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Coherent superpositions of single semifluxon states in a 0-77 Josephson junction
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We consider a symmetric 0-7 Josephson junction of length L, which classically can be in one of two
degenerate ground states T or |, corresponding to supercurrents circulating clockwise or counterclockwise
around the 0-7r boundary. When the length L of the junction becomes smaller than the Josephson penetration
depth A, the system can switch from one state to the other due to thermal fluctuations or quantum tunneling
to the neighboring well. We map this problem to the dynamics of a single particle in a periodic double-well
potential and estimate parameters for which macroscopic quantum coherence may be observed experimentally.
We conclude that this system is not very promising to build a qubit because (a) it requires very low tempera-
tures to reach the quantum regime, (b) its tiny flux is hard to read out, and (c) it is very sensitive to the

asymmetries between the 0 and 7 parts of the junction.
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I. INTRODUCTION

Josephson junctions (JJs) with the phase drop of 7 in the
ground state (7 JJs) (Ref. 1) are intensively investigated as
they promise important advantages for Josephson-junction-
based electronics,>? and, in particular, for JI-based qubits.*~6
Nowadays a variety of technologies allow to manufacture
such junctions.”!!

One can also fabricate so-called 0-7 long Josephson junc-
tions (0-7r LJJs),'>15 i.e., LIJs some parts of which behave
as 0 junctions and other parts as 7 junctions. The most in-
teresting fact about such junctions is that a semifluxon,'!7
i.e., a vortex of supercurrent, carrying one half of the mag-
netic flux quantum ®,~2.07 X 10~"> Wb, can be formed at
the boundaries between the 0 and 7 regions provided the JJ
is long enough. Classically, such a 0-7r LIJ has a degenerate
ground state corresponding to either positive or negative po-
larity of the semifluxon, which we denote as the T or | state,
respectively. For these two polarities the circulations of the
supercurrents and, therefore, the resulting magnetic fields,
have different directions. The classical properties of semi-
fluxons are under intense theoretical and experimental
investigations.!*!318-33 While the classical properties of
semifluxons (at least for systems with few semifluxons) are
more or less understood, their quantum behavior and their
possible applications in the quantum domain still have to be
studied.

When the energy barrier separating the two degenerate
classical ground states is small enough, the system may
switch from one state to the other due to thermal excitation
over the barrier or due to quantum tunneling through the
barrier. Thermally induced flipping of a single semifluxon at
high temperatures was already observed.?’ Recently we also
observed thermal escape of an arbitrary fractional vortex
from a metastable state in a current-biased LJJ.3* Macro-
scopic quantum tunneling of a semifluxon®* and an arbitrary
fractional vortex® as well as macroscopic quantum coher-
ence in a system of two coupled semifluxons in a 0-7-0 LJJ
(Refs. 34 and 36) were investigated theoretically. Unlike a
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pair of semifluxons, a single semifluxon in a 0-7r LJJ with
moderate or large length is always in the classical regime.

In the present paper, we study a 0-7r JJ of length L=<\,
which admits semifluxonlike solutions for any junction
length provided the lengths and critical current densities of
the O and 7 parts are equal. We map the full problem to the
dynamics of a single particle in a double-well potential with
periodic boundary conditions and estimate the crossover
temperature as well as the tunneling rate (energy-level split-
ting) between the states T and |.

II. MODEL

We consider a “long” one-dimensional Josephson junction
of length L, see Fig. 1. The Josephson phase u(x,?) is a
continuous function of the position x (-L/2<x<+L/2)
measured along the JJ and of time ¢. We restrict ourselves to
an undriven dissipationless system. The dynamics of such a
system is described by the Lagrangian £L=K—-U, where

+L/2 /1/2
K=E,f w? " dx 1)
-L/2

represents the kinetic energy and

+L12 2
U=E,f )\37" + 1 —cos[u(x,1) + 0(x)] (dx (2)
-L2

is the potential energy. The subscripts x and ¢ denote the
partial derivatives with respect to position and time, respec-
tively. In the above equations the three physical parameters
are the Josephson energy per unit of junction length Ej, the
Josephson penetration depth A\; and the Josephson plasma
frequency w,. The function 6(x) describes the position of 0
and 7 regions along the junction. It is zero along 0 regions
and is equal to 7 along 7 regions.

Applying the Euler-Lagrange formalism to our Lagrang-
ian, we find that on the classical level the dynamics of the
Josephson phase is described by the time-dependent sine-
Gordon equation'®
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FIG. 1. (Color online) Schematic drawing of a 0-7 JJ and mag-
netic field profiles in two degenerate ground states. Gray curves
show the magnetic field profile in an infinite JJ (solid line is semi-
fluxon, dashed line is antisemifluxon, ®==* ®,/2). Black curves
show corresponding solutions in the JJ of finite length. In this case
the magnetic flux (the area under the corresponding curve) |®|
<Py/2.

Nt = 0,2, sin[u(e.0) + 6] =0, (3)

III. A FRACTIONAL VORTEX IN A SYMMETRIC
0-7 JUNCTION

Let us consider a symmetric 0-7 LJJ of the length L
(-L/2<x<+L/2) with a 0-7 boundary at x=0, see Fig. 1.
In this case 6(x) is a step function

0, -L2<x<0,
0(x) = 4)
m, 0<x<+L/2.

Classically, for any L, the trivial stationary solutions g(x)
=0 or 7 are unstable and correspond to the Josephson energy
maximum U,,,,=E,L, see Eq. (2). The stable stationary so-
lutions depend on the length L of the system.

If L>N\,, the ground state of this system is a single
semifluxon.!>1%17:22 Such a semifluxon may have positive or
negative polarity that corresponds to two classical degener-
ated states T and |,'®?? see the gray curves in Fig. 1. In this
limit the energy barrier separating the two classical states is
very large and the system is always in the classical regime.?®
Therefore, in the present paper we investigate 0-7 LJJs with
L=N\,.

