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In the present paper, the problem of thermal excitation of collective �magnonic� Bloch magnetostatic modes
on a one-dimensional array of magnetic stripes has been addressed. It has been shown that partially phase-
correlated oscillations localized on individual stripes can be regarded as an ensemble of individual harmonic
oscillators interpretable in terms of independent degrees of freedom of the magnetic system subject to the
low-energy Rayleigh-Jeans statistics. Numerical simulations of the Brillouin light scattering spectra, based on
this approach, have shown that the nth Bloch mode in strongly coupled stripes contributes mainly to the
scattering in the nth Brillouin zone. Our calculations have also confirmed numerically the noncoherent wide-
angle character of the BLS, demonstrated experimentally earlier.
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I. INTRODUCTION

From both fundamental and application viewpoints, mag-
netization dynamics in ferromagnetic media has become of
utmost significance today. Rapid advances in spintronics dur-
ing the last decade have contributed massively to the
progress in this field. Suffice it to mention such discoveries
as the giant magnetoresistance1,2 and precessional switching
applied to read-write processes in magnetic data storage.3,4

In the case of relatively low-angle precession, magnetic dy-
namics manifests itself through magnetic excitations propa-
gating in the bulk of such materials known as spin waves
�SW�, which are an object of great interest themselves. His-
torically, there are two different philosophies regarding this
phenomenon from different points of view. It was with the
incoherent SW driven by thermal agitation, better known as
magnons, that the research in this domain began, as early as
in the 1930s.5 Since then such magnetic excitations, with a
very short wavelength on the scale of the lattice parameter
and hence entirely dominated by short-range exchange inter-
actions, have become one of the fundamental notions in the
solid-state physics of ferromagnetic media. Another view of
the problem, seeing it from a completely different angle, is
due to extensive application of ferrite materials to micro-
wave components, beginning from the 1950s. In this case,
the excitations, better known, as magnetostatic waves
�MSW�, are of long-wavelength nature, which is dictated by
the macroscopic characteristic size of the microwave ele-
ments themselves. As a result, their behavior is completely
described solely by the long-range dipole-dipole interactions
�DDI�. Further development of the latter concept in the
1960s was based on the breakthrough in the technology of
single-crystal ferrite films, especially those based on yttrium
iron garnet, with extremely low losses at microwave frequen-
cies, suitable for effective signal processing, typically in de-
lay lines in the frequency range from 2 to 20 GHz.6 The
coherent MSWs were excited by an external microwave
source, i.e., by a special MSW antenna. The characteristic
size of the ferrite films employed �their thickness� as well as
that of the microstrip MSW antennas �their width� being in
the micrometric range, the magnetic waves excited were of
combined dipole-exchange nature.7

Extensive research in SW dynamics over the last few
decades has lead to further merging of the two ideas
thus leading to a generic concept of the dipole-exchange
SW, either coherent or incoherent. One of the steps
contributing to the reconciliation of the two points of
view, especially important in the context of this paper, was
due to the major improvements of the Brillouin light
scattering �BLS� techniques, that took place in the late
1970s and early 1980s. While earlier setups, lacking in sen-
sitivity, had to resort to generation of coherent SWs by ex-
ternal sources,8,9 in the updated versions10 preference was
given to thermal magnons,11 i.e., incoherent SWs. In spite of
their low intensity, they ensured, owing to their thermal na-
ture, excitation of modes with all possible wave numbers and
temporal frequencies, within the range permitted by the SW
spectra. The latter development spawned a series of papers
providing adequate theoretical support for a newly emerged
technique.12,13 It relied on the modification of the fluctuation-
dissipation theorem �FDT�, developed somewhat earlier, for
a magnetic system �see, for example, Refs. 14 and 15�. The
latter allows to relate the Fourier transform of the correlation
function �mi�x� ,r� , t�mj�x ,r�=0, t=0��, determining the inten-
sity of the light scattered at a given angle to the dynamic
susceptibilities gij�x ,x� ,K� ,�� i��,

