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We study the stability of solid- and supersolid �SS� phases of three-dimensional spin- and hardcore-Bose-
Hubbard models on a body-centered cubic lattice. To see the quantum effects on the stability of the SS phase,
we model the vacancies �interstitials� introduced in the solid, which are believed responsible for the appearance
of the SS phase, by spin-wave bosons and adopt the interaction between the condensed bosons as a criterion.
A repulsive nature of the low-energy effective interaction is the necessary condition for a second-order
solid-SS transition and when this condition is met, normally the SS phase is expected. In calculating the
effective interaction, we use expansions from the semiclassical �i.e., large S� and the Ising limit combined with
the ladder approximation. The impact of quantum fluctuations crucially depends on the energy of the solid
phase and that of the superfluid phase at half filling. As an application to 4He, we study the parameter region
in the vicinity of the fitting parameter set given by Liu and Fisher. For this parameters set, quantum fluctuations
at the second order in S−1 destabilize the solid phase, which is supposed to be stable within the mean-field
theory.
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I. INTRODUCTION

The supersolid �SS� state, which has both diagonal- and
off-diagonal long-range order, has been investigated over the
past five decades.1–3 Recently, Kim and Chan suggested4 that
the observed nonclassical rotational inertia �NCRI� �Ref. 5�
in solid 4He, might be attributed to coexisting superfluidity.
This experiment sparked a renewed interest and the origin of
the NCRI is still under debate.6

The quantum lattice gas �QGM� model,7 or equivalently
the hardcore-Bose-Hubbard model, is one of the simplest
models suited for studying the low-temperature physics of
quantum solids. Since the QGM is in an exact correspon-
dence to S=1 /2 quantum spin models,7 we can use powerful
methods developed in quantum spin systems in understand-
ing the physics underlying the QGM. The QGM has been
applied8 to study the possibility of the SS in 4He and later
the comprehensive discussion9 given by Liu and Fisher con-
cluded, within the mean-field approximation �MFT� that the
SS exists in 4He. However, recent studies on the SS in the
two-dimensional �2D� square lattice systems revealed that
quantum fluctuations dramatically change the behavior and
may even suppress the SS which is supposed to exist within
the MFT.10–12 For the optimal fitting parameter set obtained
by Liu and Fisher for 4He �LF point; see Eq. �3��, frustration
seems to play an important role. Hence, interplay between
quantum fluctuations and frustration may change the physics
of the QGM of 4He.

Recently, Bose-Einstein condensation �BEC� of magnons
has been observed experimentally13,14 and is now widely
investigated.15 Effects of frustration on magnon BEC would
be intriguing in their own right, as frustration may enhance
quantum effects and even lead to such exotic condensed
states as the SS which are hardly realized in real Bose sys-
tems. For instance, quite recently, Takigawa et al. reported16

a persisting spin superlattice in SrCu2�BO3�2 �SCBO� �Ref.
17� coexisting with �possibly� mobile magnons even beyond
the 1/8 plateau, which is reminiscent of the SS state pre-

dicted theoretically18 for SCBO. Because weak anisotropic
interactions break the rotational symmetry around the exter-
nally applied magnetic field �or, U�1� gauge symmetry in the
QGM language�, this phase may not a true SS phase. How-
ever, the discrete subgroup of the rotational symmetry can be
spontaneously broken19 and the observed phase might still
hold a close relationship to the SS in its original sense. The
physics of this phase and the realization of the “magnon SS”
in other compounds are also topics to be investigated more
closely.

For the clear understanding of NCRI in 4He and the SS
states in spin systems, it is useful to find a criterion which
assesses the combined effect of quantum fluctuations and
frustration on the stability of the SS phase. In this paper, with
the help of spin-wave expansion, we push ahead with the
widely accepted intuitive picture2,3 that BEC of vacancies or
interstitials gives rise to the SS state to propose that the
interaction among the condensed vacancies �interstitials�
serves as a good criterion for the stability of the SS. To this
end, we adopt the so-called dilute-Bose-gas technique.20

Normally, the dilute-Bose-gas approach is used only in the
vicinity of the saturation field to obtain unbiased �asymptoti-
cally� exact results,21–25 since the lack of an exact reference
state �i.e., vacuum� on which boson excitations are defined
hampers the construction of a well-defined bosonic Hamil-
tonian. To overcome this difficulty, we introduce the spin
magnitude S and the Ising-like anisotropy as large control
parameters, which guarantee the validity of the reference
state even far below the saturation field and develop a sys-
tematic expansion with respect to these parameters.

The organization of the present paper is as follows. In
Sec. II, we introduce a three-dimensional model Hamiltonian
on a body-centered cubic �bcc� lattice �see Fig. 1� and briefly
review the correspondence between the spin model and the
QGM. At the same time, we classify the ground-state phases
within the MFT. Then, we derive a spin-wave Hamiltonian
by using the Dyson-Maleev transformation in the solid
phase.
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In Sec. III, we outline the dilute-Bose-gas approach used
in investigating the SS phase around the solid phase. If the
effective interaction among the condensed bosons is attrac-
tive, the SS phase for low condensate density is normally
phase separated. Although we do not exclude the possibility
that the SS emerges through the first-order transition from
the solid phase, this seems unlikely from various results ob-
tained by quantum Monte Carlo simulations.10–12,26–28

Hence, in this paper, the SS is said to be “unstable”
�“stable”� if the interaction between condensed bosons is at-
tractive �repulsive�. To evaluate the interaction concretely,
we need approximations. In Sec. IV, we study the properties
of the solid and the SS phase by the large S expansion up to
the second order in S−1. At the first order, the MFT results are
reproduced. We shall find three types of SSs, which have
properties similar to those appearing in the 2D square
lattice.27,29–31 The formulation of the second-order perturba-
tion is detailed.

In Sec. V, we study the properties of the solid and the SS
phase by the Ising expansion up to the second order. Al-
though quantum fluctuations seem to suppress the interac-
tions at the first order, the boundary determining the stability
of the SS does not shift and the magnetization process is
affected only quantitatively by quantum fluctuations. In other
words, the stability itself is known from the MFT if the large
Ising anisotropy exists. To see the effect of quantum fluctua-
tions on the stability of SS, we have to proceed to the
second-order calculation.

Our main results are summarized in Sec. VI, where we
study the stability of the solid and the SS phases focusing on
the LF point. Readers who only want to know the main re-
sults may skip Secs. IV and V and go directly to this section.
For the parameter set corresponding to the LF point, quan-
tum fluctuations destabilize the solid state expected from the
MFT �Fig. 11� at least within the conventional second-order
spin-wave expansion. Concerning the stability of the SS,
both of the two second-order calculations conclude that
quantum fluctuations only slightly change the MFT boundary
of the SS phase, provided that the energy of the solid phase
is sufficiently smaller than that of the superfluid phase at half
filling �Fig. 14�. In the vicinity of the LF point, where the
above condition is not satisfied, it is suggested that the SS
phase is fragile against quantum corrections or even com-
pletely smeared out, although the validity of both approaches
is not obvious in this region.

For concreteness, we restrict our discussion in this paper
to a quantum spin model on a bcc lattice. However, our

approach can be easily generalized to quantum spin models
on other three-dimensional �3D� lattices.

II. SPIN HAMILTONIAN AND QUANTUM
LATTICE GAS MODEL

A. Model Hamiltonian

Let us consider the following frustrated spin Hamiltonian
on the bcc lattice with the nearest-neighbor Ising antiferro-
magnetic �AF� interactions �J1

z �0�

H = �
n.n.

�J1
zSi

zSj
z + J1

��Si
xSj

x + Si
ySj

y��

+ �
n.n.n.

�J2
zSi�

z Sj�
z + J2

��Si�
x Sj�

x + Si�
y Sj�

y �� + Sh�
i

Si
z, �1�

where the summations nearest neighbors and next-nearest
neighbors are taken for the nearest-neighbor and the second-
nearest-neighbor pairs, respectively. This Hamiltonian in the
case that Ji

z=Ji
� for i= �1,2� �Heisenberg case� has been in-

vestigated from the various approaches.32 In the case of S
=1 /2, this Hamiltonian is equivalent to the following hard-
core bosonic Hubbard model,33

H = �
n.n.
� J1

�

2
�pi

†pj + pipj
†� + J1

z n̂in̂j	
+ �

n.n.n.
� J2

�

2
�pi�

† pj� + pi�pj�
† � + J2

z n̂i�n̂j�	 − �h�
i

n̂i,

�2�

where n̂i= pi
†pi. This model can be used to study the low-

energy physics of 4He if we approximate the Bose gas by the
QGM.7 Specifically, the “longitudinal” couplings J1,2

z and
“transverse” ones J1,2

� mimic the interaction potentials and
the kinetic energy of Helium, respectively, and the external
magnetic field h �or �h� controls the pressure. In the QGM,
J1,2

� �0 and J1
� /J2

� is fixed at 1/2 because of the lattice struc-
ture. Liu and Fisher suggested several sets of fitting param-
eters appropriate for 4He and concluded that the stability of
the SS phase is ensured within the MFT.9 However, the ex-
istence of quantum fluctuations and frustration effects may
destroy the classical ground state. To see the validity of the
MFT, in Sec. VI we shall study these effects on the ground
state in the vicinity of the following parameter set �LF point;
the case �a� in Ref. 9�:

J1
z = 2.60, J2

z = 1.59, J1
� = − 1, J2

� = − 0.5. �3�

Since the Ising-like Néel antiferromagnetic �NAF� phase is
identified with a solid phase of 4He, we restrict ourselves
only to the case that NAF order along the z direction appears
around h=0 and will not consider the Ising-like collinear
antiferromagnetic �CAF� phase which realizes, in the classi-
cal case, when 2J1

z �3J2
z . Let us briefly discuss possible clas-

sical phases at h=0. The classical phases fall into three fun-
damental classes �NAF, CAF, and FM� as is shown in Fig. 2.
These phases are further classified by whether the spins align
along the z axis or in the xy plane. In the former case, the
ground state may be gapped. In the latter case, the spontane-

J1

J2

FIG. 1. �Color online� Three-dimensional bcc lattice and inter-
actions considered in the text. Filled circles denote spins connected
by anisotropic �XXZ like� exchange interactions. We divide the lat-
tice into two sublattices, which are distinguished by the size of
spheres. Each sublattice forms a simple cubic lattice.
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ous symmetry breaking of the rotational symmetry around
the z-axis �U�1�� induces the gapless Goldstone mode and
the phase is viewed as a superfluid �SF�. The U�1� broken
phases accompanied by translation-symmetry breaking in the
diagonal channel �i.e., 
pl

†pl� or 
Sl
z�� as well are thought of

as spin analogs of SSs.29,30

When the spins align in z axis, the energy of each Ising-
like phase is given by

EIsing-NAF

2NS2 = − 4J1
z + 3J2

z , �4a�

EIsing-CAF

2NS2 = − 3J2
z , �4b�

EIsing-FM

2NS2 = 4J1
z + 3J2

z − �h� , �4c�

where N is the number of sites of each sublattice. When the
spins align in xy plane, the phases are viewed as SFs and the
energy of each phase is given by

Exy-NAF

2NS2 = − 4J1
� + 3J2

�, �5a�

Exy-CAF

2NS2 = − 3J2
�, �5b�

Exy-FM

2NS2 = 4J1
� + 3J2

�. �5c�

The ground-state phase diagram of the QGM for h=0 and
J1

� /J2
�=1 /2 is shown in Fig. 3.

The magnetization curve for the LF point �3� is shown in
Fig. 4.

To see the physics of the NAF phase more clearly, we
divide the whole lattice into two sublattices A and B each of
which forms a cubic lattice. Since we can change the sign of
the �nearest neighbor� transverse coupling J1

�→−J1
� at will

by making spin rotation �by �� around the z axis Sl
i→−Sl

i�i
=x ,y , l�A� only for the A sublattice, we may restrict our
consideration to the case J1

��0.
The correspondence between the phases in the quantum

lattice-gas formulation and the ones in the �quantum� spin-
model formulation is shown in Table I. In Table I, the long-
distance limit �i− j�→� is implied. In the SS phase and its
spin counterpart, translation symmetry is spontaneously bro-
ken �i.e., 
Si

z� and 
ni� modulate in space with nontrivial pe-
riods� as well as the axial U�1�.

In this paper, we reserve the terminology “NAF” for the
Ising-like NAF phase and the corresponding phase in the

-2 -1 0 1 2
J2z

0.5
1.0
1.5
2.0
2.5
3.0

J1z

Solid(NAF)
CAF

SF(xy)

LF�

FIG. 3. �Color online� Classical phase diagram for h=0, J1
�

=−1, and J2
�=−1 /2. NAF and CAF are implied as the Ising-like

gaped ones. The dot labeled as LF represents the LF point �3�.

(i)FM (ii)NAF (iii)CAF
�

�

�

�

�

FIG. 2. �Color online� Spin configurations for the three phases
�FM, NAF, and CAF’� in the text. �i� FM �ferromagnetic phase�
represents a phase where all spins are polarized along the field
direction. �ii� In NAF, the spins on each sublattice align ferromag-
netically while those on different sublattices are antiparallel. �iii�
CAF is made up of two antiferromagnetically ordered sublattices,
which, as a whole, align in a collinear manner.
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FIG. 4. �Color online� The magnetization curve obtained for the
LF point �3� within the MFT. Magnetization M is given by
�1 /2N��1

2N
Sl
z�. The existence of the phase solid, SS and SF is

confirmed.

TABLE I. Correspondence between the QGM and the spin
model. “TS” denotes translational symmetry.

QGM �Bose-Hubbard model� Spin model

Vacuum �polarized� FM

Checkerboard solid �Ising-like� NAF

Striped solid �Ising-like� CAF

SF �
pipj��0 with TS� 
Si
+Sj

+��0 with TS

SS �
pipj��0 with broken TS� 
Si
+Sj

+��0 with broken TS
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Bose-Hubbard model �2� will be called �checkerboard�
“solid” or “half-filled solid.”

B. Spin-wave Hamiltonian

In order to rewrite the spin operators in terms of bosons,
it is convenient to define magnons over a presumed refer-
ence state. In the case of NAF, all spins on the A-sublattice
point upward and those on the B-sublattice downward �see
Fig. 2�. Therefore, it would be reasonable to introduce
the following antiferromagnetic Dyson-Maleev �ADM�
transformation,34–36

Sl
+ = 2Sal, Sl

− = 2Sal
†�1 −

al
†al

2S
� ,

Sl
z = S − al

†al, for l � A. �6a�

Sm
+ = 2Sbm

† , Sm
− = 2S�1 −

bm
† bm

2S
�bm,

Sm
z = − S + bm

† bm, for m � B. �6b�

If we introduce the Fourier transformation as

al =
1

N
�
k

akeik·l, bm =
1

N
�
k

bkeik·m, �7�

�N is the number of sites of each sublattice�, then the Hamil-
tonian is given by

H = H0 + H1 + const, �8a�

H0 = �
k

S���0�k� − h�ak
†ak + ��0�k� + h�bk

†bk

+ t0�k��akb−k + ak
†b−k

† �� , �8b�

H1 =
1

N
�

k1,k2,q
�− 2J1

zC1�q�ak1+q
† bk2−q

† ak1
bk2

+ �J2
zC2�q�

− J2
�C2�k2��ak1+q

† ak2−q
† ak1

ak2
+ �J2

zC2�q� − J2
�C2�k2

− q��bk1+q
† bk2−q

† bk1
bk2

− J1
�C1�k2��ak1+q

† ak2−q
† ak1

b−k2

†

+ bk1+q
† bk2+qbk1

a−k2
�� , �8c�

where

�0�k� = 8J1
z − 6J2

z + 2J2
�C2�k� , �9a�

t0�k� = 2J1
�C1�k� , �9b�

C1�k� = 4 cos
kx

2
cos

ky

2
cos

kz

2
, �9c�

C2�k� = cos kx + cos ky + cos kz. �9d�

Although this Hamiltonian is not hermitian and contains un-
physical states,34 we believe that the Hamiltonian given by

Eqs. �8a�–�8c� correctly captures the low-energy physics at
and around the half-filled solid. Actually, in the case of mag-
non BEC just below the saturation field, though generally not
proven, it is known for some specific models that the ferro-
magnetic Dyson-Maleev transformation, the Holstein-
Primakoff transformation and the hardcore-boson expansion
for the S=1 /2 case give the same ground state in a dilute-
Bose-gas approach.21–24

III. GENERAL FORMALISM

In this section, we outline the dilute-Bose-gas approach
by which we shall investigate the SS phase around the half-
filled solid appearing in the system described by the Hamil-
tonian Eq. �8�.

A. Bogoliubov transformation

In the following analysis, we frequently deal with Hamil-
tonians of the following form:

Hquad = S����k� − h�ak
†ak + ���k� + h�bk

†bk + t�k��akb−k

+ ak
†b−k

† �� . �10�

This is the most general quadratic Hamiltonian allowed by
hermiticity and sublattice symmetry. When we consider the
quadratic part �8b� of the Hamiltonian H, the functions ��k�
and t�k� should be taken as

��k� = �0�k�, t�k� = t0�k� , �11�

However, since the interaction H1 shifts the grounds state,
the renormalized quadratic Hamiltonian which leads to the
exact Green’s function including the self-energy do not in
general coincide with Eq. �8b�. Generically the functions
��k� and t�k� are given by

��k� = �0�k� + ���k�, t�k� = t0�k� + t��k� , �12�

where ���k� and t��k� are of the order of S−1 since the inter-
action H1 is of the order of S0. In this paper, we approxi-
mately calculate the functions ���k� and t��k� in powers of
S−1 �Sec. IV� or of the Ising coupling constant 1 /J1

z �Sec. V�.
Now let us assume that we have found an appropriate Hquad.
Then, in order to eliminate the off-diagonal terms ab+a†b†,
we may introduce the following Bogoliubov transformation:

ak = cosh 	k
k − sinh 	k�k
† , �13a�

bk = − sinh 	k
k
† + cosh 	k�k, �13b�

which transforms Hquad to

Hquad = S���
�k� − h�
k
†
k + ����k� + h��k

†�k + f�k,	k�

��
k�−k + 
k
†�−k

† �� . �14�

In the above, we have introduced two functions

�
�k� = ���k� � ��k�cosh 2	k − t�k�sinh 2	k, �15a�

f�k,	k� � − ��k�sinh 2	k + t�k�cosh 2	k. �15b�

If we choose 	k in such a way that f�k ,	k�=0, i.e.,
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tanh 2	k =
t�k�
��k�

, �16�

Hquad is diagonalized and reads

Hquad = S��
�k� − h�
k
†
k + S��
�k� + h��k

†�k, �17�

It is important to note that the magnetic field h has different
signs for 
 and �. Assuming the �unique� minimum of the
spin-wave excitation �
�k� takes place at k=Q, we may in-
troduce the renormalized chemical potential by

�
 � h − �
�Q� . �18�

Now suppose we increase the external magnetic field h �or
�
�. Then, the gap of the 
 ��� boson decreases �increase�
and the 
 bosons into an 
-SF phase discussed below.

