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In light of recent experimental evidence of density wave order in the cuprates, we consider a phenomeno-
logical model of a d-wave superconductor with coexisting charge-, spin-, or pair-density wave order of various
form and wave vector. We study the evolution of the nodal structure of the quasiparticle energy spectrum as a
function of the amplitude of the coexisting order and perform diagrammatic linear-response calculations of the
low-temperature �universal-limit� thermal conductivity. The work described herein expands upon our past
studies, which focused on a particular unit-cell-doubling charge-density wave, generalizing our techniques to a
wider class of coexisting order. We find that the question of whether the nodes of the d-wave superconductor
survive amidst a reasonable level of coexisting order is sensitive to the form and wave vector of the order.
However, in cases where the nodes do become gapped, we identify a signature of the approach to this nodal
transition, in the low-temperature thermal conductivity, that appears to be quite general. The amplitude of this
signature is found to be disorder dependent, which suggests a connection between the presence of coexisting
order in the underdoped cuprates and recent observations of deviations from universal �disorder-independent�
thermal conductivity in the underdoped regime.
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I. INTRODUCTION

The low-energy excitations of cuprate superconductors
are Dirac fermions, which arise due to the d-wave nature of
the superconducting order parameter. One expected signature
of these nodal quasiparticles is the presence of a universal
term in the low-temperature thermal conductivity, �00, which
depends only on the ratio of the gradient of quasiparticle
dispersion to the gradient of the gap, v f /v�, but not on the
disorder.1–3 In the optimally doped and overdoped regimes,
�00 has been observed in many instances, and agrees
closely with its predicted value.4–14 For instance, in
YBa2�Cu1−xZnx�3O6.9, �00 is observed to be insensitive to the
concentration of Zn atoms, which are varied to allow the
scattering rate to range over several orders of magnitude.4

However, in some cases, the value of the universal-limit ther-
mal conductivity, �00, is different than expected, or not ob-
served at all, in particular, as one approaches the underdoped
regime.15–20 One possible reason may be that disorder-
induced local magnetic moments enhance the scattering rate
while leaving the density of states unaffected, thus reducing
the transport.21

Another mechanism which might account for deviations
from the expected value of �00 is the presence of competing
order parameters. For years, evidence of the presence of ad-
ditional symmetry-breaking order parameters in cuprates has
been compiled in neutron-scattering data and scanning tun-
neling microscopy experiments.22–36 The presence of addi-
tional orders other than superconducting may be incidental,
yet it also may be intrinsically related to the complex phe-
nomenon of high-temperature superconductivity itself.37

The addition of order parameters which preserve time-
reversal symmetry followed by a lattice translation was
found to preserve the nodal structure of the quasiparticles,
for small amplitudes of order.38 As the strength of such or-
dering perturbations increases, the locations of the nodal ex-
citations evolve in k space. For sufficiently large amplitude,

the quasiparticle spectrum can be entirely gapped.39–41 Such
a modification of the quasiparticle spectrum should manifest
itself in the low-temperature thermal conductivity.40–42

In this paper, we model a cuprate superconductor using a
mean-field formalism describing a BCS-type d-wave super-
conductor �dSC� perturbed by an additional order parameter.
We calculate the low-temperature thermal conductivity, ac-
counting for the presence of several different varieties of
competing orders. We argue that these predictions can then
be used as an indirect verification of the presence or absence
of various competing orders in cuprates.

A previous linear-response calculation of �00 in a dSC
with the addition of a Q= �� ,0� charge-density wave �CDW�
showed that vertex corrections were not important for the
universal-limit thermal conductivity, within the self-
consistent Born approximation.41 As the charge-density
wave’s amplitude increased beyond a critical value �c, the
quasiparticle spectrum became gapped. Correspondingly, the
thermal conductivity �made anisotropic by the presence of
the density wave� vanished beyond that critical strength of
ordering. In addition, a dependence on disorder resulted, in
particular, for charge orderings near the transition. Armed
with this information, we proceed to study the effects of a
wider class of density waves on the low-energy properties of
cuprates.

In Sec. II, we will develop the mean-field formalism we
will use to describe superconductors in the presence of com-
peting orders. We write effective Hamiltonians for charge-
density wave, spin-density wave, and pair-density wave
�PDW� of several wave vectors. Additionally, we describe
configurations with multiple wave vectors, such as checker-
board order. Next, in Sec. III we will derive the current op-
erators associated with the various kinds of orders and use
this to establish a relation for the bare-bubble thermal con-
ductivity. Finally in Sec. IV, we will apply our results to
several different cases, and compare and contrast the results.
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II. MODEL