� dtd2r�mi�x�,r�,t�mj�x,r� = 0,t = 0��exp�i�− K� · r� + �t��

� �gij�x,x�,K� ,� + i��

− gij�x,x�,K� ,� − i��� ,

in the limit �→0. gij�x ,x� ,K� ,�� i��, being responses to
delta-type excitations hi�x�=��x−x��, can be as well re-
garded as magnetic Green’s functions. Optical properties of
the multilayered ferromagnetic structure are taken into ac-
count via the optical Green’s-functions formalism. Typically
applied to magneto-optical �MO� interactions in thin metal
ferromagnetic structures, it has proved to be a very powerful
theoretical tool, allowing to extract from the structure of the
BLS spectra valuable information on the intrinsic magnetic
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parameters of the investigated sample, unattainable by any
other technique. In more recent papers16 some specialized
versions of this general theoretical approach have been re-
ported.

In spite of a rapid progress, within a span of the last 5
years, of an innovative micro-Brillouin modification, typi-
cally employing externally excited coherent SW localized on
individual nanoelements,17,18 the classic “thermal magnon
BLS” is still indispensable,16,19–21 especially for the investi-
gation of collective SW modes existing on the arrays of fer-
romagnetic elements, forming a one-dimensional �1D� or
two-dimensional �2D� structure.22–24 Not surprisingly, it is
largely and successfully used to this end until now.

Although powerful and effective, the FDT implies an
analysis of the magnetic system on the microscopic level,
which accentuates the quantum-mechanical aspect of the
problem. An alternative approach, more consistent with a
purely microscopic nature of the investigated phenomena,
can be developed. Moreover, it is possible to adapt, without
too much difficulty, this formalism to the case of utmost
importance nowadays, namely, that of nanostructured ferro-
magnetic films. In its main features, this technique can be
reduced to the classical problem of the Brownian motion
driven by the Langevin force.

The goal of this paper is theoretical description of the
collective SW modes traveling in a periodic one-dimensional
array of ferromagnetic stripes �magnonic modes�, typically
referred to as Bloch waves, and driven by a thermal “Lange-
vin” source of magnetic field. Periodic structures of this type
are also known as 1D magnonic crystals. As their closest
analogs �photonic and phononic crystals� they manifest all
major features characteristic of wave propagation in periodic
media, such as band gaps and Brillouin zone �BZ�. The latter
has been confirmed experimentally in Refs. 25 and 26 �2D
case�. What makes their wave behavior especially interest-
ing, from the physical point of view, is a strongly pro-
nounced magnetically adjustable dispersion. Theoretical
analysis of three-dimensional magnonic crystals reveals, not
surprisingly, an even richer spectrum of wave phenomena.27

Our paper, focusing on the stochastic properties of ther-
mally driven collective magnonic modes on 1D arrays of
dipole coupled nanostripes is organized in the following way.
At a first stage, a theoretical formalism is developed, allow-
ing representation of such modes as an ensemble of indi-
vidual harmonic oscillators interpretable in terms of indepen-
dent degrees of freedom of the magnetic system subject to
the low-energy Rayleigh-Jeans statistics.28 To this end, the
mathematical approach described in our earlier paper, Ref.
29, will be further generalized. The second part of this paper
will be dedicated to the spatial correlation function playing a
key role in various phenomena, such as Brillouin light scat-
tering. More specifically, the correlation �coherence� length
lc for collective modes on an array of dipole coupled stripes,
coupled through DDIs, will be estimated. The latter describes
the spatial interval within which the phases of local point
MO scatterers are sufficiently correlated which ensures the
spatial coherence of the inelastically scattered light. Finally,
in the last part the results obtained in the previous paragraph
will be applied to the numerical estimation of the BLS an-
gular spectrum. Special attention will be paid to the influence

of the correlation �coherence� length lc and the size of the
incident optical beam d on the form of such spectra. More
specifically, numerical simulations theoretically modeling the
transition from incoherent inelastic scattering to coherent in-
elastic diffraction, experimentally studied in Ref. 30, will be
performed.