B. Supersolid from magnon BEC

In the previous subsection, we have seen that, as the ex-
ternal magnetic field is increased, the 
 magnon condenses at
�
=0 while the other remains gapped. Now, we show that
this BEC of the Bogoliubov-transformed magnons generally
leads to an SS phase. When a BEC occurs for �
0, 
Q
takes a finite expectation value 

Q��0 and, correspond-
ingly, the original bosons a and b have the following expec-
tation values:39


aQ� = cosh 	Q

Q�, 
bQ� = − sinh 	Q

Q
† � . �19�

In a dilute-gas limit, when translated into the spin language,
this implies the following spin configuration:40


Sl
x� = 2S� cosh 	Q cos�Q · l + ���1 +

f��S�
S

� ,


Sl
y� = � 2S� cosh 	Q sin�Q · l + ���1 +

f��S�
S

� ,


Sl
z� = �S − �S� − � cosh2 	Q, for l � A, �20a�


Sm
x � = − 2S� sinh 	Q cos�Q · m + ���1 +

f��S�
S

� ,


Sm
y � = � 2S� sinh 	Q sin�Q · m + ���1 +

f��S�
S

� ,


Sm
z � = − �S − �S� + � sinh2 	Q, for m � B, �20b�

where the real-space wave function is given by 

r�
=� exp��i�Q ·r+��� and �S=1 /N�qsinh2 	q. The function
f��S�=�S /2+O�1 /S� is obtained from the Holstein-
Primakoff transformed operator S� and is independent of �Q
in the dilute-gas limit. One can easily see that this state may
be thought of as an SS of magnons; an off-diagonal long-
range �incommensurate� xy order �which translates into an
SF long-range order� and a diagonal �commensurate� two-
sublattice z order coexist with each other. In general, a

modulation in the transverse component Sx,y with the wave
vector Q is incommensurate with the pattern of the z order.

If we denote the effective two-body interaction among the
condensed bosons evaluated at �
=0− by �, the leading term
of the system energy is in general written, as a function of
the condensate density �, as

Eeff

N
� const +

1

2
��2 − S�
� . �21�

Then, provided ��0, � is given by minimizing E

�

S
=

�


�
, for �
  0. �22�

However, the condition ��0 is not sufficient condition for
the stability of the SS phase since there may be higher-order
terms with negative coefficients in Eeff, which may select a
very large value of � and eventually destabilize the SS phase.
If ��0, on the other hand, one may expect a phase separa-
tion accompanied by magnetization jump near �
=0. For
both cases, there exists an additional possibility of more ex-
otic phases where single-particle BECs are no longer
relevant.24

The low-energy excitation spectrum of the SS phase is
easily obtained as in the ordinary superfluid Bose gas.37 De-
fining k�q−Q, we may expand �
�q�=�min+kikj / �2mij�
+¯, where the summation over repeated indices is implied.
We can diagonalize mij to obtain a standard dispersion
kikj /2mij =ki�

2 / �2mi����g�k��. Using this notation, the exci-
tation spectrum of the SS phase is given by

�SS�k� = �g�k�2 + 2S�R�g�k� � 2S�R�g�k� . �23�

For finite temperature, the Bose condensed bosons are sup-
pressed, and the critical temperature is given by

kBTc = 2.087�mxmymz�−1/3�S�


�
�2/3

. �24�

For T�Tc, the long-range order disappears and 
S��=0.
Above discussions assume the dilute-gas limit, where the

scattering length is much smaller than the average inter-
atomic distance �−1/3. Specifically, our approximation is valid
when

��mxmymz��1/3 � 1. �25�

To summarize, the knowledge about the wave number Q at
which the magnon BEC occurs, the effective mass mi and the
effective �two-body� interaction � for the condensed bosons
enables us to derive the stability, the spin configuration
which is not commensurate with the assumed sublattice
structure, the quasiparticle excitation spectrum and the criti-
cal temperature of the SS phase. Therefore, the analysis boils
down to the calculation of Q and �. A remark is in order here
about the definition of the bosonic vacuum. In Eq. �6a� and
�6b�, it is implicitly assumed that the NAF phase gives a
well-defined vacuum �i.e., the ground state when the conden-
sate is absent� for the two bosons. In general, the NAF state
shown in Fig. 2 suffers from quantum fluctuations and the
above assumption is justified either for the semiclassical �i.e.,
large S� case or the Ising-like �i.e., large-J1

z /J1
�� limit41
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In the following sections, we carry out the calculation by
combining the ladder approximation with the large S and the
Ising expansions. Concretely, in Sec. IV, we will obtain Eq.
�12� and the interaction � by the large S expansion up to the
second order in S−1. At the first order, our approach will
reproduce the results of the MFT; there are three types of
SSs. At the second-order perturbation, quantum fluctuations
may change the properties of the solid and the SSs qualita-
tively. However, we will see that the large-S expansion is not
reliable to calculate � when the Ising-like anisotropy J1

z is
large. To overcome this difficulty, we will study Eq. �12� and
� by the Ising expansion up to the second order in Sec. V. At
the first order, quantum fluctuations suppress the interactions,
but the stability of the SS itself is known by the MFT. Al-
though we will find the stable bound-magnon state, this con-
densed phase may be phase separated for large J1

z . In the
second order, we will see the effect of quantum fluctuations
on the stability of SS clearly.

IV. PERTURBATION THEORY IN S−1

In this section, we study the physics of the SS phase by
the perturbation theory in the parameter S−1. The first-order
calculation gives the same ground-state phases as the MFT.
At the second order, on the other hand, quantum fluctuations
play an important role and may destroy the classically stable
solid �NAF� or the SS phase.

A. First-order perturbation

If we assume 	k by

tanh 2	k
�1� =

t0�k�
�0�k�

=
J1

�C1�k�
4J1

z − 3J2
z + J2

�C2�k�
, �26�

the quadratic part of the Hamiltonian is diagonalized up to
O�S� �see Eq. �12��. We note that 	k

�1� is well-defined when
�tanh 2	k

�1���1. Concretely, the half-filled solid is stable at
h=0 when

4J1
z − 3J2

z + 3J2
�  4�J1

�� . �27�

If this inequality is not satisfied, the spins align in the xy
plane �SF� �see Eqs. �4� and �5��. Meanwhile, even when the
classical ground state is CAF �2J1

z �3J2
z�, this inequality may

be satisfied and then the metastable NAF phase against the
one magnon fluctuation may be obtained. In this paper, we
will not discuss the CAF case any more.

Let us discuss the minimum of the dispersion �
�k�
=�S1

�1��k� �see Eq. �15a�� to determine the structure of the SS.
From Eq. �26�, the dispersion relation reads,

�S1
�1��k� = �0�k�2 − t0�k�2

= �8J1
z − 6J2

z + 2J2
�C2�k��2 − 4J1

�2C1�k�2. �28�

where the superscript �i� of �S1
�i��k� denotes that the function

is evaluated at 	k=	k
�i�. In the following we shall use this

notation to the other arbitral functions of 	k. The minimum is
obtained by setting Q=Q1= �0,0 ,0� or Q2= �� ,� ,��. Al-
though we cannot exclude other possibilities generally, this is

always the case for the parameter sets used in this paper. It is
convenient to introduce � as

� � �S1
�1��Q2�2 − �S1

�1��Q1�2 = 16�− J2
��12J1

z − 9J2
z� + 4J1

�2� ,

�29�

Then, one chooses k=Q1 when ��0 or k=Q2 when �
�0. We have checked that the SS with Q1 �SS1� is always
favored for J2

��0. And when the Ising-like anisotropy is
large, i.e., 12J1

z −9J2
z �4J1

�, very small positive J2
� selects the

SS with Q2 �SS2�. For each case, we plot the dispersion
relation �S1�k� along the �1,1,1� direction in Fig. 5.

From Eq. �18�, the chemical potentials of both phases are
given by

�S1SSi � h − �S1�Qi�, for i = �1,2� , �30�

where the subscript “Sn” means that the interactions are ex-
panded up to n-th order in S−1 and “SSi” represents the types
of the SS. The effective masses are isotropic and are respec-
tively given by

mS1SS1 =
�4J1

z − 3J2
z + 3J2

��2 − 16J1
�2

2S�− J2
��4J1

z − 3J2
z + 3J2

�� + 4J1
�2�

, �31a�

mS1SS2 =
1

2SJ2
� . �31b�

When �=0, the two minima are degenerate and we have to
take into account two independent condensates and phases
which are not characterized by Eq. �17� may appear. A brief
discussion on this case is given in Appendix A. The SS phase
of four-sublattice structure �SS3� actually exists for certain
parameter sets. There exist three types of SS around the half-
filled solid.