For L <\, the stationary stable solutions of Eq. (3) can be
approximated by37-38

T x(L |x|)

and correspond to the energy minima. Magnetic field profiles
oy, (x) are shown in Fig. 1 by black lines. Substituting the
stable and the unstable stationary solutions for u into Eq. (2),
we find that the barrier between two stationary stable solu-
tions [Eq. (5)] is given by
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where €=L/\; is the normalized JJ length. In each of these
ground states the flux in the junction is

P e
=—°A =2—O[,u(L/2) p=L2)]= = Do (7)

The main assumption of this paper is that for sufficiently
short LIJs and sufficiently low energies the time-dependent
phase w(x,) can be approximated by (see Appendix A)

wled =00+ Lsinfo S
Aj
i.e., it moves along a collective coordinate Q. Note that the
ansatz Eq. (8) satisfies zero magnetic field boundary condi-
tions w,(=L/2)=0. The values of Q== /2 correspond to
the two distinct classical ground states, Eq. (5), whereas the
values Q=0 or 7 correspond to unstable solutions u=0 and
ar.
By substituting the ansatz Eq. (8) into Eq. (2) we calculate
the potential energy of the system as a function of Q and
obtain

2
U(Q) = E,A,{f(l - j—4sin2 Q). 9)

Clearly, the barrier between the two classical ground states is
given by Eq. (6) which simultaneously is the amplitude of
the cosine-like potential.

In essence, our ansatz Eq. (8) maps the full problem to the
motion of a fictitious particle in the one-dimensional poten-
tial U(Q), Eq. (9). To find the mass of this particle we sub-
stitute the ansatz Eq. (8) into Eq. (1) and find

E X Q*
K(Q) =~ 5. (10)
wp 2
Since K(Q)=MQ?/2, the mass of our fictitious particle is
given by
E N
== [kg-m?]. (11)
o’
14
Note, that actually M is not a mass, but a moment of inertia,
since our coordinate Q is not a position, but a dimensionless
phase.

A. Estimation of classical-to-quantum crossover

For a harmonic oscillator with mass M and frequency wy
the (square of the) width of the probability distribution in the
ground state is determined by

AQY = —— 12

(AQ9 =" o (12)
Our potential U(Q), Eq. (9), is not parabolic, but we may
approximate each potential well with a minimum at Q,
== 7/2 by a parabolic potential, i.e.,
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€3
+—(Q Qo) } (13)

UQ) = EJ)\J|: ot o

which together with the mass M given by Eq. (11) describes
a harmonic oscillator with the “spring constant” &k
=E,;\,£3/12 and the eigenfrequency

= 1 lﬁ_ L (14)
Wy = M—wpz\/g.

Using our expressions for the mass M, Eq. (11), the fre-
quency wg, Eq. (14), and the harmonic oscillator width, Eq.
(12), we obtain

ﬁa) 2\,

2
@)=t (1s)
as an estimate for the spread of a wave function in each of
the wells of the potential U(Q). Quantum effects are notice-
able when the wave function in the left well overlaps with
the wave function in the right well. This overlap should be
appreciable, but not too large since otherwise the two states
will not be distinguishable. For a rough estimate we take
(AQ* = O.IQ(Z) as criterion for quantum behavior. Thus quan-

tum effects will become important if
(AQY) 83 fiw, |
0; T ENY

_

3203 & [ped’ 1
=== =0.1, 16
r Vare (e

where we took into account the definitions
d, 27j, Jow®q
)\J = R = 5 EJ = .
2apod' j, o,C 2

(17)
In Eq. (17), pod’ is the inductance per square of the super-
conducting electrodes (u is the permeability of vacuum,
d' =2\, ,\, is the London penetration depth), ;. is the criti-
cal current density of the LJJ, C is the capacitance of the LJJ
per unit of area, and w<<\; is the LJJ’s width.
For typical parameters A;=90 nm, w=1 um, and C
=4.1 uF/cm? [HYPRES (Ref. 39) technology with j.
=100 A/cm?] Eq. (16) reads

<AQ2>

0

~32X1073%2=0.1. (18)

Thus, quantum effects start to play a role for € <0.18. Note,
that according to Eq. (16) the classical-to-quantum crossover
length does not depend on j,.

Using definitions in Eq. (17) in terms of physical param-
eters of the LJJ, we can express the inertial mass M, Eq. (11),
as

M=1

C ) 5/2
L(—‘)) ~ 13X 104mA\2.  (19)
Virod' jo \ 27

This means that a single electron with mass m, moving
around the whole JJ (circulating around 0-7 boundary) has a
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much larger moment of inertia than our semifluxon.

To estimate the classical-to-quantum crossover tempera-
ture, we compare the thermal escape rate and the semiclas-
sical expression for the quantum mechanical energy-level
splitting. The thermal escape rate is ocexp(-Uy/kgT),
while in the semiclassical limit the energy-level splitting is
cexp(—4Uy/ hwy), see Eq. (B9). Neglecting prefactors we
conclude that at the temperature

h fhw, €
T, ~ —2 = =22 (20)
dkp  8\3ky

quantum tunneling and thermal escape have the same rate,
while at lower temperature quantum tunneling dominates.
For the parameters chosen above and €=0.18 this gives T,
~27 mK.

Another specific temperature 7™ is defined by comparing
kgT with the barrier height. For T>T" the states T and |
cannot be distinguished, i.e., even in the classical regime
read out cannot be properly organized as the states are mixed
up by thermal fluctuations. For our Josephson junction the
temperature 7° is given by

Uy ENE
8= =0 =2

kg kg 24
For €=0.18 we obtain T"~218 mK. Note that 7" can be-
come smaller than 7', for small values of €. For such param-

eters, however, we have Uy<fiw, and we are not in the
semiclassical limit used to derive Eq. (20).

(21)

B. Energy-level splitting

The stationary Schrodinger equation for our collective co-
ordinate Q reads

2P
{ 2MaQ2+U(Q)}¢ E. (22)
Since in our configuration the Josephson phases w+27 and
w cannot be distinguished, u (and therefore also Q) is only
defined modulo 2 7. Therefore, we supplement Eq. (22) with
periodic boundary conditions y{Q+2m)=y{(Q).

The main purpose of our quantum-mechanical calcula-
tions is to investigate quantum coherent superpositions of
two classical ground states. More precisely, we want to ap-
proximate our Josephson junction by a quantum-mechanical
two-level system which may be used to implement a qubit.
In such a two-level system the dynamics of the two lowest
levels is decoupled from the other levels. This requires that
the two lowest-energy eigenvalues E; and E, of the
Schrodinger Eq. (22) are well separated from the other en-
ergy eigenvalues.