II. THEORY

A. Basic thermodynamics

The geometry of the problem is illustrated in Fig. 1. We
study collective magnetic modes existing on a periodic array
of parallel infinite ferromagnetic stripes with a width w and a
thickness L separated by a distance �. This corresponds to a
spatial period equal to T=w+�. The stripes are magnetized
by an external field He�z along their axis, i.e., along z, which
means that the induced static magnetization within them Me�z
is homogeneous. We limit our investigation to the case of the
lowest purely dipole magnetic mode. We also assume that
the aspect ratio of the stripes is small L /w�1. In other
words, we study quasi-Damon-Eshbach �DE� collective
�magnonic� modes formed via dipole interactions between
the oscillations localized on individual stripes. They propa-
gate along the “x” axis and are characterized by a homoge-
neous distribution of the magnetization along the vertical “y”
axis. The latter will make the dependence of the dipole field
and the dynamic magnetization on y irrelevant which allows
one to reduce the initial 2D problem to a 1D problem by
averaging across the film thickness. Thus application of the
highly effective approximate approach proposed in Ref. 31
and generalized for the geometry studied in Ref. 29 is fully
justified.

The linearized Landau-Lifschitz equation describing ther-
mally excited collective magnetic modes existing on an array
of infinite ferromagnetic stripes can be written as

�

�t
mx�x,t� + �Hmy�x,t� − �M�G�x,x�� � my�x�,t��

=
�M

4	
hy

�th��x,t�

�

�t
my�x,t� − �Hmx�x,t� − �Mmx�x,t�

− �M�G�x,x�� � mx�x�,t�� = −
�M

4	
hx

�th��x,t� �1�

FIG. 1. Geometry of the considered array of dipole-interacting
stripes.
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where �H=
H, �M =
4	M, G�x ,x�� � m�x� , t�
=�−�

� G�x ,x��m�x� , t�dx� is the convolution integral and
G�x ,x�� is a magnetic Green’s function describing DDI
within each stripe, as well as between different stripes,

G�x,x�� =
1

2	L
ln	 �x − x��2

L2 + �x − x��2
,

when x and x� are within any stripes,

G�x,x�� = 0,

when x or/and x� is/are outside any stripe.

h�th��x , t� is a delta-correlated thermal Langevin force, de-
scribing thermal excitation of the magnetic modes studied,

�h�
�th��x,t�h


�th��x�,t��� = C��x − x����t − t����
, �2a�

where C is a constant, ��t− t�� is the Dirac delta function,
and ��
 is the Kronecker delta with � ,
=x ,y ,z. We also
assume that its mean value is zero

�h�
�th��x,t�� = 0. �2b�

Note that we consider h�
�th��x , t� to be completely real.

Introducing circular variables, corresponding to circular
polarizations

m� = mx � imy, h�
�th� = hx

�th� � ihy
�th� �3�

allows us to simplify the system �1� in such a way that the
second equation is reduced to a complex conjugate of the
first one

�
�

�t
m�x,t� − i��H +

�M

2

m�x,t� − i

�M

2
�m��x,t� + G�x,x�� � m��x�,t��

=− i
�M

4	
h�th��x,t�;

c.c.
� �4�

Here we used the identities m−=m+
�, h−

�th�=h+
�th��, and de-

noted m�m+, h�th�=h+
�th�. In Eq. �4� the circular polarizations

of opposite directions, denoted by m and m�, are coupled
through the presence of DDIs which is unavoidable in the
DE geometry and which is described by the third term on the
left-hand side of Eq. �4�. Physically this means, that the po-
larization eigenvectors are not circular, like in the case of the
classic ferromagnetic resonance, but elliptic. We will deal
with this later.