Next, we consider the stability of the SS phase. The two-
body interaction between 
 bosons is given by the first-order
diagram since the bare Green’s function of 
��� bosons is
i / ��−S�


�1��k��h�=O�S−1� for ��−�
 and the vertex func-
tion is O�S0�. The alternative view is that, if we rescale the
Hamiltonian by S−1, the vertex function is O�S−1� and the
diagram is suppressed by S−1 for each vertex. Therefore, we
need only the vertex function between 
 bosons. By replac-

16.8
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17.4

17.6

17.8

18
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�
S1

(k
,k

,k
)

k/π

(i)
(ii)

(iii)

FIG. 5. �Color online� The dispersion relation of the excitation
energy �S1�k� for k= �k ,k ,k�, h=0, J1

z =3, J2
z =1, and J1

�=−1. �i� is
obtained at J2

�=0.1 and the minimum is at k=Q1. �ii� is at J2
�

=0.148 and the minima are at both k=Q1 and Q2. �iii� is at J2
�

=0.2 and the minimum is at k=Q2.
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ing ak→cosh 	k
�1�
k and bk→−sinh 	k

�1�
k
† in H, the interac-

tion term of 
 bosons appears as the following form:

1

2N � V
�q;k1,k2�
k1+q
† 
k2−q

† 
k1

k2

, �32�

where the factor 2 in front of N is considered for the sym-
metry factor. For the case ��0 and Q=Q1�=0�, � is given
by,

�S1SS1 = V
�0;Q1,Q1� = 6�J2
z − J2

�� , �33�

Thus, SS phase of Q1 is stable for J2
z −J2

��0.
For the case ��0 and Q=Q2, � is given by,

�S1SS2 = V
�0;Q2,Q2� = 6�J2
z + J2

�� , �34�

In this phase, the Spin on B sublattice does not have the
transverse magnetization even for �S1SS2�0 since sinh 	Q2

�1�

=0.
To see the validity of the above picture, we compare the

above result with that of the MFT. Although there exists the
extensive MFT calculation of this model for8,9 J2

��0, to the
best of our knowledge, there is not the appropriate mean-
field calculation of the models for J2

��0. Hence, we redo
the MFT for S=1 /2. Now, the ground-state energy is ob-
tained by replacing the operators in H with their expectation
values of Pauli matrices on each site, e.g., �
i,j�Si

zSj
z

→�
i,j�S
2
�i

z�
� j
z�. We compare energies of the three types of

spin configurations,

E1
mean

NS2 = 8J1
z
�z�
�z�� + 3J2

z�
�z�2 + 
�z��2� − 8�J1
�����

+ 3J2
���2 + ��2� + h�
�z� + 
�z��� , �35a�

E2
mean

NS2 = 8J1
z
�z�
�z�� + 3J2

z�
�z�2 + 
�z��2� − 3J2
���2 + ��2�

+ h�
�z� + 
�z��� , �35b�

E1/4filled

NS2 = − h . �35c�

where �=
�x�2+ 
�y�2=1− 
�z�2. E1
mean is obtained from

the two-sublattice structure, E2
mean is from the two-sublattice

structure of 
�z� and � with AF-�� ,� ,�� 
�x,y� ordering on
each sublattice, and E1/4filled is from the quarter-filled solid.
In this paper, we ignore the possibility that another types of
SS phases appear around the quarter-filled solid as in the
model on the square lattice.12,31 By minimizing each energy
numerically, we obtain magnetization curves for various pa-
rameters. We confirmed that the Bose-gas approach gives the
same results as the MFT one. The specific examples are
shown in Fig. 6.

B. Second-order perturbation

To see the effect of quantum fluctuation more clearly, we
consider the second-order perturbation theory in the param-
eter S−1. In this order, the ground-state phase may become
different from the mean-field one.

To begin with, let us consider the state of the half-filled
solid by diagonalizing the quadratic term in the Hamiltonian.
When the interaction terms �8c� are written in terms of the
Bogoliubov-transformed bosons and put into the normal-
order form, additional quadratic terms appear. As a result, the
quadratic part of Hamiltonian reads,

HquadS2 = ��S�0�k� − T1�k��cosh 2	k − �St0�k�

− T2�k��sinh 2	k − Sh�
k
†
k + ��S�0�k�

− T1�k��cosh 2	k − �St0�k� − T2�k��sinh 2	k

+ Sh��k
†�k + �− �S�0�k� − T1�k��sinh 2	k + �St0�k�

− T2�k��cosh 2	k��
k�k + 
k
†�k

†� , �36�

where Tks are given by Eq. �B1�. Even in the normal-ordered
two-body interaction terms, there exists the terms which shift
the vacuum with respect to 
 and � �e.g., 
†�†
†�†�0��0�,
which leads to the self-energy. However, this contributes the
Green’s function in the third order of S−1 and we neglect the
self-energy in our approximation. We note that, even if we
use Holstein-Primakoff transformation, the same quadratic
Hamiltonian is obtained up to the second order in S−1. The
difference between the two boson representations �i.e.,
Dyson-Maleev and Holstein-Primakoff� appears in the two-
body interaction term.

Now, 	k is given by solving

�− S�0�k� + T1�k��sinh 2	k + �St0�k� − T2�k��cosh 2	k = 0.

�37�

To evaluate T1,2, we need the explicit form of the function
	k. Since T1,2 is suppressed by a factor 1 /S in the diagonal-
ization procedure, we use 	k

�1� which is obtained in the first-
order calculation for the integrands in Eq. �B1�. Therefore,
	k

�2� which is corrected up to second order is given by
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FIG. 6. �Color online� Magnetization curves obtained from the
MFT for J1

z =3, J1
�=−1. We assume two-sublattice structure or the

quarter-filled solid. M is given by �1 /2N��1
2N
Sl

z�. �i� curve is ob-
tained for J2

z =0.5, J2
�=0.3. �ii� is for J2

z =−0.1, and J2
�=0.4. �iii� is

for J2
z =0 and J2

�=−0.4. �iv� is for J2
z =−0.5 and J2

�=−0.4. All curves
has a half-filled solid around h=0 and SF phase below the satura-
tion field. �i� curve has SS2 just ahead the half-filled solid, and the
quarter-filled solid. �ii� has SS2 also. �iii� has SS1 which is con-
nected to SF phase continuously. �iv� does not have SS phase.
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tanh 2	k
�2� =

t0�k� − T2
�1��k�/S

�0�k� − T1
�1��k�/S

. �38�

If �tanh 2	k
�2���1, the spinwave expansion concludes that the

half-filled solid is unstable and that other phases may take
over. In fact, this happens for certain choices of the param-
eters. The detailed result will be discussed in Sec.VI. Then
the quadratic Hamiltonian and the dispersion relation �S2�k�
are given, respectively, by

H0� = S��S2�k� − h�
k
†
k + S��S2�k� + h��k

†�k, �39�

�S2�k� =��0�k� −
T1

�1��k�
S

�2

− �t0�k� −
T2

�1��k�
S

�2

.

�40�

If we introduce the appropriate constants a1 , . . . ,a3, the
above phonon dispersion �S2�k� may be written generally as:

�S2�k� = �a1 + a2C2�k��2 − �a3C1�k��2, �41�

and qualitatively the same dependence on k as in the first-
order case is obtained. In our calculations, the minimum is
always locked at Q1= �0,0 ,0� or Q2= �� ,� ,��, which re-
spectively corresponds to SS1 or SS2. The criterion, which
determines the structure and the effective mass for each
phase, is easily obtained in the same manner as in the first-
order case �see Eq. �29� and �31��. However, the explicit
forms are somewhat lengthy and we do not show them in this
paper. In the following, we shall concentrate on the physics
of SS1 and SS2 and shall not discuss SS3 further. The chemi-
cal potential �
, which controls the onset of BEC, are also
different from the first-order one �30� and is given by

�S2SSi � h − �S2�Qi�, for i = �1,2� . �42�

Next, we briefly recapitulate the method by which we calcu-
late the effective interaction � among the condensed bosons.
We simply evaluate the diagrams up to the second order in
S−1. We have one diagram at the first order and six at the
second order. The second-order diagrams are shown in Fig.
7. To evaluate the second order diagram, we use the bare
Green’s function at �S2SSi=0 in the dilute-Bose-gas approxi-
mation:


T�
k
k
†����� =

i

� − S��S2�k� − �S2�Qi�� + i0+ . �43�

In the presence of a finite condensate �

��2=���, the
Green’s function, which is obtained for a operator 
�=

− 

�, gets modified continuously from the one at the onset of
BEC.37 Specifically, 

�
�†�at ��0= 


†�at �=0+O���, and


�
��at ��0=O���. In short, the modified quadratic Hamil-
tonian and the effective interaction � calculated above tell us
the stability and the low-energy physics of solid and SS
phase. The detailed results are shown in Sec. VI.