Furthermore, we want to observe coherent oscillations be-
tween the left and the right well of the potential. This is only
possible if there are superpositions of the ground state ¢,(Q)
and the first excited state ¢,(Q) of the Schrodinger Eq. (22)
which are sufficiently well localized in the left or in the right
potential well.

We expect that we can approximate our system by a
quantum-mechanical two-level system, if the two classical
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FIG. 2. (Color online) The two lowest energy levels E; and E,,
AE=E,—E|, and the barrier height U, (all given in mK) as a func-
tion of € for typical parameters given in the text.

(degenerate) ground states are separated from each other by a
sufficiently high energy barrier. In our system, the barrier
height depends on the scaled length € of the Josephson junc-
tion, see Eq. (6). To gain more insight, we have solved our
Schrodinger Eq. (22) numerically for different values of €.
The parameters of the Josephson junction are given in Sec.
III A above Eq. (18).

Figure 2 shows the lowest energy levels E; and E,, the
energy-level splitting AE=F,—E|, and the barrier height U,
of the potential as a function of the normalized JJ length €.
When we reduce ¢, the lowest energy eigenvalues split. For
€=0.1 the energy level E, is lifted above U, so that we have
only one energy level below U,

Figure 3 shows the eigenfunctions ;(Q) and ¢»(Q) cor-
responding to the eigenvalues E; and E,. We have chosen
two values for € which lead to a qualitatively different be-
havior.

For €=0.13 [Fig. 3(a)] we have a quantum-mechanical
two-level system as discussed above. The two lowest energy
eigenvalues E; and E, are well separated from the others and
[4(0) = 4 (0)]1/ V2 is well localized in one of the potential
wells.

For €=0.09 [Fig. 3(b)] our simple picture of a quantum-
mechanical two-level system fails. The difference between
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FIG. 3. (Color online) Solutions of the Schrédinger Eq. (22) for
(a) £=0.13 and (b) €=0.09.
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E, and E, is large and only one energy eigenvalue is below
U,. Furthermore, the two lowest eigenvalues are not well
separated from the higher energy eigenvalues [not shown in
Fig. 3(b)]. The ground state ,(Q) is completely delocalized
and |¢,(Q)]> does not have pronounced maxima at the
minima of the potential. Obviously, for €=0.09 we cannot
approximate our system by a two-level system.

As expected, only for sufficiently large values of ¢, i.e.,
sufficiently high energy barriers, our Josephson junction be-
haves like a two-level system. However, we have to take into
account that thermal excitations will destroy quantum coher-
ence if the energy-level splitting AE becomes too small.
Present technology restricts AE to values larger than
20...30 mK—the temperature achievable in modern dilu-
tion refrigerators. According to Fig. 2 this requires € <<0.09.
For such values of €, we are not in the limit of a two-level
system, see Fig. 3(b).

IV. DISCUSSION

The results for the parameters used in Figs. 2 and 3 are
not very promising: either we are not in the limit of a two-
level system or we need temperatures significantly lower
than 20...30 mK to avoid thermal excitations. We can try to
improve the situation by using different parameters for the
Josephson junction.

In Appendix B 1 we show that the Schrodinger Eq. (22) is
equivalent to the Mathieu Eq. (B4) with only one scaled
system parameter i and the scaled energy e, see Egs. (B2)
and (B3). Using the definitions in Eq. (17), we find that the
parameter h is proportional to (jw)? and that the scaling
factor between the energy E and the scaled energy € is pro-
portional to w™! and does not depend on j,. If we reduce the
width w by a factor of 10 and simultaneously increase j,. by
a factor of 10, we can increase the energy scale by a factor of
10 without changing the generic behavior of the system (k
does not change). For the parameters used in Fig. 3(a) we
could increase the energy-level splitting from 5.3 to 53 mK
and would still be in the limit of a two-level system.

To read out the state of a semifluxon one can use a
SQUID situated just in front of the 0-7r boundary.*? Note,
however, that the two states carry the flux ®<®,/2. For
small € the flux is given by Eq. (7) and is equal to ~1073®,,
for €=0.18. Needless to say that it is rather difficult to mea-
sure such a small flux accurately.

Another problem is a high sensitivity to the parameter
spread. All calculations done so far are for a perfectly sym-
metric 0-7r junction, i.e., for the ideal case where the critical
current densities and lengths of the 0 and 7 parts are equal.
In experiments, though, a small asymmetry is always
present. For € <1 this may easily lead to the situation where
the classical ground state is just u=0 (when the O part is
longer or has a higher j.) or uw=m (when the 7 part is longer
or has a higher j.), which is not doubly degenerate. For ¢
<1 the length asymmetry should not exceed®” ¢3/48, which
is ~1.2X 107* for €=0.18. Such precise control of the LJJ
length is not feasible.

Finally we want to compare our results to the results we
obtained for an AFM semifluxon molecule in a 0-7-0
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TABLE 1. The crossover temperatures 7* and T, the energy-level splitting AE|,=F,—E|, and the energy
difference AE,3=FE;—E, between the first and the second excited state for (a) a single semifluxon and (b) a
semifluxon molecule for different values of the scaled lengths € and da. All values are given in millikelvin.
The numbers for the semiclassical energy-level splitting AEY; are based on (a) Eq. (B9) and (b) Eq. (B10),
whereas AEJ;™ and AERS™ were calculated numerically. For AEj, <AE,; the systems are good two-level

systems.
(a) Single semifluxon

4 ™ T, AEY AED™ AER™
0.18 218 27.0 0.3 0.2 89.6
0.13 83 19.5 7.2 5.3 40.8
0.10 38 15.0 24.4 15.5 18.9
0.09 28 13.5 32.0 19.9 18.8

(b) AFM semifluxon molecule

da ™ T, AEY, AER" AER™
0.020 566 58 0.2 0.2 265
0.015 318 51 34 2.8 183
0.010 141 41 36.5 22.9 124

junction.*® In such a system the main parameter which con-
trols the height of the energy barrier (similar to € in this
paper) is the length a of the 7 region. It turns out that to
approach the quantum regime a should be just a bit above a
crossover length a.=m\;/2, i.e., a=(m/2+ da)\,. The corre-
sponding key numbers are given in Table I. According to the
Table I the semifluxon molecule in a 0-77-0 junction is more
suitable to build qubits. The crossover temperatures for da
=0.01 can be reached with modern dilution refrigerators.