The solution to Eq. �4�, which describes a traveling wave
on a periodic structure, just as in the case considered in Ref.
29, can be represented in the form of Bloch waves,32

mkn�x� = m̃kn�x�exp�ikx� , �5�

where k is a Bloch wave vector taking on continuous values,
and m̃kn�x� is a spatially periodical function with the period
T, m̃kn�x+ jT�= m̃kn�x�. Here n is a mode number and j is an
integer. It should be noted that in classic wave science the
solution �5� is known as Floquet’s theorem.33

Being eigenfunctions of the Hermitian integral operator

��k,n�mkn�x� = G�x,x�� � mkn�x�� �6�

the individual Bloch waves are mutually orthogonal

�
−�

�

mkn�x��mk�n�
��x��dx� = �nn���k − k�� . �7�

The general solution to Eq. �4� is sought in the form of a
complete set of individual Bloch waves within the first Bril-
louin zone

m�x,t� = �
n=1

� �
−	/T

	/T

akn�t�m̃kn�x�exp�ikx�dk . �8�

To obtain equations in amplitudes akn�t� let us insert Eq. �8�
into Eq. �4� and project both sides of the Eq. �4� on the
eigenvectors, Eq. �5�, taking advantage of the mutual or-
thogonality. Thus the problem is reduced to the solution of a
standard nonhomogeneous system of spin-wave equations of
motion28

� �

�t
akn�t� + iAakn�t� + iB�k�na−kn�t�� = − i�M�

−�

�

h�th��t,x�m̃kn�x��exp�− ikx�dx

c.c.,
� �9�
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where A=−��H+
�M

2 �, B�k�n=−
�M

2 −�M���k� ,n�
Since the kernel in the integral operator in Eq. �6� is sym-

metric its eigenvalues are real ��k ,n�=��k ,n��. Moreover,
from Eq. �6� it follows ��k ,n��=��−k ,n�, which means that

��k,n� = ��− k,n� = ���k�,n� .

To obtain two separate equations in bkn�t� and b−kn�t��, i.e.,
to diagonalize the system �9� we apply the Bogoliubov trans-
formation

akn�t� = u�k�nbkn�t� + v�k�nb−kn�t��.

This results in an equation for normal elliptic spin-wave am-
plitudes,

�

�t
bkn�t� + �
�k�n + i��k�n�bkn�t� = fkn�t� . �10a�

Here

��k�n = sgn�A��A2 − B�k�n
2 = − ��H��H + �M�

+ �M
2 �����k�,n�� − �2��k�,n���1/2, �10b�

u�k�n =�A + ��k�n

2��k�n
, v�k�n = − sgn�A�

B�k�n

�B�k�n�
�A − ��k�n

2��k�n
,

�10c�

fkn�t� = − i�M�u�k�nRkn�t� + v�k�n�Rkn�t���� , �10d�

where

Rkn�t� = �
−�

�

�h�th��t,x�m̃kn�x��exp�− ikx��dx , �10e�

and following Ref. 28, have phenomenologically introduced
magnetic damping 
�k�n through replacing ��k�n with ��k�n
+ i
�k�n. In Eq. �10a� we have omitted the second complex
conjugate equation in the system: it returns formally the fre-
quency of the same magnon but a negative sign.

The solution of Eq. �10a� can be written as follows:

bkn�t� = �
0

t

dt�fkn�t��exp�− �
�k�n + i��k�n��t − t���

+ bkn�t = 0�exp�− �
�k�n + i��k�n�t� . �11�

In the state of thermodynamic equilibrium, i.e., for t
�1 /
�k�n, the second term disappears. Each collective mode
is fully characterized by its integer index “n” and a continu-
ous Bloch wave number k. To estimate the energy carried by
each mode in the state of thermodynamic equilibrium we
need to calculate the correlation function of the wave ampli-
tudes �bkn�t�bkn

��t�� for t�1 /
�k�n,

Sknn�t� = �bkn�t�bkn
��t��

= �
0

t

dt��
0

t

dt��fkn�t��fkn�t����exp�i��t� − t���

�exp�− 
�k�n�2t − t� − t��� . �12�

According to Eq. �A6� the autocorrelation function reads

�fkn�t�fkn�t���� = 2C�M
2 ��t − t���u�k�n

2 + v�k�n
2 �

= 2C�M
2 ��t − t��

A

��k�n
.

Here we have made use of Eqs. �9� and �10c�. Thus

Sknn�t� = 2C�M
2 A

��k�n
�

0

t

dt� exp�− 2
�k�nt��

=
C�M

2 A


�k�n��k�n
�1 − exp�− 2
�k�nt�� →

t�1/

C�M

2 A


�k�n��k�n
.