Finally, we consider the validity of the expansion of the
exponential in powers of the interaction terms in the path
integral when we calculate �. If we were able to take into
account an infinite number of terms, the expansion would be
correct. However, now we sum up only a finite number of

terms. Thus, we need a criterion, even though naive, for de-
termining the reliability of the expansion. A natural candidate
may be the magnitude of the expanded interaction terms. To
see this explicitly, we consider the following simple boson
model on the simple cubic lattice:

Hs = �
k

k2

2m
dk

†dk +
1

2N
�

k1,k2,q
2�dk1+q

† dk2−q
† dk1

dk2
�44�

In this model, the low-energy effective interaction �s be-
tween the condensed bosons is exactly obtained as �s
=2� / �1+ �2 /��m��=2��n�−�2 /��m��n. The dimensionless
constant m� captures the magnitude of the expanded interac-
tion terms. Thus, for general lattice boson models, we may
expect that �mass�� �coupling constant� gives a simple cri-
terion for the validity of the expansion.

Let us apply the above criterion to our case. For the boson
masses, we use Eq. �31�, which are correct up to the first
order in S−1, for simplicity. An appropriate choice of the
coupling constants may be Ji

z and Ji
� for i= �1,2�. For SS2,

the criterion reads Ji
zm2cl=Ji

z / �2SJ2
��. Hence, however large

the spin S may be, the series expansion of � eventually di-
verges for relatively large Ising anisotropy. Similarly for
SS1, the perturbation expansion is not converging for large
Ising anisotropy since m1cl�−1 / �2SJ2

��. We have one more
problem in the evaluation of �; when the energy dispersion
at the solid is nearly gapless �i.e., tanh 2	k=0�1 in Eqs. �15�
and �16��, cosh 2	0 and sinh 2	0 have large values�for
tanh 2	→1, 	→��. We note that these problems are pecu-
liar to the evaluation of � and the low-energy physics of the
solid �NAF� is well understood by the large-S expansion.

From the above discussion, we may conclude that the SS
phases obtained within the MFT, which do not change even
after the first-order 1 /S-correction is taken into account,
might be destroyed at higher orders by quantum fluctuations.
Since the perturbation expansion described above is ill be-
haved for large Ising anisotropy, we have to take another
approach to closely investigate the fate of the SS phases. In
the next section, we shall introduce another perturbation
theory with respect to large Ising anisotropy. A reliable treat-

1. 2.

3. 4.

5. 6.

FIG. 7. The second-order �one-loop� diagrams in S−1. Straight
lines �wavy lines� denote 
��� bosons. Broken lines denote the
momentum transfer at the interaction.
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ment of � for the case with tanh 2	k=0�1 remains to be an
open problem.

V. PERTURBATION THEORY IN LARGE
ISING-LIKE ANISOTROPY

In the limit J1
z ↗�, the system behaves like the Ising

model. In this section, we compute � by the perturbation
theory in �J1

z�−1. Specifically, we develop an expansion in
small coupling constants �J2

z ,J1
� ,J2

��.

A. First-order perturbation

If we diagonalize the bare quadratic Hamiltonian H0 �8b�,

tanh 2	k =
J1

�C1�k�
4J1

z − 3J2
z + J2

�C2�k�
= O�1/J1

z� , �45�

Then,

cosh 	k = 1 + O��J1
z�−2�, sinh 	k = O��J1

z�−1� . �46�

If we assume that the exact 	k obtained by Eq. �16� has the
same property, the self-energy contribution to the quadratic
Hamiltonian ����k� , t��k� in Eq. �12�� is up to O��J1

z�0� and
the dependence on J1

z of 	k is maintained as Eq. �46�. There-
fore, the leading-order Hamiltonian in J1

z reads

HI1 = �
k

S��0�k� − h�
k
†
k + �

k
S��0�k� + h��k

†�k,

+
1

N
�

k1,k2,q
�J2

zC2�q� − J2
�C2�k2��
k1+q

† 
k2−q
† 
k1


k2
. �47�

where we neglect the two-body interaction term containing �
bosons since the gap of � boson is O�J1

z� when the gap of 

boson closes. The meaning of the subscript “In” is similar to
that of “Sn” in the previous section; it means that terms are
kept up to n-th order in the Ising expansion. The minimum of
the dispersion is obtained at Q1= �0,0 ,0� for J2

��0 �SS1� or
Q2= �� ,� ,�� for J2

��0 �SS2�. The chemical potential and
the effective mass are respectively given by

�I1 = h − �8J1
z − 6J2

z − 6�J2
��� , �48a�

mI1 =
1

2S�J2
��

. �48b�

Next, let us evaluate the interaction � among the 
 bosons.
Since both the Green’s function of 
 bosons and the coupling
constants of interaction are O��J1

z�0�, the all-order diagrams
equally contribute to �, which is given by the ladder diagram
�Fig. 8�. The ladder diagram T evaluated at the solid satisfies

T�q;k1,k2� = K�q;k1,k2� −
1

N

��
q�

T�q�;k1,k2�K�q − q�;k1 + q,k2 − q�
��k1 + q�� + ��k2 − q�� − ��k1� − ��k2�

.

�49�

where the particle corresponding to the external line is as-
sumed to be a real one with the energy ��k�−�. One obtains
the parameter � for SSi�Qi� as �SSi

=T�0,Qi ,Qi�.
Now, the kernel K and the energy � are given by

KI1�q;k1;k2� = 2J2
zC2�q� − J2

��C2�k1� + C2�k2�� ,

�50a�

�I1�k� = 2S�J2
�C2�k� + 3�J2

��� . �50b�

The self-consistent Eq. �49� for the ladder diagram is exactly
solvable21,22 and we obtain

�I1SSi
=

6�J2
z + �J2

���

1 + 0.258
�J2

z + �J2
���

S�J2
��

, �51�

for i= �1,2�. If the limit S→� is taken, � reduces to the
first-order result in the large-S expansion �Eqs. �33� and
�34��. For finite S, � is suppressed by quantum fluctuations.
However, concerning the stability of the SS phases, there is
no difference from the MFT result as far as the denominator
is positive. We note that if

1 + 0.258
�J2

z + �J2
���

S�J2
��

= 0, �52�

the effective interaction �I1SSi
diverges. This suggests the

possibility of the SS accompanied by the bound-magnon
BEC. A brief discussion on this issue will be given in Sec.
V C.

B. Second-order perturbation

In this section, we study the SS phase around the solid in
the second-order perturbation in �J1

z�−1 with the help of large
S expansion.

To obtain the renormalized quadratic Hamiltonian, we
perform the Bogoliubov transformation and normal-order the
interaction term, sorting out the terms based on Eq. �46�.
Since near the boundary of NAF-CAF transition quantum
fluctuation may play an important role, we keep only terms
of order O�J2

z / �J1
z�2� �we neglect the order O��J2

z /J1
z�n /J1

z�
terms with n2�. Even on the classical boundary, 6J2

z

= �1 /2�8J1
z and the J2

z times coordination number is sup-
pressed by the large-anisotropy J1

z . Therefore, the expansion
may work. Since the renormalized 	k satisfies Eq. �46�, the
off-diagonal part of quadratic Hamiltonian is given by

T = � TK K

FIG. 8. Ladder diagram: T represents the ladder diagram and K
represents the kernel which is not reducible to the product of two-
particle Green’s function.
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H�I2�off = �
k
�S�− �0�k�sinh 2	k + t0�k�cosh 2	k�

+
J1

z

2 � 1

N
�
q

C1�q�sinh 	q�C1�k�	�
k�−k + 
k
†�−k

† �.

�53�

Now, approximately sinh 	k= t0�k� /2�0�k�+�k, where �k is
O�J1

z−1�. Then, the leading order of �k is obtained and, as a
result, 	k is given by

sinh 	k
�I2� = AIC1�k� , �54a�

cosh 	k
�I2� = 1 +

AI
2

2
C1�k�2, �54b�

where

AI =
2J1

�S

4S�4J1
z − 3J2

z� − J1
z . �55�

Now, the quadratic part of the Hamiltonian reads

H�I2�0 = �
k

��I2�k� − h�
k
†
k + ��I2�k� + h��k

†�k, �56�

where

�I2�k� = 8SJ1
z − 6SJ2

z − 16J1
zAI

2 + 12J2
zAI

2 + �2SJ2
�

+ 2J2
zAI

2�C2�k� + �2�8SJ1
z − 6SJ2

z − J1
z�AI

2

− 4SJ1
�AI�C1�k�2. �57�

Then, the minimum of dispersion is obtained at Q1
= �0,0 ,0� or Q2= �� ,� ,�� as in the first-order result. The
chemical potentials and the effective masses for each phase
are given by the same way as in Sec. IV A; �see Eqs. �30�
and �31��.