V. CONCLUSIONS

We have presented a simple quantum theory of a short
0-7r JJ. By introducing a collective coordinate, the full prob-
lem was reduced to the dynamics of a single particle in a
one-dimensional potential.

It was found that the quantum regime is reached when the
normalized length ¢ of the junction is smaller than 0.18. The
classical-to-quantum crossover temperature 7, is about 20
mK for the case when we still have a good two-level system
and the semiclassical approximation (used to define T,) is
still valid. This is on the limit of modern dilutions refrigera-
tors. Moreover, even for € =0.18 the flux, which should be
read out to determine the state of the system, is <1073®,,
which is rather difficult to detect even using SQUIDs. The
system is also very sensitive to asymmetries in the O and =
parts, which should not exceed 1074,

It is quite interesting that another system, the so-called
“d-dot,”*" is equivalent to the 0-7r LJJ of the present paper. A
d-dot is the squared island of a d-wave superconductor em-
bedded into an s-wave subspace. Essentially it is an annular
0-7-0-7 LJJ with the length of each region equal to a. The
two ground states are T| 7] and |1 |T. In fact, the four
regions of a d-dot were used just because of the topological
limitations. One can use symmetry arguments to conclude

that such an annular O-7-0-7 JJ is equivalent in terms of
ground states and eigenmodes to an annular 0-7r JJ with only
two facets of length a, which, in turn, is equivalent to a linear
(open-ended) 0-7 JJ with the total length a. In contrast to
Ref. 40, we conclude that such a system is not a very prom-
ising candidate to build qubits. Better figures are shown by a
two-semifluxon molecule in a 0-7-0 JJ with tunneling be-
tween 7] and |7 states.’*3°
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APPENDIX A: DERIVATION OF COLLECTIVE
COORDINATE

In this appendix we motivate the use of the collective
coordinate Q(r), that is, the assumption that for sufficiently
short LIJs and sufficiently low energies we can approximate
the Josephson phase w(x,?) by

. x(L = |x|)
plx,t) = Q1) + sin[Q(7)] o (A1)
2\
where Q(#) describes the motion of a single particle of mass
E;N;
M = _2€ (A2)

“p
in the potential
(A3)

€2
U(Q) = E,xje(l - isinz Q).

In order to keep the notation simple, we use the scaled length
€=L/\, of the Josephson junction, the scaled time 7=w,t
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and the scaled position £=x/\; in the rest of this appendix.

1. Fourier expansion

We start from the Lagrangian

~ +€/2 l %)2 l(%)z
L-E,)x,f_m {2(&7 ~2\ e —[1-cos(u+ )] (dé
(A4)

for the Josephson phase w(£,7) and expand w(&,7) into a
Fourier series, which takes into account the boundary condi-
tions ug(—€/2,7)=pu€/2,7)=0. We substitute

wED =00 +\22 an(r>cos(27”w§)

n=1

» bn(r)sin(zn *1 wg> (A5)

n=0 4

into Lagrangian (A4). The factor \2 in front of the sum was
chosen for convenience, see the kinetic energy in Eq. (A10).
For short LJJs, nonuniform excitations require large energies
since for small values of ¢ and significantly large nonuni-
form excitations the term du/d¢ in the potential energy of
Lagrangian (A4) becomes large. Therefore, we expect that
all Fourier coefficients a,(7) and b,(7) are small if we con-
sider only low-energy excitations. Since we are interested in
the low-energy behavior of the system, we only take into
account terms in the Lagrangian that are quadratic in a,(7)
and b,(7) and neglect higher-order terms. For the uniform
part Q(7), however, we make no assumption. A similar ap-
proach without the cosine terms in Eq. (A5) was used by
Koyama et al.** for a square-shaped closed 0-7 junction
(d-dot).

Due to the orthogonality of the sine and cosine functions
in the Fourier series Eq. (A5) the only nontrivial integral we
have to calculate to express Lagrangian (A4) in terms of
Fourier coefficients a, and b, is

+0/2
f cos[u(&,7) + 0(&)]dE. (A6)

-2

Here we make use of our assumption that the nonuniform
part 8(&,7)=u(&, 7)—Q(7) of the Josephson phase is small
and rewrite cos[ (&, 7)+ 6(€)] in the form

cos| (& 1) + 6(€)] = cos O(7) cos 8(&,7) cos 6(€)
—sin Q(7) sin (&, 7) cos O(&),

~cos Q(7[1 - 8 (& /2] cos 6(&) — sin Q(7) A&, 7) cos O(E),
(A7)

where we have used that fact that sin 6(£)=0.

The integral over cos 6(¢) alone is zero since the 0 region
and 7 region have the same length. We are therefore left with
the two integrals

PHYSICAL REVIEW B 81, 054514 (2010)

€2

(&, 7) cos 6(§)d¢

-2

(AB)
and

€2
f (&, 7) cos O(&)dE.

-2

(A9)

Due to the different sign of cos 6(¢) in the 0 and in the 7
region we cannot use the orthogonality relations of the sine
functions in Eq. (A5). Evaluating the integrals is neverthe-
less straightforward since we only have to integrate trigono-
metric functions and products of two trigonometric func-
tions. For symmetry reasons only the sine functions and the
product of sine and cosine functions of the Fourier series Eq.
(A5) contribute.