A. States of broken symmetry

States that arise as a result of broken symmetries are char-
acterized by the presence of nonvanishing off-diagonal ma-
trix elements. The superconducting state itself, for instance,
can be identified with the nonvanishing anomalous Green’s
functions, as was shown by Gor’kov.43 These anomalous
Green’s functions are defined in space and time as

����r,t����0,0�� . �1�

Given singlet paired electrons of opposite momenta, this cor-
responds, in momentum space, to

����k,t����− k,t�� . �2�

In a similar fashion, ordered states representing density
waves will also admit nonvanishing correlations between
states separated by the wave vector of the density wave. In
this paper, we will consider the subset of those which are
defined in momentum space as

���†�k + Q,t����k,t�� � �Qf�k�d��,�� , �3�

representing charge-density �d=	�
�� and spin-density �d

=	�
��	↑

�−	↓
��� waves, as well as pair-density waves

���†�k + Q,t���
†�k,t�� � �Qf�k�
�

�. �4�

For the purposes of simpler classification of orders, we are
carefully following some definitions made by Nayak in Ref.
44, so that �Q will represent the magnitude and phase of the
density wave and f�k� is an element of a representation of the
space group of Q� on a square lattice. Certain order param-
eters obey restrictions. For instance, charge-density wave
and spin-density wave �SDW� for which 2Q is a member of
the reciprocal lattice obey the additional condition

�Qf�k + Q� = �Q
� f��k� �5�

as was pointed out in Ref. 44.
Written as a sum over real space, the Hamiltonian repre-

senting a charge-density wave system is

HCDW = �
rr�
�

�e−iQ� ·�r�−r�0�f�r − r��cr�
† cr�� + H.c. �6�

Upon Fourier transform this becomes

HCDW = �
k�

��Qfkck+Q�
† ck� + �Q

� fk
�ck�

† ck+Q�� , �7�

with the definition �Q=�eiQ� ·r0, where r�0 describes the shift
of the density wave from being site centered and � is the
amplitude of the density wave. Coupled with Eq. �5�, this
indicates restrictions on certain density waves’ registration
with the lattice.

B. d-wave superconductor

Our starting point is a model for d-wave superconductors

H = �
k,�

�
kck�
† ck� + �kck↑

† c−k↓
† � + H.c., �8�

where the normal-state dispersion is given by a tight-binding
Hamiltonian,


k = − 2t�cos kx + cos ky� − t� cos kx cos ky − � �9�

and the superconducting order parameter is of dx2−y2 symme-
try,

�k =
�0

2
�cos�kx� − cos�ky�� . �10�

As given, this Hamiltonian has nodal excitations, which are
located along the dx2−y2 symmetry axis in the �� , �� di-
rections. The nodes’ distance from the �� /2, � /2� points
is controlled by the chemical potential �. These quasiparti-
cles are massless Dirac fermions in the sense that they have
conical dispersion. The excitation energy is

Ek = 	
k
2 + �k

2, �11�

and at low energies, 
k
v fk1 and �k
v�k2, where k1 and k2
are momentum-space displacements from the node in direc-
tions perpendicular and parallel to the Fermi surface, respec-
tively, v f is the Fermi velocity and v� is the slope of �k at the
node. For � on the order of t or smaller, the ratio of Fermi
velocity to gap velocity is given as

v f

v�

�
4	t2 −

�

t
t�2

�0
. �12�

Then, as perturbations are turned on, the locations of the
nodes evolve in k space, while the stability of the nodes is
generally preserved for non-nesting perturbations which pre-
serve the composite symmetry of lattice translation followed
by time reversal, as was noted by Berg and Kivelson.38

C. Density waves of different wave vectors

The presence of a uniform density wave in a supercon-
ductor changes the system in both real and momentum space.
In real space, the unit cell increases. In momentum space, we
see an effective reduction in the Brillouin zone, also called
band folding. Accordingly, our second quantized descriptions
of the systems are modified. Whereas in a superconductor we
can rewrite a quadratic effective Hamiltonian using Nambu
field operators,

�k
† = �ck↑

† c−k↓ � �k = � ck↑

c−k↓
†  , �13�

we can alternatively write extended Nambu vectors, such as

�k
† = �ck↑

† c−k↓ ck+Q↑
† c−k−Q↓ � , �14�

where the wave vector Q connects each point in the first
reduced Brillouin zone with a point in the second reduced
Brillouin zone. Sums over k space are then performed by
integrating over the reduced Brillouin zone �the shaded re-
gions in Fig. 1�, and taking the trace of the now-extended
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Nambu space matrix. The two descriptions are equivalent but
the extended Nambu description naturally fits the effective
Hamiltonians of systems with nonzero mean-field density
waves. In Fig. 1, we illustrate four different density waves
which are considered in this paper: Q= �� ,0�, Q= �� /2,0�,
Q= �� ,�� and Q1= �� ,0�, Q2= �0,�� �checkerboard� orders.
These disturbances are illustrated in real space in Fig. 2.