In thermodynamics it is the occupation number Nkn�t� that
describes the thermal energy of the mode identified by its
numbers k and n in the state of equilibrium. In other words
Nkn�Sknn and

Nkn � Skn�t = �� = C
�M

2 A

2
�k�n��k�n
. �13�

Therefore for the constant C we have

C =
2
�k�n��k�nNkn

�M
2 A

. �14�

On the other hand in the thermodynamic equilibrium the
spin-wave amplitude, Eq. �13�, should obey the Rayleigh-
Jeans distribution,28 thus it should have the form

Nkn =
kBT

��kn�
, �15�

therefore

C =
2

�M
2

kBT

�A�

�k�n �16a�

and

�fkn�t�fkn�t���� = 4
�k�n
kBT

��kn�
��t − t�� . �16b�

Expression �16b� represents a modification of the FDT for
the collective DE mode, in the form of a Bloch wave, propa-
gating on an array of dipole coupled ferromagnetic stripes.
Similar formulas are known since long ago as fluctuation-
dissipation relation in classical Brownian motion15 or
Nyquist’s noise theorem, relating the mean-square open-
circuit thermal noise voltage to its resistance, in electrical
engineering.34 As one sees from this expression all peculiari-
ties which are characteristic to the Bloch wave origin of col-
lective excitations are hidden in the form of wave dispersion
�kn. The general form of Eq. �16b� coincides with one
known for spin waves in a continuous magnetic medium28

which facilitates understanding.

B. Coherence length of thermally excited collective modes

Now we investigate the spatial correlation functions char-
acterizing distributions of magnetization in magnetostatic
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modes at a given temporal frequency. Knowledge of such
functions is instrumental for understanding a number of sig-
nificant phenomena in spin-wave physics. For example, they
play a major role in mechanisms of the Brillouin light scat-
tering by thermal magnons. To streamline our analytical cal-
culations we employed a highly effective mathematical for-
malism developed in the field of Fourier optics in the
1970s.35,36

First, we pass from the direct temporal space “t” to the
frequency space “�” via the direct Fourier transformation.
The solution of Eq. �10a� can be rewritten in the frequency
domain as follows:

bkn��� =
fkn���

�
�k�n + i���k�n + ���
�17a�

with

bkn��� = F̂t→��bkn�t�� = lim
�→�

1

2�
�

−�

�

dtbkn�t�exp�− i�t� ,

fkn��� = F̂t→��fkn�t�� . �17b�

Similarly, one can rewrite Eq. �2a� in the frequency domain
as

�h�
�th��x,��h


�th��x�,��� = C��x − x����
1��� , �18�

where 1��� is the Fourier transform of the Dirac delta func-
tion in Eq. �2a�, as defined in the space of generalized
functions.35,36 It is equals to the constant 1 on the whole �

axis. This allows us to obtain an explicit formula for fkn���,

fkn��� = − i�M�u�k�nRkn��� + v�k�nRkn����� �19a�

with

Rkn��� = �
−�

�

�h�th��x,��m̃kn�x��exp�− ikx��dx ,

h�th��x,�� = F̂t→��h�th��x,t�� . �19b�

Thus the spatial distribution of the magnetization at a given
frequency can be written explicitly as

b�x,�� = �
n=1

� �
−	/T

	/T

dkbkn���m̃kn�x�exp�ikx� , �20�

which allows us to define the corresponding spatial correla-
tion function, averaged over the ensemble, in the following
way,

��b�x,��b��x + �,���x� =��
−�

�

b�x,��b��x + �,��dx�
= �

−�

�

�b�x,��b��x + �,���dx .

�21�

Substituting Eq. �20� into Eq. �21� and taking into account
the orthogonality of the eigenfunctions �7� we obtain

��b�x,��b��x + �,���x� = �
n

�
n�
�

−	/T

	/T

dk exp�− ik���
−	/T

	/T

dk��bkn���bk�n�������
−�

�

dxm̃kn�x�m̃k�n�
��x + ��exp�i�k − k��x� .