Within our approximation we finally arrive at the approxi-
mate Lagrangian

1 ) 1 o 1 o0 )
L~EMNAL EQZ + 52 Q> + 52 by = V(Q{a, b)) |,
n=0

n=1

(A10)

where the dot denotes the derivative with respect to 7 and
where the potential energy V (Q.{a,},{b,}) is given by

V(0. {a, b)) =1+ ﬁ}‘, na’ + iZZ (2n+1)%?
e n=1 26 n=0

2m+1)
Qm o+ 1)2 = a2

(A11)

tes0S S
'

n=1 m=0

2. Harmonic oscillators for a, and b,

For fixed values of Q the potential V (Q,{a,},{b,}) is
harmonic with respect to {a,} and {b,}. In order to get more
insight, we rewrite it in the form

oo

2
€2 n=1

V(Q’{an}’{bn}) = VO(Q) + nz[an - 67n(Q):lz

+ TS Gnr 176, B (O)F
2¢ n=0

_@m+D)

2m+1)* - 4n?

4 o0 o)
— —Ccos QZ E
™ n=1 m=0

X [an - an(Q)][bm - Em(Q)]

By comparing Egs. (A11) and (A12) we find that we have to
choose @,(Q) and b,(Q) such that they fulfill

(A12)
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_ e S (2m+1)
an(Q)z ’7T3n2COS QZ (2 +1)2 4n 2 m(Q)
(A13a)
— ZV/—€2
b,(Q) = 2(n 1)3sm 0
4€2 a,(0)
TR+ ) QE 20+ 1) — di?
(A13b)
and Vy(Q) is given by
772 )
Vo(Q) =1~ 72 na,(0) - 5 E 2n+1)*0(0Q)
n=1 n=0
4 (2m +1)a,(Q)b,,(Q)
cos Q% mzo Cm+1)*=4n*>
=1+ 2{%22 n’a@,(Q) - %E 2n+1)*0X(0Q).
n=1 n=0
(A14)

Equation (A13) is a system of linear equations for ,(Q) and
b,(Q), which we can solve approximately for €< 1. We find

\2€4

a,(Q)=- Torn ——28in Q cos Q + o®, (Al5a)
— B 2\6@2 ) 6
b,(0) = —773(2” N 1)3sm 0+0(°). (A15b)

We use this result to derive an explicit expression for Vy(Q).
When we restrict ourselves to terms of the order €> we only
have to evaluate the sum in the last line of Eq. (A14) and
arrive at

2

Vo(Q)=1- 5—4sin2 0+ 0(£%). (A16)

In the derivation of Egs. (A15a) and (A16) we have used*!
S >

— = Al7
“ om+1)? 8 (Al7a)
- 1 o
—_— = —, Al17b
E) Qm+1)* 96 ( )
- 1
=0, (A17¢c)

o 2m+1)*—an?

where the last relation is only valid for n=1,2,3,...

As already mentioned, for fixed values of Q the potential
V (0,{a,}.{b,}) is harmonic with respect to a, and b,. In a
naive approach we could say that it describes a many-
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dimensional harmonic oscillator oscillating around a,

=a,(Q) and b,=b,(Q). Due to the last term in Eq. (A12),
however, it is not guaranteed that the potential energy has a
minimum at this point. Depending on the eigenmodes of the
potential, it could have a saddle point.

For sufficiently small € we can exclude a saddle point. In
this case, the main contributions to the potential come from
the terms «{~2 whereas the last term is only a small correc-
tion. If we neglect this term for a moment, we have a sum of
independent harmonic oscillators with (scaled) frequencies

T
Q,=—, n=1,23,...
i

n

(A18)

For sufficiently small € this picture is only slightly modified.
Since our description of short LLJs is limited to € <1 any-
way, we omit a discussion whether the potential Eq. (A12)
can have a saddle point for a fixed value of Q if € is large
enough.

3. Stationary solution

The stationary solutions of
(0.,{a,}.{b,}) follow from:

the full potential V

(A19)

We first consider the derivatives with respect to a, and b,,.
We immediately find

WAy emrh o
(?Cln o 7TCOS QmE:O (2m + 1)2 _ 4n2[bm - bm(Q)]
+ 4%;” la,-a,(Q)]=0, (A20a)

awv 4 S @u+)
b, szl (2nt 1) a2 on = @l Q)]
- 5 _
+2(2n+17b,~5,(0)]=0. (A20b)

This is a homogeneous system of linear equations for a,
-a,(Q) and b,—b,(Q) which in general only has the solu-

tions a,—a,(Q)=0 and b,—b,(Q)=0. We could have ex-
pected this result from the discussion of harmonic oscillators
in the previous section.

When we evaluate the derivative of V (Q,{a,},{b,}) with

respect to Q at a,=a,(Q) and b,=b,(Q) we obtain the addi-
tional condition

v dv, £

—=—=——sinQcos Q=0 (A21)
a0 dQ 12

for stationary solutions. We therefore have two classes of

stationary solutions
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SinQ0=0:>Q0=k7T, (kEZ),
al=a,(00) =0, b2=b,(00)=0 (A22)
and
cos Qp=0=Qp=72+km, (kel),
_ — )2 \2¢2
a2 = En(QO) = 0’ bg = bn(QO) = L (A23)

m2n+1)3

Although we have used approximate expressions for @,(Q),

b,(0) [Eq. (A15)], and V,(Q) [Eq. (A16)] these stationary
solutions are the exact stationary solutions for the potential V

(0.,{a,},{b,}). We can easily verify that @,(Q,) and b,(Q,)
satisfy Eq. (A13). Furthermore, from Eq. (All) we find
dV/dQ=0 for both classes of stationary solutions while the
conditions for dV/da,=0 and dV/db,=0 [see Eq. (A20)] do

not depend on the exact form of @,(Q) and b,(Q).

A stability analysis shows that the stationary solutions
corresponding to Eq. (A22) are unstable whereas the station-
ary solutions corresponding to Eq. (A23) are stable. The first
class of stationary solutions, Eq. (A22), obviously corre-
sponds to the uniform stationary Josephson phases ,u%(f)
=k. When we substitute Eq. (A23) into the Fourier series
Eq. (A5) we obtain the nonuniform stationary Josephson
phases

0. T DS 1 [(2n+1
Mk(§)=5+k77+ = g(2n+1)35m . wé |,

(- D*
2

&0~ 14

:g+kw+ ), (A24)

where we have used the fact*! that

= sin[(2n + 1){]
= (@n+1)

), —T={=.