Let us evaluate the two-body interaction � between the
condensed bosons. As in the first-order case in 1 /J1

z , we need
to calculate the kernel in the ladder diagram �see Fig. 8�.
When the gap of the 
 boson closes, that of the � bosons is
O�J1

z�. Then, the correlation of the � boson remains short-
ranged for low energies and 
T��k�k

†��E�0��=O�1 /J1
z�. The

effect of � operator in the interaction term is at most
O�1 /J1

z�. Therefore, the interaction part of the Hamiltonian
which affects the kernel is obtained and is given in Eq. �B2�.
Now, we shall evaluate the kernel. Before doing so, a remark
is in order; at the second order of 1 /J1

z an infinite number of
diagrams appear in the kernel. Hence, with the help of large
S expansion, we keep the term of the third order of S �up to
two-loop diagrams� and neglect the term of O��J1

z�−1S−3�. In
the selection of diagrams which contribute to the kernel, we
do not view J2

z as a special contrary to the case of the qua-
dratic Hamiltonian, for simplicity. As a result, in the second
order of S, four diagrams and, in the third order of S, four-
teen diagrams contribute to the kernel. The one-loop dia-
grams are given by 3�6 shown in Fig. 7, and the part of the
two-loop diagrams are shown in Fig. 9. When we evaluate
the diagrams, we drop the term of O��J1

z�−2� after the fre-
quency of the propagator is integrated out. In this calcula-

tion, we maintain the terms J2
z which are readily obtained in

the quadratic Hamiltonian, even if the contribution of these
term is O�J2

z�J1
z�−2�. Concretely, we use the gap of � boson as

2S�8J1
z −6J2

z� and maintain J2
z of Eqs. �55� and �57�. We solve

Eq. �49� by substituting the obtained kernel, and the interac-
tion � between condensed bosons is obtained. The detailed
results are shown in Sec. VI.

C. Possibility of bound-magnon BEC

We briefly comment on the possibility of stable bound
states. From the viewpoint of the Bethe-Salpeter equation,
the two-particle Green’s function contains the ladder diagram
and the divergence of � implies the existence of stable bound
states. In fact, this method has been successfully applied23,24

to search for the stable bound-magnon state in the vicinity of
the saturated ferromagnetic phase of one-dimensional and
3D frustrated magnets. Hence, the above ladder approxima-
tion may be also applied to study the bound-magnon BEC
around the solid. Now, we note that within the first-order
perturbation the effective interaction �I1SSi

�Eq. �51�� di-
verges when

1 + 0.258
�J2

z + �J2
���

S�J2
��

= 0. �58�

In fact, we found that � had a pole below the two-particle
threshold when the left-hand side of Eq. �58� is negative.
Therefore, when the denominator of Eq. �51� is equal to 0 or
negative, we may expect that, instead of the usual magnons,
the bound magnon condenses at the center-of-mass momen-
tum K=0 provided that the chemical potential is properly
tuned. We found that the energy of the bound state at K
= �� ,� ,�� is higher in energy than the one at K=0 and will
not affect the critical value of � �or h� at which the bound-
magnon BEC occurs. However, the extensive studies on
hardcore Bose Hubbard models by quantum Monte Carlo
simulations10–12,26–28 have never indicated the existence of an
SS accompanied by a bound-magnon BEC. Hence, it would
be useful to reconsider this problem from the energetic point
of view, even though rough.

Of course, some other phases may compete with the
bound-magnon phase. In particular, the SF phase, which may

�
�

FIG. 9. The part of two-loop diagrams which contributes to the
kernel in the order in S−2�J1

z�−1. Straight lines �wavy lines� denote

��� boson. Broken lines denote the momentum transfer at the
interaction.
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appear from the solid phase via the first-order transition,
would be an important candidate. In the MFT, a solid-
superfluid �S-SF� transition occurs at

hS-SF = 216J1
z2 − �3J2

z + 4�J1
�� − 3J2

��2 = 8J1
z − �O�J1

z−1�� .
�59�

From �48a�, on the other hand, one sees that the bound-
magnon BEC starts at hb�8J1

z −6�J2
z + �J2

���=8J1
z +O��J1

z�0�
when Eq. �58� is satisfied. In the case of the attraction �J2

z

+ �J2
����0, one sees that hb�hS-SF and that a direct first-

order S-SF transition occurs before the condensation of
bound magnons. Hence, although an exotic SS phase brought
about by the bound-magnon BEC may be expected �note that
the gap of a bound magnon closes earlier than that of a single
magnon� in the vicinity of the solid phase, what we actually
have is a phase separation.

Therefore, in order to see the bound-magnon BEC around
the half-filled solid, it may be necessary that higher-order
terms in the perturbation in 1 /J1

z shift the critical value � by
O��J1

z�0�. In this case, the approximation used in this section
is beyond the scope of application to search the bound-
magnon BEC. We do not go into more detailed discussion
about the bound-magnon BEC in this paper.

VI. PHASE DIAGRAM

In Secs. IV and V, we have described the two methods of
calculating the minimum Q of the dispersion by which the
spin structure of the SS phase has been determined. On top
of it, the mass, the chemical potential, and the interaction �
which determines the stability of the SS have been com-
puted. In this section, we show the detailed results on the
phase diagram paying particular attention to the parameter
set �3�.

A. Stability of a half-filled solid—a spinwave analysis

The solid phase is stable when the energy gap is finite.
Quantum fluctuations shift the energy gap and, in certain
cases, the gap may close. In this subsection, we study the
properties of the half-filled solid by the conventional spin-
wave theory up to the second order in S−1. Even for S=1 /2,
the approximation may work since the ground state is or-
dered.

At the first order in S−1, the energy gap closes even at h
=0 when �tanh 	k=0

�1� �=1, and then the energy of the solid and
the SF phase �or, a phase with magnetic long-range order in
the xy plane� is degenerate within the MFT �see Eqs. �4�, �5�,
and �26��. For �tanh 	k=0

�1� ��1, the SF phase is stabilized. In
the second order in S−1, the quantum fluctuation shift 	k

�1� to
	k

�2� and the boundary where the gap closes also changes. If
the transition is a usual second-order one, the emergent phase
may be SS. The first-order transition to the SF near the
boundary may be also expected. However, in the case of 2D
square lattice, the quantum Monte Carlo simulations indicate
that at the Mott-SF transition point, SU�2� symmetry dra-
matically restores11 as in the classical case. Even though
there exists the difference of the dimensionality, we may not

exclude the possibility that on the phase boundary SU�2�
symmetry restores.

To see the properties of the resultant phases more clearly,
we carry out the Holstein-Primakoff transformation starting
from the SF phase �the xy-ordered NAF phase in the spin
language� for J1

��0 and calculate the magnon dispersion
relation in the SF up to the second order in S−1 at h=0.

Let us briefly discuss some technical aspects of the calcu-
lation. There are two types of excitations: one is the gapless
Goldston mode and the other is a massive �gapped� mode. To
obtain these, we need to integrate out the functions of 	k as
in Eq. �B1�. If we substitute the 	k obtained in the first order
as in Sec. IV B, the gapless Goldston mode remains gapless.
As is well known, the spin-wave expansion is well-behaved
if the ground state is classically stable. Hence, we do not
extend the calculation to the region where the corresponding
phase is unstable in the MFT. Concerning the gapped mode,
when the gap closes at the first order in S−1, the solid and the
SF are degenerate in energy within the MFT. Since the gap
of this mode is affected by the quantum fluctuations, the
phase boundary is shifted in the second order in S−1. The
resulting phase may be either the solid or the SS phase.

As a result, a shift of the phase boundary is found in each
phase, as is shown in Figs. 10 and 11. As has been discussed
above, since the spin-wave expansion is well-behaved in the
case that the selected phase is the classical ground state, only
on the classical phase boundary, we can compare the disper-
sion of each phase explicitly. At the first order in S−1, both
dispersions are gapless. At the second order in S−1, when the
dispersion of one phase �solid or SF� is ill-defined, that of the
other phase obtains the finite gap. If the system has the glo-
bal SU�2� �rotation� symmetry, the dispersion remains gap-
less. As a result, the shifted boundary forms the almost
straight line which intersects that of the MFT at the param-
eter set where SU�2� symmetry exists.

Next, let us discuss the application to 4He as the QGM.
As shown in Fig. 11, at the LF point, the solid phase is

0.2 0.4 0.6 0.8 1.0
J2z

0.8

1.0

1.2

1.4
J1z

Solid(NAF)

SF(xy)
CAF

FIG. 10. �Color online� Phase boundary between the half-filled
solid �or, the Ising-like NAF phase� and the SF phase �or, a phase
with magnetic long-range order in the xy plane� obtained by the
large-S expansion up to the order of S0. Te values S=1 /2, J1

�=1,
J2

�=0.5, and h=0 �half-filled� are used. The solid line �blue� for
J2

z 0.5 denotes the boundary where the gap of the solid phase
closes. The solid line �red� for J2

z �0.5 denotes the boundary where
the gap of the massive mode of the SF phase closes. The broken
line �black� denotes the classical boundary between NAF, CAF, and
SF phases. The dot represents the J1

z =1 and J2
z =0.5, where the

system has SU�2� symmetry and the boundaries intersect. In the
highlighted region �green�, the dispersion has a nonzero imaginary
part and is ill-defined. For J2

z 0.5, the emergent phase may be
either the SF or the SS. For J2

z �0.5, the emergent phase may be
either the solid or the SS.
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unstable even at h=0 and the resulting phase may be either
the SF or the SS. To conjecture this phase, we plot the
tanh 	k=0 of the massive modes as shown in Fig. 12. If
�tanh 	k=0�=1, the energy gap closes. With the help of the
fitting line, we see that on the parameters �3�, the SF phase
may be stabilized. Hence, on this parameter set, the QGM
does not make a sense, and the fitting parameters for 4He
must be reconsidered by taking into account the quantum
fluctuation.