1. Q=(� ,0) density waves

A density wave of wave vector Q= �� ,0� corresponds to a
striped system: the unit cell is doubled in the x direction and
the Brillouin zone is reduced by 50% as seen in Fig. 1�a�.
The extended Nambu vector is that of Eq. �14� with Q
= �� ,0�.

2. Q=(� Õ2,0) density waves

A density wave of wave vector Q= �� /2,0� corresponds
again to a striped system, one in which the unit cell has

increased by a factor of 4, and the Brillouin zone is reduced
by the same factor. The reduced Brillouin zone is taken to be
the region containing the predensity-wave nodal quasiparti-
cle excitations of the d-wave superconductor; in Fig. 1�b�
this is indicated with shading. The extended Nambu vector is
that of Eq. �17�.

3. Q1=(� ,0); Q2=(0 ,�) checkerboard density waves

Two density waves of equal weight in orthogonal direc-
tions corresponds to a checkerboard ordered system. As in
the case of the Q= �� /2,0� case, the Brillouin-zone’s area is
reduced by a factor of 4, although it is a different reduced
Brillouin zone, illustrated in k space in Fig. 1�c�, and in real
space in Fig. 2�c�.

4. Q=(� ,�) density waves

A density wave of wave vector Q= �� ,�� corresponds to
a system which is modulated in both the kx and ky directions:

ky

kx

ky

kx

ky

kx

ky

kx

a)

d)

b)

c)
FIG. 1. Illustrated are the reduced Brillouin zones of a square lattice in the presence of different density waves. The dots illustrate

approximately the location of nodal excitations in the original dx2−y2-symmetry superconductor; the dashed line is the new zone boundary
induced by the density wave. Illustrated are density waves of wave vector: �a� Q= �� ,0�, �b� Q= �� /2,0�, �c� Q1= �� ,0�, Q2= �0,��, and �d�
Q= �� ,��.
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	��sin�kx�sin�ky�. The reduced Brillouin zone is indicated in
Fig. 1�d� as the shaded region and the real space modulation
is illustrated in Fig. 2�d�. The extended Nambu vector is as in

Eq. �14� with Q now representing the �� ,�� density wave.

D. Charge-density waves

A commensurate charge-density wave is one for which
the charge density is oscillatory in real space and repeats
itself after translation by an integer number of lattice con-
stants. The momentum-space description of a mean-field
Hamiltonian for such a system is

HCDW = �
k�

��Qfkck+Q�
† ck� + �Q

� fk
�ck�

† ck+Q�� . �15�

A charge-density wave �=�0+	� which doubles the unit cell
�so that 	� alternates sign from cell to cell in the x direction�
has wave vector Q= �� ,0�. A �� ,0� CDW perturbation in its
four-component extended Nambu basis �particle, hole,
shifted particle, and shifted hole� is given by

HCDW = �
k

��k
†�

0 0 Ak
� 0

0 0 0 − A−k

Ak 0 0 0

0 − A−k
� 0 0

��k, �16�

where the sum is over the reduced Brillouin zone of Fig.
1�a�, and we define Ak��Qfk+�Q

� fk+Q
� . A �� /2,0� CDW

perturbation written in its eight-component extended Nambu
basis

�k
† = �ck↑

† c−k↓ ck+2Q↑
† c−k−2Q↓ ck+Q↑

† c−k−Q↓ ck+3Q↑
† c−k−3Q↓ � �17�

is written as

HCDW
��/2,0� = �

k

��k
†Hk�k, �18�

where Hk is given by

�
Ak

� 0 Ak+3Q 0

0 − A−k−Q
� 0 − A−k

Ak+Q 0 Ak+2Q
� 0

0 − A−k−2Q 0 − A−k−3Q
�

Ak 0 Ak+Q
� 0

0 − A−k−Q 0 − A−k−2Q
�

Ak+3Q
� 0 Ak+2Q 0

0 − A−k
� 0 − A−k−3Q

� . �19�

E. Pair-density waves

Scanning tunneling microscopy experiments have re-
vealed the presence of modulations in the local density
of states in the vortex cores of the cuprate
Bi2Sr2Ca1Cu2O8+	,22,23,26,27,29 and in some instances, in the

absence of magnetic field.24,45 More recent measurements,
conducted in the absence of magnetic field, measured the
spatial dependence of the superconducting gap.46 Their find-
ing was that the superconducting order parameter is modu-
lated, corresponding to superconducting pairs with a net

a) δρ∼Cos(π x) b) δρ∼Cos(π/2 x)

c) δρ∼Cos(π x)+Cos(π y) d) δρ∼Cos(π x)Cos(π y)

FIG. 2. Illustrated are the four different density waves consid-
ered in this paper in real space. Each circle corresponds to the
position of a Cu atom, and the size of the circle indicates whether
the density at that site is higher or lower than the average. Illus-
trated are density waves of wave vector: �a� Q= �� ,0�, �b� Q
= �� /2,0�, �c� Q1= �� ,0�, Q2= �0,��, and �d� Q= �� ,��.
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center-of-mass momentum, which has become known as a
pair-density wave.