�22�

To begin with, let us find the expression for �bkn���bk�n������, making use of Eqs. �17a� and �A6�,

�bkn���bk�n������ =
�fkn���fk�n�

� ����

�
�k�n + i���k�n + ����
�k��n� − i���k��n� + ���
=

2C�M
2 A��k − k���nn�

��k�n�
�k�n
2 + ���k�n + ��2�

.

Thus finally one obtains

��b�x,��b��x + �,���x� = �
n
�

−	/T

	/T

dkFnk���exp�− ik��
2CA�M

2

��k�n�
�k�n
2 + ���k�n + ��2�

�23a�

with

Fnk��� = �
−�

�

m̃kn�x�m̃kn
��x + ��dx . �23b�

In other words, Fnk��� is the autocorrelation of the periodic distribution of the dynamic magnetization m̃kn�x�.
For small magnetic damping �Vk0n0

�g� � / �
�k�nT��1 �the parameter Vk0n0

�g� is explained below� two important approximations,
simplifying further calculations, are justified. First, only the k vectors in the vicinity of k0 values, that satisfies ��k0�n0

+�=0,
contribute to the integral �23a�. Therefore we may expand the eigenfrequency ��k�n in a Taylor series, in the
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vicinity of k0, keeping only the linear term ��k�n+�= � �Vk0n0

�g� ��k−k0�. This approximation is valid not very close to the center
and the edges of the first Brillouin zone. �Near these special points Vk0n0

�g� →0 and the second-order term of Taylor-series
expansion should be taken into account.� Second, the limits of integration can be pushed up to �−� ,�� which will allow us to
use the method of residues. Thus we obtain

�b�x,��b��x + �,��� =
2	

�Vk0n0

�g� ����
CA�M

2


�k0�n0
��k0�n0

Fn0k0
���exp	−


k0n0

�Vk0n0

�g� �
���
exp�− ik0�� , �24�

and hence

��b�x,��b��x + �,���� =
2	

�Vk0n0

�g� ����
CA�M

2


�k0�n0
��k0�n0

Fn0k0
���exp	−


k0n0

�Vk0n0

�g� �
���
 . �25�

It should be noted that the indices k0 and n0 indicate that the
corresponding values are calculated for k0 and n0 that satisfy
��k0�n0

+�=0.
Note that Eqs. �25� and �26� contain only the term of the

total solution which originates from the traveling-wave part
of the spin-wave excitation Green’s function.37 The term
which corresponds to the source reactance was neglected as
it is localized at the source and does not contribute to coher-
ence of magnetization precession at a distance from the
source.

The obtained formula allows one estimating the spin-
wave coherence length lc. We define it as the distance at
which the value of correlation function is exp�1� times
smaller than its original value ��b�x ,��b��x+ lc ,���=exp�
−1��b�x ,��b��x ,����. Therefore the correlation length �or
coherence� length for the collective mode is defined as fol-
lows:

lc�k,n� =
�Vkn

�g��

�k�n

. �26�

If the magnetic damping is small we may measure the coher-
ence length in the number of coupled stripes j. Therefore we
assume that lc�k ,n�= jT, we obtain

j =
�Vkn

�g��

�k�nT

. �27�

The coherence length is proportional to the group velocity of
the collective mode �Vkn

�g��=
���k�n

�k . It may be calculated from
Eq. �10b� by taking its derivative over k which gives

Vkn
�g� = −

�M	�M

2
+ �M���k�,n�

��k�n

���k,n�
�k

. �28�

Moreover, the derivative ���k,n�
�k in Eq. �28� can be expressed

as the following integral:

���k,n�
�k

= �
−�

�

dx�
−�

�

dx�i�x� − x�m̃kn�x�G�x,x��m̃kn�x��

�exp�ik�x� − x��dx�. �29�

This formula will be used below in numerical calculations.
Figure 2 shows variation in the coherence length with k
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FIG. 2. Dispersion �upper panel� and coherence length of col-
lective excitations. Parameters of calculation: stripe width: 350 nm,
stripe thickness: 40 nm, stripe separation: 70 nm, saturation mag-
netization 4	M =10 000 G, applied field: 500 Oe, Gilbert magnetic
damping constant: �=0.008, gyromagnetic constant 
 /2	
=2.82 MHz /Oe. n in the figure denotes the mode number. The
fundamental mode is n=1.
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and �. From this figure one sees that only the lowest �fun-
damental� n=1 mode of collective excitations can propagate
considerable distances across the periodic structure. As one
can see from the upper panel, this mode is the only mode
with considerable dispersion and thus with a considerable
group velocity. The latter allows this mode to cross a number
of stripes during its relaxation time 1 /
�k�n. The coherence
length drops near the middles �k=2l	 /T , l=0,1 , . . .� and
the edges of Brillouin zones �k= �2l+1�	 /T�, where Bloch
waves represent standing-wave oscillations.

It is worth noticing that the decrease in the group velocity
till zero toward the middle of the first BZ is very sharp and
happens in a very narrow k range 0–100 rad/cm. That is why
the change in the curvature near k=0 is not seen it the upper
panel of Fig. 2. Such a narrow range of k values where the
group velocity changes from the maximum to zero is a sig-
nature of strong dipole coupling of stripes in this example.
Furthermore, this reflects the fact that across the BZ the di-
pole coupling is strongest for the zone middle where the
motion of magnetization is quasihomogeneous across the
whole array, as the Bloch wavelength is much larger than the
structure period. With increase in the distance between
stripes this k range increases and flattening of dispersion near
k=0 becomes visible for ��w.

Figure 3 shows variation in the coherence length with the
distance between adjacent stripes �. This graph was calcu-
lated for the fundamental collective mode and for a Bloch
number near the middle of the first BZ �k=0.17	 /T�. With

the increase in the distance, dipole coupling of stripes de-
creases. This results in a decrease in the bandwidth of the
first magnonic band ��k=	/T,n=1−�k=0,n=1� and, consequently,
in the slope of the dispersion �k,n=1�k�. The former is evi-
denced by the upper panel of this figure which shows in-
crease in frequency for the fundamental mode with decrease
in the dipole coupling. At large separations the frequency
tends to one for uncoupled stripes for which the width of the
magnonic band is zero and the dispersion slope is zero too.
The collective mode coherence length is zero. With the in-
crease in the dipole coupling the collective dipole field of
stripes pushes the frequency for the middle of BZ down and
for the edge of the first BZ up with respect to the uncoupled
stripes �see Fig. 6 in Ref. 29�. The dispersion slope increases
and the coherence length grows, respectively.

C. BLS intensities

Making use of Eq. �25� one can also estimate BLS inten-
sities seen at particular angle of incidence of the laser light in
the conventional �reciprocal space-resolved BLS�.

The BLS spectroscopy, in its conventional nonmicro-BLS
version, is based on the analysis of the intensity of the light
inelastically scattered by a magnon in the inverse k�s� space
as a function of the magnon frequency �. The latter is related
to the polarization induced through the interaction of the
incident light wave and a magnetostatic mode in the follow-
ing way:

I�k�s�,�� = �E�k�s�,��E��k�s�,��� = �F̂x→k�s��P�x� � P��x��� .

�30�

P�x�� P��x�=�−�
� P���P��x+��d� corresponds to the autocor-

relation of the polarization with its complex conjugate,
which is denoted by the symbol �. Here we do not consider
the complex tensor nature of the MO interactions thus focus-
ing on the stochastic aspect of the problem. One can find
calculations of the effective cross section elsewhere �see, for
example, Refs. 38 and 39�. Typically, in the conventional
BLS technique the divergence of the incident optical beam is
small to ensure resolution in the inverse k space and the
dependence of the MO cross section on the angle of inci-
dence can be neglected. That is why we define the induced
polarization, in the scalar approximation, as P�x�
=b�x ,��E�i��x ,��.