=S dm-t
(A25)

4. Reduction to a one-dimensional system
a. Harmonic oscillators at low energies

In Appendix A 2 we found that for fixed values of Q and
sufficiently small values of ¢ the potential V (Q,{a,}.{b,})
describes a system of coupled harmonic oscillators with
eigenfrequencies ), ~mn/€,n=1,2,3,... For decreasing €
the harmonic potential becomes steeper whereas the barrier
height in the potential V(Q) decreases, see Eq. (A16).
Therefore, we expect that for small € and low energies the
dynamics of the full system is restricted to small fluctuations

around @,(Q) and b,(Q) and we may approximate a,(7) and
b,(7) by
a,(1) =a,[Q(7)]. b(1)~b,[0(D].  (A20)

When we substitute this approximation into Lagrangian
(A10) we obtain
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o0 _\2 % —\2
L=EN{L éQ.2|:1+E(dan) +E<&) ]_VO(Q)

n=1 dQ n=0 dQ

(A27)

The terms with the derivatives of @,(Q) and b,(Q) are at
least of the order ¢* whereas in V,(Q) only terms {2 are
taken into account. Therefore, we decided to neglect the
terms ¢+ and finally arrive at the effective Lagrangian

1.
£ﬂ~&m45¢—%@4, (A28)
which describes the motion of a particle of mass
E\
== 2’5 (A29)
“Wp
in the potential
62
U(Q) = E,x,€(1 - ﬁsm2 Q) . (A30)

The dynamics of a particle in this potential can be character-
ized by the barrier height

€3
Uy=—E\ A3l
0= S4B (A31)
of the potential U(Q) and the frequency
¢
wy= 2 (A32)
2V3

for small oscillations around the minima of the potential
Uu(Q).

The Fourier series Eq. (A5) connects Q(7), a,(7), and
b,(7) with the Josephson phase u(&, 7). When we substitute
Eq. (A15) into the Fourier series Eq. (A5) and neglect the
cosine terms (they are of higher order in €) the correspond-
ing approximation for the Josephson phase u(£,7) reads

,(2n+1 >
3sin 7 wé|,

4¢2

, S
wE ) = Q0(7) + —3sin Q(T)nE:O ot D)

(A25) 1

= Q7+ sin Q(7) - £- (£ - 1€)). (A33)
Equation (A33) is the central result of this appendix and is
used as the starting point in Sec. III, see Eq. (8).

Finally we want to mention that our results are in agree-
ment with the assumption of Appendix A 1 that the nonuni-
form part of the Josephson phase is small. From our calcu-
lations the reader might get the impression that we can
derive higher-order expressions for Vy(Q) and L. if we
want to have such expressions. However, this would not be
consistent with the potential Eq. (A11) where we only have
taken into account quadratic terms in a,(7) and b,(7). In
particular, we have neglected cubic terms of the form
b,b,b,n. A closer analysis shows that we have neglected
terms of the order £° in the potentials V (Q,{a,},{b,}) and
Vo(Q).
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Since in Eq. (A16) the next term is already of the order
€%, the only additional term we may take into account in Eq.
(A28) without loosing consistency is an additional term in

the kinetic energy that comes from the derivatives of b,(Q),
see Eq. (A27). We decided to omit this additional term as it
does not allow the simple interpretation of a particle moving
in a one-dimensional potential.

b. Quantum-mechanical considerations

So far our discussions were purely classical. In the main
part of the paper, however, we use Q(7) as a collective co-
ordinate to investigate quantum tunneling in Josephson junc-
tions. We now briefly estimate under which conditions our
collective coordinate Q(7) is useful in the quantum limit of
the system.

We have several energy scales in the system: the thermal
energy kgT, the barrier height Uy, Eq. (A31), of the potential
U(Q), and the excitations fw,(), of the harmonic oscillators
discussed in the Appendix A 2. Using Q(7) as a collective
coordinate in the quantum regime obviously only makes
sense if these harmonic oscillators are not excited. Therefore
kgT and U have to be much smaller than 7w,(},. Since we
are mainly interested in quantum tunneling in the potential
U(Q), kgT has to be smaller than U, see also the discussion
in Sec. III A. The condition that the harmonic oscillators are
not excited therefore reduces to

Uy <ty = hw,,% (A34)
or
24h
o< T (A35)
EN;

Furthermore, we have to restrict ourselves to €2<<1 since
various approximations in this appendix are expansions in
€2, If these condition are fulfilled we can assume that all
harmonic oscillators are in the ground state.

c. Semiclassical limit

Our first attempt to identify a collective coordinate was
based on the intuitive picture of harmonic oscillators which
are not excited for small values of €. In a second independent
approach we determine a trajectory which can be used to
describe quantum tunneling in the full system in the semi-
classical limit.

A standard method to derive semiclassical expressions for
quantum tunneling are instantons.** In this method Feyn-
man path integrals are extended to imaginary times. For
simple systems where the Lagrangian can be written as the
difference between kinetic energy and potential energy this is
equivalent to path integrals in real time for the inverted po-
tential. As in the ordinary Feynman path integral formalism
in quantum mechanics, semiclassical quantum mechanics is
based on classical trajectories and small fluctuations around
these trajectories.

We use the instanton technique only to determine the clas-
sical trajectory that governs quantum tunneling in the semi-
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classical limit. As in our first approach this trajectory is then
used to define a collective coordinate. In this appendix we do
not use instantons to derive semiclassical expressions for the
full system. This would require to take into account fluctua-
tions around this trajectory.

In our simplified approach we have to find the classical
trajectory that starts with zero kinetic energy at one of the
maxima of the inverted potential and ends with zero kinetic
energy at the other maximum. Due to the symmetry of the
potential V (Q,{a,},{b,}) it is sufficient to find the trajectory

which starts at
0=0, (A36)

(minimum of the inverted potential) at 7=0 and reaches

a,=0, b,=0

2262

b,= m (A37)

0=". 4,=0
=, a, = N

2 n
(maximum of the inverted potential) for 7— .