In addition to considering the effects of spatial modula-
tions in the charge density, we therefore can also consider
adding �to the dSC Hamiltonian� a term corresponding to a
modulation in the pair density. A pair-density wave of wave
vector Q is written as

HPDW = �
k

��

��Qgkck+Q�
† c−k�

† + �Q
� gk

�c−k�ck+Q�� , �20�

or, with the definition Bk��Q�gk+g−k−Q� we can write �for
�� ,0� or �� ,�� density waves�

HPDW = �
k

��k
†�

0 0 0 Bk

0 0 B−k
� 0

0 B−k 0 0

Bk
� 0 0 0

��k. �21�

F. Spin-density waves

The effective Hamiltonian corresponding to a spin-density
wave of wave vector Q is

HSDW = �
k�

���Qfkck+Q�
† ck� + �Q

� fk
�ck�

† ck+Q�� . �22�

In the extended Nambu basis, for a Q= �� ,0� or Q= �� ,��
SDW, this takes the form

HSDW = �
k

��k
†�

0 0 Ak
� 0

0 0 0 A−k

Ak 0 0 0

0 A−k
� 0 0

��k, �23�

where Ak��Qfk+�Q
� fk+Q

� .

G. Checkerboard density waves

In addition to broken-symmetry states arising due to a
single-density wave, we can also consider multiple density
waves. Scanning tunneling microscopy experiments have
previously revealed the presence of checkerboard order in
BiSCCoO.22–27 While the wave vectors of the order in those
experiments was seen to be near Q� �

2 , for simplicity we
first write down the Hamiltonian corresponding to Q1
= �� ,0� and Q2= �0,�� checkerboard order. The Brillouin
zone is reduced to one fourth of its size, as is seen in Fig.
1�c�. The extended Nambu vector which describes such a
system is

�k
† = �ck↑

† c−k↓ ck+Qx↑
† c−k−Qx↓ ck+Qy↑

† c−k−Qy↓ ck+Qx+Qy↑
† c−k−Qx−Qy↓ � �24�

and the second quantized Hamiltonian which describes the addition of a charge-density wave and pair-density wave is

HCDW
checkerboard + HPDW

checkerboard = �
k

��k
†Hk�k, �25�

where Hk is given by

�
0 0 Ak

�x�� Bk
�x� Ak

�y�� Bk
�y� 0 0

0 0 B−k
�x�� − A−k

�x� B−k
�y�� − A−k

�y� 0 0

Ak
�x� B−k

�x� 0 0 0 0 Ak+Qx

�y�� Bk+Qx

�y�

Bk
�x�� − A−k

�x�� 0 0 0 0 B−k−Qx

�y�� − A−k−Qx

�y�

Ak
�y� B−k

�y� 0 0 0 0 Ak+Qy

�x�� Bk+Qy

�x�

Bk
�y�� − A−k

�y� 0 0 0 0 B−k−Qy

�x� − A−k−Qy

�x�

0 0 Ak+Qx

�y� B−k−Qx

�y� Ak+Qy

�x� B−k−Qy

�x� 0 0

0 0 Bk+Qx

�y�� − A−k−Qx

�y�� Bk+Qy

�x�� − A−k−Qy

�x�� 0 0

� �26�

and where

Ak
�x� � �Qx

fkx
+ �Qx

� fk+Qx

� ,

Ak
�y� � �Qy

fky
+ �Qx

� fk+Qy

� ,
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Bk
�x� � �Qx

�gkx
+ g−kx−Qx

� ,

Bk
�y� � �Qy

�gky
+ g−ky−Qy

� , �27�

represent the amplitudes of the charge-density and pair-
density waves in the x and y directions.

III. THERMAL CONDUCTIVITY

At low temperatures, the temperature-dependent phonon
contribution to thermal conductivity vanishes as a power,
�phonon
T�.4–6,8,9,11,13,15–19 Therefore, the T-linear quasipar-
ticle current can be extracted from experimental data by plot-
ting the measured thermal conductivity divided by tempera-
ture as a function of T�−1. In previous work,40,41 we
considered a site-centered Q= �� ,0� charge-density wave
and calculated the thermal conductivity using Green’s func-
tions obtained from the self-consistent Born approximation,
and incorporated vertex corrections within the ladder ap-
proximation. Because the results of this work indicated that
vertex corrections can usually be neglected, in what follows
we will derive the thermal conductivity using the bare-
bubble correlation function. This will greatly simplify the
calculation, allowing its application to a variety of systems,
whereby the thermal conductivity can be computed numeri-
cally given an effective Hamiltonian H=HdSC+HDW��� and
an effective scattering rate �0.