B. Stability of supersolid

The fitting parameters for 4He shall shift from Eq. �3�.
Although the shift may be quantitatively large to see Fig. 12,
that is still expected to be perturbative since the quantum
fluctuation is treated as a perturbation. Then, since the effec-
tive interaction � obtained within the first order in S−1 �or the

MFT� on Eq. �3� is robust �see Eq. �33��, the perturbative
shift of the fitting parameters shall not affect the stability of
the SS within the MFT. Therefore, we study the quantum
effect to the stability of the SS near the LF point �3� by the �
obtained in the second-order perturbation in S−1 and 1 /J1

z .
The repulsive nature of the effective interaction ���0� sug-
gests the stability of the SS phase.

Since J1
� /J2

� is fixed at 1/2 in the QGM, we plot � as a
function of J1

z and J2
z , as is shown in Figs. 13 and 14. On the

phase boundary, the perturbation theory in S−1 gives the di-
vergence to −� because of 	k for tanh 	k=0→1 and the used
approximation is beyond control. Near Eq. �3�, the perturba-
tion theory in 1 /J1

z also has the problem of accuracy since
the suppression of the expansion parameter 1 /J1

z may not be
sufficient. However, both methods lead to the one identical
conclusion. In the case of S=1 /2, both predict that � is con-
siderably suppressed near Eq. �3�, and, as a result, the
second-order term has the same magnitude as the relatively
large first-order term. Hence, quantitatively, it may be under-
stood that the � of the MFT �that of the first order in S−1� is
not reliable near Eq. �3� and there exists the possibility that
the quantum fluctuation breaks the stability of the SS. There-
fore, even if the shift of the parameter set from Eq. �3� is

1.0 1.5 2.0 2.5
J2z2.0

2.5

3.0

J1z

Solid(NAF)

CAF
SF(xy)

↑LF

FIG. 11. �Color online� Phase boundary obtained by the large-S
expansion up to the order of S0 between the half-filled solid and the
SF phase for S=1 /2, J1

�=−1, J2
�=−0.5, and h=0 �half-filled�. The

solid line �blue� denotes the boundary where the gap of the solid
phase closes. The broken line �black� denotes the classical boundary
between NAF, CAF, and SF phases. The dot labeled as LF �blue�
represents the LF point �3�, which is suggested for the fitting
parameters9 of 4He. In the highlighted region �green�, the spin-wave
expansion is ill-defined and the emergent phase may be either the
SF or the SS. The straight line and the broken line intersect at J1

z

=1 and J2
z =−0.5, where SU�2� symmetry exists.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
J1z

0.1

0.2

0.3

0.4

0.5
1-|tanhθ|

←LF

Classical
boundary�

FIG. 12. �Color online� 1− �tanh 	k=0
�2� � obtained of the order of S0

for S=1 /2, J2
z =1.59, J1

�= �1, and J2
�=−0.5 plotted as a function of

J1
z . If 1− �tanh 	k=0

�2� �=0, the gap closes. The solid line �red� is given
by the massive mode on the SF. We obtained it for J1

�=1, which
transforms to J1

�=−1 by the gauge transformation. The dashed line
�blue� is obtained on the solid phase. The vertical line labeled as LF
represents the LF point �3�. On the classical boundary, the gap of
the SF phase largely opens. If we introduce the fitting line �the
nonlabeled broken line�, the gap of the SF phase seems to be open
on the LF point and the stability of the SF is implied. Moreover, the
gap seems to be maintained over the point where the gap of the
solid phase closes. Hence, the solid-SF first-order transition is ex-
pected at 2.7�J1

z �3.2.

2.8 2.9 3.0 3.1 3.2 3.3 3.4
J1z0

5

10

2.7

Γ

FIG. 13. �Color online� The interaction � for J2
z =1.59, J1

�=−1,
and J2

�=−0.5. Solid lines are obtained in the second order in S−1.
The broken lines are in the second order in �J1

z�−1. The curves are
obtained, respectively, for S=� �black�, 1 �red�, and 1/2 �blue� be-
ginning at the top. The left vertical line �red� is the phase boundary
for S=1 where the gap closes in the second order in S−1 at h=0. The
right vertical line �blue� is for S=1 /2. Near the boundary and for
large J1

z , the difference becomes large. For the large Ising-like an-
isotropy J1

z , the evaluation of � in the second order in S−1 becomes
pathologic as discussed in the last part of Sec. IV B

0.5 1.0
J2z

5

10

1.5-0.5

Γ

FIG. 14. �Color online� The interaction � for J1
z =2.60, J1

�=−1,
and J2

�=−0.5. Solid lines are obtained in the second order in S−1.
The broken lines are in the second order in �J1

z�−1. The curves are
obtained, respectively, for S=� �black�, 1 �red�, and 1/2 �blue� be-
ginning at the top. The right vertical line �red� is the phase boundary
for S=1 where the gap closes in the second order in S−1 at h=0. The
left vertical line �blue� is for S=1 /2. The shift of the boundary near
J2

z =−0.5 which determines the stability of the SS is extremely small
and is within the error of O�S−2� or O��J1

z�−2�.
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perturbative, the stability of the SS phase of 4He remains to
be a question.

Finally, we comment on the shift of the boundary which
determines the stability of the SS given by the MFT. As is
seen in Fig. 14, the quantum effect to � is very little on this
boundary and the shift is within the error of approximation
for both approximation �O�S−2� or O��J1

z�−2��. We found that
this is also the case for the SS2 which mainly appears for
J2

��0 unless the parameter set sits near the phase boundary
of solid SF at half filling. Therefore, if the energy of the solid
phase is sufficiently less than the superfluid phase at half
filling, the boundary determining the stability of the SS
phase given by the MFT may not be affected by the quantum
fluctuation.

VII. SUMMARY

By using the spin-wave �1 /S� and the Ising expansion
together with the dilute-Bose-gas technique, we studied the
SS phase around the half-filled solid �NAF� phase. First, we
introduced two kinds of magnon excitations for the two sub-
lattices in the NAF phase. At a certain value of chemical
potential �or, the external magnetic field�, the gap of one of
the Bogoliubov-transformed magnons closes; this magnon
BEC keeps the two-sublattice NAF structure intact implying
the SS phase. The spin configuration of the SS phase was
determined by the minimum of the energy spectrum over the
solid ground state. The Bogoliubov-transformed magnons
can be viewed as vacancies or interstitials introduced in sol-
ids. If the effective interaction � among the condensed mag-
nons are repulsive, we may expect, on physical grounds, a
stable SS phase to appear. Therefore, the necessary condition
for a second-order solid-SS transition is given by ��0; if
this condition is met, the SS phase realizes for low conden-
sate density.

To evaluate the excitation spectrum in the solid phase and
the effective interaction � in a quantum-mechanical manner,
we developed the perturbation theory in S−1 and �J1

z�−1 in
Secs. IV and V, respectively. �Table II�

The first-order calculation in S−1 yielded the same results
as in the MFT; three types of SS phases are found around the

half-filled solid. At the second order in S−1, we found a pos-
sibility that quantum fluctuations destabilize the NAF solid,
which is expected to be stable from the MFT. Specifically, in
the evaluation of �, the second-order correction in S−1 be-
comes ill-behaved when the Ising-like anisotropy J1

z is large
or when the energy of the solid is almost the same as that of
the SF at half filling. In such cases, the MFT �or, equiva-
lently, the first-order perturbation in S−1� may not be reliable.

In order to overcome this difficulty, we carried out an-
other perturbation theory from the Ising limit �i.e., expansion
in 1 /J1

z�. At the first order in 1 /J1
z , we used the ladder ap-

proximation and saw that quantum fluctuations did suppress
�, while we obtained the same result as the MFT one as far
as the stability of the SS phase is concerned.

For negative � �i.e., attraction�, we found a possibility of
a phase characterized by the bound-magnon condensate.
However, this phase may be replaced by the SF for the pa-
rameters considered in the text. In carrying out the second-
order calculation in 1 /J1

z , we used the ladder approximation
with only diagrams up to two-loop �i.e., up to the third order
in S−1� kept in the kernel. The effect of quantum fluctuations
depends crucially on the energies of the solid and the SF
phase, as in the large-S expansion.

When the energy of the solid is sufficiently smaller than
that of the SF phase at half filling, the second-order term had
little effect on � in the vicinity of the MFT boundary �see
Fig. 14�. In other words, under the above condition, we may
conclude that quantum fluctuations only have minor effects
on the stability of the SS phase.

On the other hand, when the energy of the solid phase is
comparable to that of the SF phase, there exists a possibility
that quantum fluctuations completely wash out the SS phase
obtained in the MFT. Actually, in the vicinity of the LF point,
where frustration due to the competition among NAF, CAF
and SF is strong, the second-order Ising-like expansion also
concluded divergingly large negative values of � �see Figs.
13 and 14�.

