w
=

w�Jc2
2 − Jc1

2 � + a1�Jc2
2 + Jc1

2 �
w�Jc2

2 + Jc1
2 � + a1�Jc2

2 − Jc1
2 �

, �9�

Hdis = Ha +
Jc1



ln

	w − a1 + 	w − a2

	a2 − a1

+
Jc2



ln

	a2 − a1

	w + a1 + 	w + a2

. �10�

Formulas �7�–�10� completely describe the critical state in a
strip carrying the critical current Ic=�−w

w J�x�dx, Fig. 1. Using
these formulas, we find two equivalent expressions for this
critical current,

Ic�Ha� = Jc1
	w − a1

	w − a2 + Jc2
	w + a1

	w + a2

= 	2Jc1
2 w�w − a1� + 2Jc2

2 w�w + a1� , �11�

where a1�Ha� and a2�Ha� are found from Eqs. �9� and �10�.
Figure 2 shows the magnetic-field dependence of the dc criti-
cal current Ic in the local equilibrium model. This depen-
dence reveals a plateau rather than a peak in Ic because we
have not yet included the H dependences of Jc1 and Jc2 in our
analysis.

To get a deeper insight into the obtained results, consider
the limiting case Jc2�Jc1. In this case formulas �7�–�11� sim-
plify, and we find for Ic the following approximate expres-
sions:

Ic�Ha� � 2wJc2 tanh�
�Ha − Hdis�
Jc2


 , �12�

Ic�Ha� � 2wJc1�1 + 2 exp�2
�Ha − Hdis�
Jc1

− 2
� , �13�

at Ha−Hdis�Jc1 /
 and Ha−Hdis�−Jc1 /
, respectively. In
this case, the Ha-dependence of the critical current mainly
develops on the characteristic scale Jc2 /
. At the order-
disorder transition the critical current is considerably less
than its maximum value 2wJc2, and one has Ic�Ha=Hdis�
�2.45wJc1. According to Eqs. �12� and �13�, the curve

Ic�Ha� is concave at Ha−Hdis�0 and convex at Ha−Hdis
�0. Thus, in this limiting case the point of the order-disorder
transition, Hdis, is close to the inflection point of Ic�Ha�. In-
terestingly, in the magnetic hysteresis loop, Mz�Ha�, calcu-
lated for a strip without transport current the transition point
Hdis practically coincides with the point at which
d2Mz�Ha� /dHa

2 is maximum.44

III. CONTAMINATION-ANNEALING MODEL

We calculate now the critical current of the strip within
the contamination-annealing model, i.e., taking into account
the metastable disordered states at B�Bdis. These states de-
cay with distance from the strip boundary at which vortices
are injected into the sample. As in Ref. 36, we shall describe
the annealing stage of the disordered phase by its local criti-
cal sheet current Jc�x�, which has a nonequilibrium excess

value J̃c�x�=Jc�x�−Jc1 relative to the fully annealed ordered
phase. Let a dc electric field E be applied to the strip, and
this E generates a dc transport current flowing in the sample.
Using a simple model in which E is proportional to J−Jc at
J�Jc, the sheet current at the point x can be written in the
form

J�x� = Jc�x� +
E · d


ff
, �14�

where 
ff is the flux-flow resistivity. For simplicity, we as-
sume here that 
ff is the same for the ordered and the disor-

dered phases. Since 1 /�a is, by definition, −�1 / J̃c��dJ̃c /dt�
where d /dt is the time derivative in the coordinate system
moving together with the vortices, the critical sheet current
Jc�x� is determined by the following differential equation de-
scribing the annealing process,
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FIG. 2. The magnetic field dependence of the critical current Ic

of the strip within the local equilibrium model at Jc1 /Jc2=1 /3. The
critical current Ic is measured in units of wJc2 and the external
magnetic field Ha in units of Jc2.
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v
� J̃c�x�

�x
= −

J̃c�x�
�a�Bz�

, �15�

where v�x�=E /Bz�x� is the velocity of the vortex flow. In the
left hand side of Eq. �15� we have omitted the time deriva-

tive �J̃c /�t since we consider a steady flow of vortices in the
strip. According to this equation, the critical sheet current
tends to relax to the value Jc1 in the region where Bz�Bdis.
On the other hand, if Bz�x��Bdis, the disordered phase is
stable, �a is infinite, and Jc�x�=Jc2 for such x. The critical
sheet current is equal to Jc2 also at the injection point. So, if
the vortices penetrate into the sample at x=−w �i.e., if the dc
transport current flows in the positive direction of the y axis�,
the boundary condition to Eq. �15� is

J̃�− w,0� = Jc2 − Jc1 � �Jc. �16�

The solution of Eqs. �15� and �16� has the form,

Jc�x� = �Jc exp�− �
−w

x dx�

La�Bz�x���� + Jc1, �17�

where La is the Bz-dependent annealing length,

La�Bz� = v�a�Bz� =
E�a�Bz�

Bz
. �18�

In fact, formula �17� together with the Biot-Savart law �Eq.
�3�� are a set of integral equations for Jc�x� and Bz�x�
=�0Hz�x� which have to be solved self-consistently. On ob-
taining the solution of these equations and after integrating
Eq. �14� over the width 2w, one arrives at a nonlinear dc
voltage-current characteristic of the superconductor, I�E�,
within the contamination-annealing model and taking into
account the self-magnetic-fields of the currents. The dc criti-
cal current Ic is obtained from this characteristic when E �and
hence v� tends to zero, or in practice, to a small threshold
value Ec determined by the experimental resolution.