A. Current operators

In order to calculate the thermal conductivity, we first
need to derive the heat current associated with the quasipar-
ticles. Because heat and spin currents are both proportional
to the quasiparticle current, we can get the heat current by
calculating the spin current, and then using the energy mea-
sured from the Fermi level as the associated charge �instead
of the spin�. To calculate the spin current for any particular
Hamiltonian, we write the density operator in second quan-
tized form, and then use Heisenberg equations of motion to
find the momentum-space representation of the current, that
is,

lim
q→0

�q · js� = ��q
S,H� . �28�

The density operator is

�q
s = �

k

��ck↑
† ck+q↑ + c−k↓c−k−q↓

† � . �29�

Taking the commutator with the Hamiltonians of Eqs. �8�,
�15�, �20�, and �22�, using anticommutation relations, and
discarding boundary terms, we find

��q
s ,H� = �

kk�
�

��ck��
† ck�+q�,�k

†H̃k�k� = �
k

q� · �k
†�H̃k

�k�
�k

�30�

for the spin current. The heat current in the Matsubara rep-
resentation is given by

j̃�i�,i�� = �i� +
i�

2
�

k

�k
†�H̃k

�k�
�k. �31�

Now we have a generalized velocity operator in the Nambu

space, ṽk=
�H̃k

�k�
. For instance, for the Q� = �� ,0� pair-density

wave of Eq. �21�, the velocity operator would read

ṽ�k�� =�
v� f ,k v��,k 0

�Ak

�k�

v��,k − v� f ,k

�A−k
�

�k�
0

0
�A−k

�k�
v� f ,k+Q v��,k+Q

�Ak
�

�k�
0 v��,k+Q − v� f ,k+Q

� . �32�

For density waves without internal momentum dependence,
or for those where the variation is slight near the nodal lo-
cations, the velocity operator reduces to the form found in
Refs. 40 and 41,

ṽ f ,k = �v� f ,k v��,k

v��,k − v� f ,k
 . �33�

B. Universal-limit thermal conductivity

The universal-limit thermal conductivity is calculated us-
ing linear-response formalism. The thermal conductivity is
given in terms of the retarded current-current correlation
function,

K��,T�
T

= lim
�→0

−
Im��Ret����

�T2 . �34�

We evaluate the correlation function using the Matsubara
method.47 The bare-bubble correlator, given in terms of a
spectral representation, is

��i�� =� d�1d�2 Tr�
k

�Ã��1�ṽÃ��2�ṽ�S�i�� , �35�

where
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S�i�� � �
i�n

�i� +
i�

2
2

�i� − �1��i� + i� − �2�
�36�

and A�k� ,�� is the spectral function.
It is important to use the correct form of the spectral func-

tion in Eq. �35� to avoid erroneous results, as is noted in Ref.
40. For example, a bond-centered CDW of wave vector Q�
= �� ,0�, which looks like

HCDW =�
0 0 i� 0

0 0 0 − i�

i� 0 0 0

0 − i� 0 0
� �37�

leads to a spectral function which is not real, and the spectral
function is not given by the formula

Ã�k�,�� = −
1

�
Im�GR�k�,��� , �38�

but rather by

A�k�,�� �
− 1

2�i
�GR�k�,�� − GA�k�,��� . �39�

The details of the thermal-conductivity calculation are simi-
lar to those of Refs. 40 and 41. In general, the self-consistent
t-matrix approximation can be used to compute the Green’s
functions, however, here we use a simpler, diagonal self-
energy as a first approximation, and compute the bare-bubble
result, neglecting vertex corrections. In terms of a model
Hamiltonian Hk, and incorporating impurity scattering by as-

suming an imaginary part of the self-energy, �̃R��→0�=
−i�0, the universal-limit thermal conductivity is

lim
T→0

�0

T
=

kB
2�2

3 �
k

Re�Tr�Ã�0�
�H̃k

�k�
Ã�0�

�H̃k

�k�
�� , �40�

where

G̃R�k,�� = �� − H̃k + i�����−1,

G̃A�k,�� = �� − H̃k − i�����−1. �41�

IV. EFFECTS ON ENERGY SPECTRUM AND THERMAL
CONDUCTIVITY

Here we modify the dSC Hamiltonian of Eq. �8� with the
addition of density waves such as those of Eqs. �15�, �20�,
and �22�, which will be tuned by the real parameter �, the
strength of the density wave. This is done to study the be-
havior of the quasiparticle spectrum, and through Eq. �40�,
the universal-limit thermal conductivity. In each of the fig-
ures from Fig. 3 to Fig. 10, we present �a� the trajectory of
the nodes in the region 0�kx ,ky �

�
2 , as the density wave is

turned on �the starting place �node for dSC system� is indi-
cated with a star�, �b� �minimum� quasiparticle energy as a

function of the order-parameter strength �, and �c� universal-
limit thermal conductivity as a function of �. In all instances,
the universal-limit conductivity

�00

T is given in units of
kB

2

3�

v f
2+v�

2

v fv�
, the value for the original dSC system, and we mea-

sure �0, Emin, �, and �0 in units of t, the hopping parameter.