If we assume that we can express a, and b,, as a function
of Q, that is, a,(7)=a,[Q(7)] and b,(7)=b,[O(7)], we can
rewrite the equations of motion in the inverted potential in
the form

o-Y _o (A38a)
- —=o, a
a0
d? avd v
z_a;+_ﬁ__=o, (A38b)
dQ° 9dQdQ da,
,d*b, dVdb, IV
oV _ 2o (A38c)

40° T 90 do " ab

Energy conservation requires

“ a 2 “ 2
%Qzll SR ]—wQ,{an},{b,,})

n=1 dQ n=0 dQ

2

=-Vy(m/2)= 1+€—
A"

(A39)
which can be used to express Q2 as a function of Q. Substi-
tuting this relation into Egs. (A38b) and (A38c) we obtain,
together with the boundary conditions Egs. (A36) and (A37),
a system of coupled nonlinear differential equations for the
trajectory we are looking for.

Instead of solving the differential equations for a,(Q) and
b,(Q) approximately, we use the results we obtained so far.
These results suggest that a,(Q) and b,(Q) are approximately

given by a,(Q) = a,(Q) and b,(Q) =b,(Q). We verify this by
substituting

a,(0) =a,(Q) + *u,(Q), (A40a)

b,(0) = b,(Q) + €°v,(Q) (A40b)

into Egs. (A38b), (A38c¢), and (A39). We assume that u,(Q)
and v,(Q) are of the order one. From Eq. (A39) we obtain
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o O 6
0°=—cos” Q0+ O(£°).

A4l
B (A41)
Furthermore, we use

w__ e +0(£9), (A42a)

r?Q_ 12s1chosQ a

€6
— =472¢%%u,(Q) - —cos 0
&an
2m+1
X T —— A42b
“ m+ 1)2 in zvm(Q) ( )
v 4 2 8
e 0 (2n+1)%0,(Q) + O(€%).  (A42c)

n

If we take into account that @,(Q) is of the order €% and

b,(Q) is of the order ¢ [see Eqs. (A15)] the lowest-order
terms of Egs. (A38b) and (A38c) read

fzcos 0 d cos Q 472€%%u,(Q)
— — — - n-u
1277 %40 Q
440 - 2m+ 1
+—_cos QE mvm(@ 0,

(A43a)

2

4 2 _
> Q Q — 4 2n + 1)%,(0) =0.

(A43Db)

From these two equations we find that u,(Q) and v,(Q) are
indeed of the order one—even without deriving explicit ex-
pressions for u,(Q) and v,(Q). We can therefore approximate
the trajectory along which we have to calculate the Euclidian
action S, by

a,(Q) = a,(Q), b,(Q)=b,(0). (A44)

With the help of Eq. (A41) and after omitting a constant term
in the potential energy we can calculate the Euclidian action
along this trajectory without knowing Q(7) as follows:

So  EN# €2
go f;wj f_m[ Q2+ﬂcos Q}dr

=EJ)\J€fW/2 1 [IQ +€—zcos Q] do,
ﬁ(()p —72 Q 24

ENL f ™y 040,
= ;—COS
ﬁwp w2 N 12
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. A45
\,3 ﬁa) ﬁwo (A45)

Here we only have taken into account terms of the order £2.
In the last step we have used the definitions of U, and wy,
Egs. (A31) and (A32).

It is important to note that Eq. (A45) can be read in two
ways. According to our calculations, it describes the approxi-
mate Euclidian action along the trajectory defined by a,(7)

=a,[Q(7)] and b, (1) =b,[Q(7)]. Obviously, it also describes
the exact Euclidian action of a particle moving in the poten-

tial U(Q)=E ' \,€3 cos? Q/24. Therefore, in the semiclassical
limit we obtain the correct exponent for the energy splitting
when we use Q(7) as a collective coordinate to approximate
the full system by a system with a single degree of freedom.

In the semiclassical limit the exponent S)/% becomes
large. Taking into account that various approximations in this
appendix are expansions in €2, the semiclassical limit is char-
acterized by

h
2% <2<

(A46)
Ny

within the framework of this appendix. If the parameters of
the Josephson junction fulfill this condition, our collective
coordinate Q(7) seems to be a useful concept to describe
quantum tunneling in short LIJs.

5. Simplified version

One result of our calculations is that @,(Q) and b,(Q) [see
Egs. (A15)] scale differently with € and it is inconsistent to
take into account higher-order terms in V(Q), Eq. (A16).

The deeper reason why @,(Q) and b,(Q) scale differently
with € is that for symmetry reasons only the odd parts of
S(&,7) contribute to Eq. (A8) [first order in &(¢,7)].

As a consequence, we could have derived all our results if
we started from a Fourier series that only consists of Q(7)
and the sine terms (odd) instead of the more general Fourier
series Eq. (A5). In such an approach we could set a,
=a,(Q)=0 in the equations we obtained in this appendix. In
particular, in Eq. (A12) only a sum of independent oscillators
is added to V,(Q) and Eq. (A13) reduces to an explicit ex-

pression for b,,(Q).

We conclude by noting that Koyama et al.*’ used a similar
approach to investigate quantum tunneling in a square-
shaped closed 0-7 junction (d-dot). They did not include
terms «&*(£,7) in Eq. (A7) which is essentially the same as
omitting the cosine terms in the Fourier series Eq. (A5).

6. Summary

In this appendix we have shown that for appropriate pa-
rameters, the Josephson phase w(x,7) can approximately be
described by a collective coordinate Q(r). We have expanded
the Josephson phase w(x,7) into a Fourier series and used
two approaches to reduce the many degrees of freedom of
the system to one degree of freedom.
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In the first approach we used the intuitive picture of har-
monic oscillators which are not excited for small €. In the
second approach we determined the trajectory which allows
us to calculate the exponent of the semiclassical expression
for the energy splitting. In lowest order in £> we obtained the
same collective coordinate Q(r) for both approaches.

APPENDIX B: ANALYTICAL RESULTS

As discussed in Sec. III and Appendix A, our collective
coordinate Q describes the dynamics of a single particle of
mass M [see Eq. (A29)] in a one-dimensional potential U(Q)
[see Eq. (A30)]. The corresponding stationary Schrodinger
equation reads

hZ 2
[ d—+U(Q)}tJ/(Q)=E¢f(Q). (B1)

T oM dQ?