IV. ANALYSIS

We now discuss the dc critical current Ic in detail. Let us
define the magnetic field H� by the relationship,

w

La�H��
=

wBdis

Ec�0
� H�

Hdis
��1 −

H�

Hdis
��

= 1, �19�

where �=2.6, and we have used expressions �18� and �1� for
La and �a. Equation �19� determines the ratio H� /Hdis in
terms of the only dimensionless combination of the param-
eters, wBdis / �Ec�0�, which depends on the threshold Ec, the
half-width of the strip w, and the temperature T. For ex-
ample, if w=0.6 mm, Bdis=460 G, and Ec=6�10−4 V /m,
one obtains wBdis / �Ec�0��33 and H� /Hdis�0.7 at �0=1.4
�10−3 s �such �0 occurs41 in BSCCO at temperature 27K�.
To understand the meaning of H�, consider the behavior of
La upon increasing the magnetic field for given values of Ec
and T. For H�Hdis the annealing length is very small. With
increasing field, La increases until at H� it becomes equal to
the half-width of the sample, w, and eventually it diverges at

Ha→Hdis. Thus, the difference Hdis−H� specifies the charac-
teristic scale of the Hz dependence of La, and the critical
current Ic�Ha� increases just in the vicinity of the field H�.
We also emphasize that the parameters w, Ec, and �0 enter
into Eq. �17� only via the combination wBdis /Ec�0, and
hence, the dependences of the critical sheet current on all
these parameters is described by its dependence on H� /Hdis.

The critical states in the strip depend on the relationship
between Jc1 or Jc2, and the scale Hdis−H�. This relationship
can be different for different superconductors and generally
changes with the temperature.47 If the sheet currents Jc1 and
Jc2 are small as compared to Hdis−H�, Jc1, Jc2�Hdis−H�,
one may neglect the self fields of the currents and put
La�Hz��La�Ha� in Eq. �17�. Then,

Jc�x� = �Jc exp�−
x + w

La�Ha�
 + Jc1, �20�

and the dc critical current Ic=�−w
w Jc�x�dx of the strip is given

by the formula

Ic = �JcLa�Ha��1 − exp�−
2w

La�Ha�
� + 2wJc1. �21�

Expressions �20� and �21�, were, in fact, derived in Ref. 36.
The difference between formulas �20� and �21� and those of
Ref. 36 is only that Paltiel et al. considered the dynamic
annealing, their annealing length La increased with decreas-
ing Ec and was not described by formula �18�, i.e., it did not
approach zero at v= �Ec /Ba�→0. The profiles Jc�x� and
Hz�x� calculated within the contamination-annealing model
in the case Hdis−H�=4Jc2 are shown by the dashed lines in
Fig. 3. It is seen that these profiles indeed can be obtained
from formula �20� as shown by the open circles.
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FIG. 3. Profiles of the critical sheet current Jc�x� and magnetic
field Hz�x� in the strip within the contamination-annealing model at
Ha=H� and for H� /Hdis=0.6 �dashed lines�, 0.95 �dash-dot lines�,
and 0.995 �solid lines�. The open circles show the dependence �Eq.
�20�� at Ha=H�, i.e., at La�Ha�=w. The solid line with dots shows
for comparison Hz�x� for the local-equilibrium model at Ha

=0.995Hdis. The sheet current and the magnetic field are measured
in units of Jc2; Jc1 /Jc2=1 /3, �=2.6, and Hdis=10Jc2.
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In the opposite limiting case Jc1, Jc2�Hdis−H�, any small
deviation of the local magnetic field from H� with variation
of x leads to a sharp change of �a, and so at H�x��H� one
has �a, La→�, and hence Jc�x�→Jc2, while at H�x��H� the
annealing time �a and the annealing length La sharply de-
crease and Jc�x�→Jc1. In fact, we arrive at a situation similar
to the local equilibrium model �2�, but now the jump of Jc
occurs in a narrow interval near H� instead of the point Hdis.
Of course, the shape of the spatial profiles Jc�x� and Hz�x�
with full details depends on the law, Eqs. �1� and �18�, de-
scribing this jump of the sheet current. But when the param-
eter �Hdis−H�� /Jc1 decreases, these profiles tend to the re-
sults obtained within the local-equilibrium approach, Fig. 3.
In other words, in the sample there is an extended spatial
region in which Hz�x� is almost a constant close to Hdis �the
variation of Hz in this region is of the order of Hdis−H��, and
Jc�x� changes gradually from Jc2 to Jc1. This result is also
understood from the fact that the case H� /Hdis→1 can be
always interpreted as the limit �0→0. But in this limit the
dependence �a�Bz� for the contamination-annealing model
tends to the dependence appropriate to local equilibrium ap-
proach, see Sec. I.