A. Q=(� ,0), density waves

The addition of a Q= �� ,0� charge-density wave to a
d-wave superconductor has been considered before.39–41 As
the perturbation is turned on, the nodes’ locations evolve
along curved paths, until they meet the images of the nodes
from the second reduced Brillouin zone at the collision point
�� /2,� /2�, as seen in Figs. 3 and 4. The effect is the same,
regardless of whether the density wave is of s-wave ��Q
=�, fk=1, site-centered�, px-wave ��Q= i�, fk=sin�kxa�,
bond-centered� or py-wave ��Q=�, fk=sin�kya�, site-

κ
Τ

00

Εmin

ψ

a) b)

c)

(π,0) CDW

κ yy

κ xx

ψ
0

FIG. 3. Effects on spectrum and low-temperature transport of a
Q= �� ,0� charge-density wave. The results are the same for site-
centered �s-wave or py-wave� and bond-centered �px-wave� density
waves, in that the nodes evolve along the same curved paths toward
the �� /2, � /2� points where they collide with their images
from the next reduced Brillouin zone. As this happens, the nodes
are nested and the spectrum is gapped. The universal-limit thermal
conductivity vanishes beyond this point. Disorder �0 broadens the
transition. Here we take �=−0.6, �0=4, and �0=0.02.

κ
Τ

00

Εmin

ψ

a) b)

c)

(π,0) CDW v > v

κ yy

κ xx

f ∆

ψ

FIG. 4. Effects on spectrum and low-temperature transport of a
Q= �� ,0� charge-density wave. Depicted are the results for �=−1,
�0=0.4, and �0=0.02. These parameters describe anisotropic Dirac
quasiparticles with v f /v�=10. The anisotropy tends to suppress �00

slightly.

EFFECT OF COEXISTING ORDER OF VARIOUS FORM… PHYSICAL REVIEW B 81, 054504 �2010�

054504-7



centered� symmetry. The critical value of � which gaps the
system is �c=v fk0, where

k0 = 	2��

2
− cos−1� − t

2t�
+	� t

2t�
2

−
�

4t
� �42�

is the distance separating the �=0 nodal point from
�� /2,� /2� in k space. For an s-wave perturbation of
strength � representing a charge-, pair-, or spin-density
wave, the quasiparticle spectrum is

� = 	A − 	A2 + B − C , �43�

where

A �

k

2 + �k
2 + 
k+Q

2 + �k+Q
2

2
+ �2,

B � 2�2�a
k
k+Q + b�k�k+Q� ,

C � �
k
2 + �k

2��
k+Q
2 + �k+Q

2 � , �44�

and �a ,b�= �−1,1� for a charge-density wave, �1,−1� for a
pair-density wave, and �−1,−1� for a spin-density wave.

The resulting thermal conductivity is anisotropic, reflect-
ing the striped nature of the system. The nodes are deformed
as they approach the collision point, and the thermal conduc-
tivity �yy perpendicular to the direction of the density wave
increases at first, before both �xx and �yy vanish for larger
amplitudes of density wave, �. The effect of a Q= �� ,0�
pair-density wave is similar to that of the charge-density
wave: the nodes evolve along a curved path until they meet
their images in the second reduced Brillouin zone and the
resulting universal-limit thermal conductivity is the same.
The effects of a site-centered �� ,0� pair-density wave is
shown in Fig. 5.

A more unusual case is that of the Q= �� ,0� spin-density
wave. With this perturbation, the nodal points evolve directly
toward the �� /2,ky� line, as seen in Fig. 6. The quasiparticle
spectrum then evolves so that there are two minima. In other

words, the node splits in two, and nodes move up and down
the �� /2,ky� line. The nodes are nested by Q, but the spec-
trum remains gapless, and the universal-limit thermal con-
ductivity is unaffected. If the perturbation is allowed to be-
come extremely large ����0�, then the nodes �there are
now twice as many, each on a reduced Brillouin-zone edge�
collide with their images from the second reduced Brillouin
zone, and the thermal conductivity then vanishes. The split-
off nodes collide at different strengths of �, however, and the
spectral weight disappears in two steps, accordingly, as does
the thermal conductivity. The fact that the nodal structure is
preserved in this case, even when the nodes become nested,
runs contrary to the intuition �suggested by the converse of
the theorem of Ref. 38� that such nested nodes would be-
come gapped.