In Sec. VI, we studied the effect of quantum fluctuations
on the ground state at the LF point. At the second order in
S−1, the ground state may be given not by the SS but by the
SF even at h=0. The failure of the Liu-Fisher values to de-
scribe 4He suggests that the optimal parameters, which
should be obtained by fully quantum treatment, may differ
from the Liu-Fisher ones. We expect that the deviation from
the LF point is small and that it can be handled in a pertur-
bative fashion. On the basis of this expectation, we studied
the stability of the SS in the vicinity of the LF point. Since
the energies of SS and SF are comparable in this region, the
MFT may not be reliable. Even if the shift of the fitting
parameters from the LF point is small and the MFT guaran-
tees the stability of the SS, there remains a possibility that
quantum fluctuations destabilize the SS. To investigate this
possibility more closely, we shall need such a sophisticated
treatment that the renormalization of the effective interaction
� due to higher-order terms is appropriately taken into ac-
count.

Note added. After the completion of our work, we became
aware of a series of papers by Stoffel and Gulácsi who stud-
ied the same model38 as ours by the Green’s function theory
with the random-phase approximation. They reached a dif-

TABLE II. Types of phase transitions suggested by the several
methods in this paper. “SW” and “Ising” represent the spinwave-
and the Ising expansion discussed in Secs. IV and V, respectively.
The interactions �S1SSi�i=1,2� and �I1SSi

are given in Eqs. �33�,
�34�, and �51�, respectively. �S2SSi and �I2SSi

are shown in Figs. 13
and 14. If � diverges, one should not take the value literally, since
even in that case a second-order solid-“bound-magnon SS �BMSS�”
transition may be expected. The detailed discussion on a BMSS is
given in Sec. V C.

Method Solid SF Solid SS Solid BMSS

SW 1st 1st ��S1SSi�0� 2nd ��S1SSi�0�
SW 2nd 1st ��S2SSi�0� 2nd ��S2SSi�0�
Ising 1st 1st ��I1SSi

�0� 2nd ��I1SSi
�0� 2nd

Ising 2nd 1st ��I2SSi
�0� 2nd ��I2SSi

�0� 2nd

MFT 1st 2nd
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ferent conclusion that the critical external field at the
solid-SS transition is little affected by quantum fluctuations
at the LF point. We suspect that the discrepancy might be
attributed to the difference in the approximation schemes; we
believe that our approximation is well controlled by the two
small parameters.
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APPENDIX A: SUPERSOLID PHASE EMERGING
FROM TWO TYPES OF BOSONS

In Sec. IV A, we have discussed the two SS phases, which
are described by a single Boson condensate, and classified
them by � �29�. As has been mentioned there, however, in
the case of �=0, the spin-wave dispersion takes its minima
at both Q1= �0,0 ,0� and Q2= �� ,� ,��, and there exists a
possibility that both kinds of bosons condense simulta-
neously. In this appendix, we discuss this possibility within
the first-order perturbation in S−1. We shall see that a new
type of SS phase �SS3� appears for a certain parameter re-
gion; it has a four-sublattice structure and may continue to
the quarter-filled solid.

As in the case of magnon BEC just below the saturation
field,22,24,25 the ground-state energy density may be expanded
in powers of the boson densities;

Eeff

N
� const +

1

2
�Q1

�Q1

2 +
1

2
�Q2

�Q2

2 + �2�Q1
�Q2

+ �3�Q1
�Q2

cos 2��Q1
− �Q2

� − S�0��Q1
+ �Q2

� ,

�A1�

where

�2 = �V
�0;Q1,Q2� + V
�Q2 − Q1;Q1,Q2� + V
�0;Q2,Q1�

+ V
�Q1 − Q2;Q2,Q1��/2,

�3 = V
�Q2;Q1,Q1��=V
�Q2;Q2,Q2�� , �A2�

and 

q�=N�qei�q, �Qj
=�S1SSj for j=1,2 �Eqs. �33� and

�34��. Since the Hamiltonian �8� is not hermitian, it is not
always true that V
�Q2 ;Q1 ,Q1�=V
�Q2 ;Q2 ,Q2�. However,
these coincides with each other when �=0. The relative
angle ��Q1

−�Q2
� takes 0�� /2� when �3�0��0�.

If �Qi
�0 or �Q1

�Q2
�−��2− ��3��, a magnetization

jump occurs. Otherwise, when Min��Q1
,�Q2

���2− ��3�,

only one of the two species, which has smaller �Qi
con-

denses and forms the spin structure �20�. If Min��Q1
,�Q2

�
��2− ��3�, Eq. �A5� takes the minimum when

�Q1
=

�Q2
− ��2 − ��3��

�Q1
�Q2

− ��2 − ��3��2S�0,

�Q2
=

�Q1
− ��2 − ��3��

�Q1
�Q2

− ��2 − ��3��2S�0. �A3�

Then, the spin configuration is given by,


Sl
x� = 2S��Q1

cosh 	Q1

�1� cos �Q1
+ �Q2

cos �Q2 · Rl

+ �Q2
���1 +

f��S�1��
S

	 ,


Sl
y� = � 2S��Q1

cosh 	Q1

�1� sin �Q1
+ �Q2

sin�Q2 · Rl

+ �Q2
���1 +

f��S�1��
S

	, for l � A


Sl
z� = �S − �S�1�� − ��Q1

cosh2 	Q1

�1� + �Q2

+ cosh 	Q1

�1��Q1
�Q2

cos�Q2 · Rl + �Q2
− �Q1

�� ,

�A4a�


Sm
x � = − 2S�Q1

sinh 	Q1

�1� cos �Q1
�1 +

f��S�1��
S

� ,


Sm
y � = � 2S�Q1

sinh 	Q1

�1� sin �Q1
�1 +

f��S�1��
S

� ,


Sm
z � = − �S − �S�1�� + �Q1

sinh2 	Q1

�1� ,

for m � B, �A4b�

where we use sinh 	Q2

�1� =0 and �S and f��S� is the same as in
Eq. �20a� and �20b�. By some numerical calculations, we
found that this nontrivial SS phase with ��Q1

−�Q2
�=0 �SS3�

is stabilized for a broad region of the parameter space,
mainly for J2

z �0. For example, if J1
z / �J1

��=3 �and �=0�, the
SS3 exists for 0.2�J2

z / �J1
���2.0.

For ��0, �2 and �3 may have a influence on the mag-
netization process around the half-filled solid. For example,
if ��0, the system energy is given by

Eeff

N
�

1

2
�Q1

�Q1

2 +
1

2
�Q2

�Q2

2 + �2�Q1
�Q2

+ �3�Q1
�Q2

cos 2��Q1
− �Q2

� − S�0�Q1

+ �− S�0 + �2��Q2
, �A5�

where �2=�cl�Q2�−�cl�Q1��O����0 and �s obtained at
�=0 may be used approximately. If the used parameters sat-
isfy the condition of the stability of the SS3 discussed above,
a phase transition from SS1 to SS3 occurs at

HIROAKI T. UEDA AND KEISUKE TOTSUKA PHYSICAL REVIEW B 81, 054442 �2010�

054442-14



S�0c1 =
�Q1

�2

�Q1
− ��2 − ��3��

. �A6�

Then, the densities of the condensed bosons are given by

�Q1
=

��Q2
− ��2 − ��3���S�0 + ��2 − ��3���2

�Q1
�Q2

− ��2 − ��3��2 , �A7a�

�Q2
=

��Q1
− ��2 − ��3���S�0 − �Q1

�2

�Q1
�Q2

− ��2 − ��3��2 . �A7b�

At �0=�0c1, Eqs. �A7� and �22� give the same density �Q1,2
,

and thus a second-order phase transition is implied. If �
�0, similarly, a second-order phase transition from SS2 to
SS3 occurs at

S�0c2 =
�Q2

�1

�Q2
− ��2 − ��3��

. �A8�

where �1=−�2.

APPENDIX B: SOME EQUATIONS OMITTED
IN THE TEXT

1. Section IV B

The additional quadratic terms in Eq. �39� emerging from
normal order of the Bogoliubov-transformed bosons are
given by

T1�k� = �0�k�� 1

N
�
q

sinh2 	q� − J1
�� 1

N
�
q

C1�q�sinh 2	q�
+ �−

2

3
J2

zC2�k� + 2J2
��� 1

N
�
q

C2�q�sinh2 	q� ,

T2�k� = t0�k�� 1

N
�
q

sinh2 	q� −
J1

z

4
C1�k�

�� 1

N
�
q

C1�q�sinh 2	q� , �B1�

2. Section V B

The interaction part of Hamiltonian which contributes to
the kernel of the order of �J1

z�−1 is given by

H�I2�int =
1

N
�

q,k1,k2

��J2
zC2�q� − J2

�C2�k2�

− 2J1
z sinh 	k2−q sinh 	k2

C1�q�

+ J1
�C1�k2�sinh 	k2

�
k1+q
† 
k2−q

† 
k1

k2

− 2J1
zC1�q�
k1+q

† �k2−q
† 
k1

�k2

+ 2J1
zC1�q�sinh 	k2+q
k1+q

† 
k2+q
k1
�−k2

+ �2J1
zC1�q�sinh 	k2−q

− J1
�C1�k2��
k1+q

† 
k2−q
† 
k1

�−k2

† � �B2�
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