Since we have U(Q)xcos®> Q this is essentially the well-
known Mathieu equation.*®

1. Mathieu equation

When we take into account the expressions for M, Eq.
(A29), and U(Q), Eq. (A30), and introduce the dimension-
less parameter

En\2 ¢4 [ U,y \?
BIEE -
fiw,) 48 \fw,
and the scaled energy
EN,\> E  9h E
s=2€(’—’) = (B3)
ﬁwp E‘IA‘/ €‘ E‘/A‘/
we obtain the standard form
#'(Q) +[& —2h cos(20) Q) =0 (B4)

of the Mathieu equation.*® Here we have omitted an unim-
portant €-dependent term in the potential energy.

Since the Josephson phases wu(x,7)+27 and w(x,7) cannot
be distinguished, w(x,7) [and therefore also Q(z)] is only
defined modulo 2. Therefore, we supplement Egs. (B1) and
(B4) with periodic boundary conditions ¢{(Q+2m)=(Q).

From the definition of the parameters /4 [see Eq. (B2)] and
¢ [see Eq. (B3)], we find that the quantum-mechanical be-
havior of the system is governed by three parameters. The
purely geometrical scaled length €, the energy scale E;\; of
the system, and the dimensionless parameter fiw,/ (E,\ ;). We
want to emphasize that in Eq. (B4) the only parameter is ,
since ¢ is the eigenvalue that we want to determine. Further-
more, h does not depend on the energy scale E;\; of the
system.

For a given value of h, Eq. (B4) has ar-periodic and
2ar-periodic solutions only for characteristic values of .
These solutions are either even or odd. Other solutions of Eq.
(B4) do not fulfill ¢{Q+2m)=y¢(Q). We denote the even so-
lutions by ce,(Q,h) and their characteristic values by a,(h)
(n=0,1,2,...), while the odd solutions and their character-
istic values are denoted by se,(Q,h) and B,(h) (n
=1,2,3,...), respectively.*® A closer analysis shows that the
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scaled ground-state energy is given by e=a, whereas the
scaled energy of the first excited state is given by e=/3;. The
corresponding (unnormalized) eigenfunctions are cey(Q,h)
(symmetric and 7 periodic) and se(Q,h) (antisymmetric and
24 periodic), respectively.

2. Approximate results

Approximations for the characteristic values «, and S,
are available*® for <1 and h> 1. We can use these approxi-
mations to find approximations for the difference Ae=¢,
—&1=B,—qa, between the two lowest eigenvalues of Eq.
(B4).

a. Low energy barrier (h<<1)

For h<1 (low energy barrier) we find

3
Aszl—h+§h2. (B5)

Using the definitions of 4 and e, Egs. (B2) and (B3), we may
therefore approximate the difference AE between the two
lowest eigenvalues of the Schrodinger Eq. (B1) by

AEzEJ)\J<ﬁwp>2|:1 i(EJ)\J>2€4+ 1 (EJ)\J)4€8:|’

20 \En,) | 48\ ho, 6144\ fiw,
(B6)
if € satisfies
ﬁ 2
€4<48(—wﬂ> . (B7)
JINT

The lowest-order term corresponds to =0, that is, no energy
barrier.

b. High energy barrier (h>1)

For 4> 1 (high energy barrier) we find the exponentially
small difference

Ae =~ 32\2/mh¥4e (BS)

Substituting the expressions for i [Eq. (B2)], U, [Eq. (A31)],
and w, [Eq. (A32)], we obtain from Eq. (BS)

[ 2U, U
AE = 8hw, iy 0 exp[—4h—0]
o o

as the semiclassical expression for the energy-level splitting
for a particle in a periodic cos(2Q) potential. Note that the
exponent is the Euclidian action Sy/#f [see Eq. (A45)] that
we calculated in Appendix A 4 c.

When we compare this result to the well-known
pression

[2u, 16 U
AE guaric = 8heog Wﬁ(ioexp[—?h—a(:o] (B10)

for a particle in a quartic double-well potential, we immedi-
ately see that these two expressions only differ by a numeri-
cal factor of the order one (4 vs 16/3) in the exponent. This

(B9)

4445 oy
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confirms that the asymptotic expression (B9) is indeed the
semiclassical limit for the energy-level splitting. Note that
due to our periodic boundary conditions, “tunneling to the
left” leads to the same final state as “tunneling to the right.”
We should therefore actually compare AE t0 2AE e

3. Two-level system

In the present paper we use the energy difference between
the two lowest eigenvalues of the Schrodinger equation to
describe coherent quantum oscillations between the two clas-
sical stationary states of the system. This simple approach is
only valid as long as the energy barrier is sufficiently high. In
this case the difference between the two lowest energy eigen-
values (energy splitting) is small. Furthermore, the sum and
the difference between the eigenfunctions corresponding to
the two lowest energy eigenvalues are well localized in one
of the minima of the potential U(Q) and the two lowest
energy levels are sufficient to describe coherent quantum
oscillations.

If the barrier becomes too small we need more energy
levels to describe the quantum dynamics of the system suf-
ficiently well. Therefore, we require that the difference be-
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tween the two lowest energy eigenvalues is significantly
smaller than the energy difference between the first excited
state and the higher energy eigenstates. Numerical calcula-
tions based on the MATEMATICA functions MathieuCharacter-
isticA and MathieuCharacteristicB  show that for &
~0.348950 the difference Ag,=¢,—€; between the two
lowest eigenvalues is the same as the energy difference
Agy3=g3—&, between the first and the second excited state
and is given by Ae|,=Ag,;=0.696576. Therefore, we have
to choose the parameters of our system such that 4 is signifi-
cantly larger than 0.35. A more detailed analysis shows that
Ag,y exceeds Agy, by a factor of 2 for h>0.558721, by a
factor of 5 for £>0.936175, and by a factor of 10 for
h>1.293984.

The condition that /4 is significantly larger than 0.35 re-
quires that ¢* is significantly larger than 16.8(fiw,/E/\ ;)% As
a consequence, we are always in a regime where we cannot
approximate the system by a two-level system if the approxi-
mation [Eq. (B5)] is applicable.

Finally we want to mention, that for 2=0.329006 the
energy of the first excited state touches the energy barrier.
For smaller values of & only the lowest-energy level is below
the energy barrier.
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