In the general case the profiles Jc�x� and Hz�x� can be
calculated with equations Eqs. �1�, �3�, and �17�–�19�, and in
Fig. 3, we show the evolution of these profiles with changing
H� /Hdis. The Ha dependences of the critical current Ic for
different relationships between the sheet currents Jc1, Jc2,
and Hdis−H� are presented in Fig. 4.

Interestingly, if a current I is applied to the strip in the
initially ordered state rather than a constant electric field, and
if this current lies in the interval between 2wJc1 and Ic,
2wJc1	 I	 Ic, a nonzero electric field E appears at the initial
stage of the process after the current is switched on, but this
E decays and tends to zero as a steady distribution of the
disordered phase is established in the sample. This transient
process was experimentally investigated in Ref. 33, and was

theoretically analyzed by Marchevsky et al.48 in the case
when La�2w.

The above results were derived assuming that thermal an-
nealing of the metastable disordered states is realized in the
sample. This implies that at E=Ec the dynamic annealing
length La

dyn is essentially larger than the thermal annealing
length La

th described by Eq. �18�. If the opposite relationship
La

dyn�La
th holds at E=Ec, the disordered phase is mainly an-

nealed by the vortex motion, while at La
dyn�La

th both anneal-
ing mechanisms take place. In these situations the above for-
mulas except Eq. �18� remain true. For the dynamic
annealing the length La�Bz� is given by a decreasing function
of Ec �Refs. 30 and 36� rather than by the simple formula
�18�. This property of La�Ec� can be used to distinguish be-
tween the mechanisms of the annealing in the sample. In
particular, the field H� near which the increase of the critical
current Ic�Ha� occurs increases with increasing Ec for the
dynamic annealing and decreases for the thermal annealing.
Thus, with changing Ec the peak in Ic�Ha� deforms in oppo-
site directions for these two cases.

Example: The peak effect

The equations and formulas presented in this paper enable
one to calculate the shape of the dc critical current Ic versus
the applied magnetic field Ha in the vicinity of the peak
effect or the second magnetization peak if some H depen-
dences of Jc1 and Jc2 are incorporated into the
contamination-annealing model. As an example, in Fig. 5 we
show Ic�Ha� in the simple case when Jc1 and Jc2 are propor-
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FIG. 4. The magnetic field dependence of the critical current Ic

of the strip within the contamination-annealing model at Jc1 /Jc2

=1 /3 and for H� /Hdis=0.6, 0.8, 0.9, 0.95, and 0.99. The critical
current Ic is measured in units of wJc2 and the external magnetic
field Ha in units of Jc2. Here Hdis=10Jc2 and �=2.6.
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FIG. 5. The magnetic field dependence of the critical current Ic

of the strip within the contamination-annealing model at
H-dependent sheet currents Jc1�H�=Jc1�0��1− �H /Hc2�� and
Jc2�H�=Jc2�0��1− �H /Hc2�� in the case Jc1 and Jc2�Hdis−H�.
Equations �1�, �18�, �19�, and �21� have been used with Hdis

=0.9Hc2, Jc1�0� /Jc2�0�=1 /3, �=2.6, and H� /Hdis=0.95 and 0.99.
The critical current Ic is measured in units of wJc2�0� and the ex-
ternal magnetic field Ha in units of the upper critical field Hc2. Note
that the shape of Ic�Ha� depends on the width of the strip 2w and the
threshold Ec via the parameter H� /Hdis.
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tional to 1− �H /Hc2� in the region of the peak effect and
when the self-magnetic-field of the critical current is negli-
gible. In the construction of this figure we have implied that
the thermal annealing plays the main role in the sample, and
�a�Bz� is described by Eq. �1�. Note that with increasing Ec
�i.e., with decreasing H� /Hdis for the case of the thermal
annealing� the peak in Ic shifts to lower magnetic fields in
accordance with the prediction given above.

V. CONCLUSIONS

In this paper, we have investigated the critical states and
the dc critical current of a superconducting strip near the
order-disorder transition within the contamination-annealing
model and with consideration for the self-magnetic-field of

the current. In this model the metastable disordered states are
taken into account, and their relaxation is determined by the
parameter H� /Hdis. When this parameter approaches unity,
i.e., when the relaxation occurs in a narrow magnetic-field
interval, the obtained results tend to those of the local-
equilibrium model for which explicit analytical formulas
have been derived. The equations and formulas of this paper
permit one to describe quantitatively the peak and fishtail
effects observed in type-II superconductors.
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