B. Q=(� ,�), density waves

Adding a Q= �� ,�� spin-density wave was also discussed
as an example in Ref. 38. In real space, such a density wave
is modulated as cos�kx�cos�ky�, so that nodes remain along
the �� ,�� direction as the density wave is turned on, as is
seen in Fig. 7. When the nodes reach �� /2,� /2�, the system
is gapped,38 and the thermal conductivity vanishes. On the
other hand, a Q= �� ,�� charge-density wave behaves in a
similar manner to the �� ,0� spin-density wave, in that the
nodes do not vanish for small perturbations.

The addition of a Q= �� ,�� pair-density wave drives the
location of the nodes toward the � point at �kx ,ky�= �0,0�, an
effect which is also observed via the addition of the check-
erboard pair-density wave. In both instances, a large pertur-
bation ���0 is required to affect the thermal conductivity.

κ
Τ

00

Εmin

ψ

a) b)

c)

(π,0) PDW

κ yy

κ xx

ψ
0

FIG. 5. Effects on spectrum and low-temperature transport of a
Q= �� ,0� pair-density wave. Depicted are the results for �=−0.6,
�0=4 �v f =v��, and �0=0.02. As was the case for the CDW, the
nodes evolve along a curved path toward the �� /2,ky� line. Upon
reaching kx=� /2, the nodes are nested, and the spectrum is gapped.
For � larger than the critical value �c, the thermal conductivity
vanishes, up to disorder broadening.

κ
Τ

00

Εmin

a) b)

c)

(π,0) SDW

κ yy

κ xx

ψ

ψ
0

0

FIG. 6. Effects on spectrum and low-temperature transport of a
Q= �� ,0� spin-density wave. Depicted are the results for param-
eters �0=4, �=−0.6, and �0=0.02. As the density wave is turned
on, the nodes move in a straight line to the �� /2,ky� lines. When
they reach that line, each node splits in two, and the two nodes
move up and down along that line. The spectrum remains gapless,
even though the nodes are nested by the ordering vector. Corre-
spondingly, the thermal conductivity is unaffected at that energy
scale. For � much larger, these two nodes collide with their images
in the second reduced Brillouin zone �at different values of ��, and
the thermal conductivity is reduced by one half of the pure dSC
value after each such collision. The locations of the two separate
nodal collisions are illustrated by a square and a triangle in �a�, and
the order strength at which they appear is given in �b� and �c�.
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C. Q=(� Õ2,0), charge-density wave

A Q= �� /2,0� density wave behaves slightly differently
from the �� ,0� case. In this case, the nodes are driven toward
the �� /4,ky� line, rather than �� /2,ky�. While they would
become gapped if they arrived there, for realistic parameters
t, �, and �0, such a density wave would dominate the sys-
tem, that is, ���0. The evolution is as seen in Fig. 8 and
preserves the nodes for ���0. As such, the universal-limit
thermal conductivity is not significantly affected by this per-
turbation.

D. Q1=(� ,0), Q2=(0 ,�) checkerboard density waves

Configurations with more than one density wave can also
be considered in this formalism. In this paper, we turn our
attention to the checkerboard configuration illustrated in part

�c� of Fig. 1. As we turn on two charge-density waves of
Q1= �� ,0� and Q2= �0,��, with equal amplitudes, the nodes
are perturbed along the symmetry line toward the �� /2,� /2�
point, as shown in Fig. 9. When the nodes reach the
�� /2,� /2� point, the spectrum becomes gapped, and the
thermal conductivity vanishes, with a value of �c about two
thirds of that for the striped �� ,0� CDW. In contrast, the
checkerboard pair-density wave seen in Fig. 10 evolves the
nodes along the same symmetry line but toward the � point
�0,0�. At that point, the spectrum would become gapped and
the universal-limit thermal conductivity would vanish. How-
ever, systems which more closely resemble a d-wave super-
conductor than the checkerboard ��0��� will remain gap-
less, as the nodal evolution would not be driven that far—
about 30 times the critical value for the striped �� ,0� PDW.

V. CONCLUSIONS

In conclusion, we have written mean-field Hamiltonians
describing a d-wave superconductor perturbed by a variety

κ
Τ

00

Εmin

ψ

a) b)

c)

(π,π) SDW

Γ = 0.0010

Γ = 0.010

Γ = 0.040

Γ = 0.080

ψ
0

FIG. 7. Effects on spectrum and low-temperature transport of a
Q= �� ,�� spin-density wave. As the density wave is turned on, the
nodes move along the symmetry lines kx= ky toward
�� /2, � /2�, where they become gapped. Accordingly, �00 van-
ishes. In �c� the effects of increasing disorder are presented. The
disorder tends to smear the thermal conductivity around the nodal
transition; as such, �00 is no longer universal.

κ
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Εmin

ψ

a) b)

c)

( ,0) CDW

κ yy

κ xx

ψ

π
2

0

FIG. 8. Effects on spectrum and low-temperature transport of a
Q= �� /2,0� charge-density wave. As the density wave is turned on,
the nodes move in a curved path to the �� /4,ky� lines. The spec-
trum becomes gapped at that point, when the node is nested by the
ordering vector and the thermal conductivity vanishes for � larger
than about 4t. Such a system is out of the range of validity of our
model, as it would be dominated by the charge order, rather than the
d-wave superconductor. For � on the order of �c, �00 retains its
dSC value. Here, �=−0.6, �0=4, and �0=0.05.

κ
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ψ
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ψ
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FIG. 9. Effects on spectrum and low-temperature transport of a
Q1= �� ,0�, Q2= �0,�� charge-density perturbation to the dSC sys-
tem. The nodes move in straight lines toward the �� /2, � /2�
points. The spectrum becomes gapped at that point, and �00 van-
ishes for � larger than about 0.4t.
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FIG. 10. Effects on spectrum and low-temperature transport of a
Q1= �� ,0�, Q2= �0,�� pair-density perturbation to the dSC system.
The nodes move in straight lines toward the origin. The spectrum
would become gapped at that point, however, the value of � re-
quired is much larger than the energy scale of the superconducting
order parameter. Therefore, for reasonable strengths of the ordering
vector, the thermal conductivity is unaffected by this density wave.

EFFECT OF COEXISTING ORDER OF VARIOUS FORM… PHYSICAL REVIEW B 81, 054504 �2010�

054504-9



of density waves. We noted the effects of such perturbations
on the low-energy quasiparticle spectrum, and by calculating
the universal-limit �T→0,�→0� thermal conductivity, see
the effect that density waves can have on the low-
temperature thermal transport. Whether or not the universal-
limit thermal conductivity is robust in the presence of an
incipient density wave depends on which type of density
wave, and which wave vector, is added. For instance, in the
case of Q= �� ,0� pair-density waves, the quasiparticle nodes
evolve �in response to increasing amplitude of density wave�
so that their k-space locations move toward �� /2, � /2�,
as they do for a CDW of the same wave vector. When they
reach this point, which is the point at which the density wave
vector nests the nodes, the spectrum becomes gapped. How-
ever, for the Q= �� ,0� spin-density wave, the nodal structure
is preserved beyond this ordering strength, despite the nest-
ing of the nodes. For the Q� = �� ,�� density waves, the effects
of SDW and CDW are reversed from that of the �� ,0� case;
the �� ,�� CDW preserves nodality beyond the nesting wave
vector, while the �� ,�� SDW is gapped beyond a critical
strength. In the case of Q= �� /2,0�, the different wave vec-
tor drives the nodes toward �� /4,ky� instead. Given typical
tight-binding parameters, such a charge-density wave will
not gap the quasiparticle spectrum, and will thus not affect
the thermal conductivity, which remains universal. In the
case of Q1= �� ,0�, Q2= �0,�� checkerboard charge order,
whether or not the universal-limit thermal conductivity is
robust depends on which type of density wave is present.
The CDW checkerboard nodes move toward the
�� /2, � /2� point and become gapped. However, the
PDW checkerboard nodes move away from that direction
and the nodal structure is preserved.

Because the onset of charge ordering is believed to be
correlated with underdoping, observations which show that
the low-temperature thermal conductivity differs from the
universal value predicted in Ref. 2 may be due to the influ-
ence of coexisting orders. There are some general features
that appear in all of the models considered in this paper. �1�
In general, the nodal evolution is determined more by the
wave vector Q than by the chemical potential �, although �
will determine the amplitude of density wave which will gap
the system. �2� The physics still remains nodal in the follow-
ing sense. Whether the density waves considered were of
s-wave or p-wave symmetry did not have an effect; all that
matters is the amplitude of the density wave at the node. �3�
It is interesting to note that the universal-limit thermal con-
ductivity generally develops a disorder dependence, espe-
cially near the nodal transition point. The presence of density
waves are therefore one possible explanation of the break-
down of universal-limit thermal transport in cuprates. �4� In
general, there is an increase in the thermal conductivity near
the nodal transitions �for cases where there are�, which is
caused by the deformation of the nodes �and the resulting
effective change in v f /v�� as they meet their images in the
second reduced Brillouin zone. This feature is consistent
with the thermal-conductivity measurements of Proust
et al.20 who find a large enhancement in thermal conductivity
of Bi-2201.
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