In the particular case of a plane incident light wave char-
acterized by an in-plane wave vector k�i�, the Bloch wave
number k in Eq. �23a� is to be replaced by k�i�+k. Thus one
obtains the classic formula38

I�k�s�,�� = �
−�

�

d��b�x,��b��x + �,���exp�i�k�s� − k�i���� ,

�31�

where the ensemble average is estimated through the FDT.
Actually, however the incident optical beam is of finite

size both in the direct and inverse space E�i��x ,��
=D�x�exp�ik�i�x�. Here function D�x� describes the distribu-
tion of the optical field in space. Thus
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I�k�s�,�� = �
−�

�

d��
−�

�

dx�D�x�b�x,��D�x + ��b��x + �,���exp�i�k�s� − k�i����

= F̂�→k�s�−k�i���D�x�b�x,�� � �D�x�b�x,������ . �32�

The latter means that in the inverse q=k�s�−k�i� space the Fourier transform of D�x�b�x ,�� and its complex conjugate are
multiplied. To be specific let us suppose that the light intensity within the optical spot of width d is homogeneous, i.e.,

D�x� = Rect�2x/d�, where Rect�2x

d

 = �1 if −

d

2
� x �

d

2

0 if x �
d

2
and x � −

d

2
.

�

To begin with, we consider a particular magnetostatic mode n characterized by a particular value of the Bloch wave number
k. Thus, making use of Eq. �24�, the autocorrelation function in Eq. �32� can be rewritten

�D�x�b�x,�� � �D�x�b�x,����� = �
−�

�

dxRect�2x

d

Rect	2�x + ��

d

�b�x,��b��x + �,���

= H���k�n�Fnk���exp	−

kn

�Vkn
�g��

���
exp�− ik��	Rect�2�

d

 � Rect�2�

d


 .

To simplify notations we have put 2	

�Vkn
�g��

CA�M
2


�k�n��k�n
=H���k�n�.

In other words, in Eq. �32� the Fourier operator is applied
to a product of three functions of �, which means that this
operator returns a double convolution of the corresponding
Fourier transforms,

F̂�→q	Rect�2�

d

 � Rect�2�

d


 = d2 Sinc2�2q/d� ,

F̂�→q�exp	−

kn

�Vkn
�g��

���
exp�− ik��� =

2

kn

�Vkn
�g��

�q − k�2 + 	 
kn

�Vkn
�g��
2

and �see Eq. �23b��

F̂�→q�Fnk���� = F̂�→q�m̃kn��� � m̃kn���� = �M̃kn�q��2

with M̃kn�q�= F̂�→q�m̃kn���� and q=k�s�−k�i�.
The periodic function m̃kn�x� can be regarded as a convo-

lution of the distribution of the dynamic magnetization on a
single element skn���=Rect� �

T/2 �m̃kn��� with a periodic comb
of delta functions with T spacing, known as the Dirac comb
and conventionally denoted comb� �

T �,

m̃kn��� = skn��� � comb� �

T



with comb� �

T

 = �

l=−�

�

��� − lT� .

Consequently, its Fourier transform is a product of the re-
spective Fourier transforms

F̂�→q�m̃kn���� = Skn�q�
T

2	
comb� q

�q



and consequently

F̂�→q�m̃kn��� � m̃kn���� =
T

2	
�

l=−�

�

�Skn�q − l�q��2��q − l�q

�q

 .

Here Skn�q�= F̂�→k�skn���� and �q=2	 /T. We have also used

the well-known relation F̂�→q�comb� �
T ��= 1

�qcomb� q
�q �. Thus

the first convolution yields

�M̃kn�q��2 � �d2 Sinc2�2q/d��

=
T

2	
�

l=−�

�

�Skn�q − l�q��2��q − l�q

�q

 � d2 Sinc2�2q/d�

=
Td2

2	
�

l=−�

�

�Skn�q − l�q��2Sinc2	2�q − l�q�
d


 .

A second convolution leads to the final result

I�q,�� =
Td2

	


kn

�Vkn
�g�� �

l=−�

� �
−�

�

dq��Skn�q� − l�q��2

�Sinc2	2�q� − l�q�
d


 1

�q − q� − k�2 + 	 
kn

�Vkn
�g��
2 .

�33�

The square of the Sinc function, known as Fejer kernel, is a
delta sequence. Thus if the width of the beam in Eq. �33�
tends to the infinity d→�, it must be replaced by a Dirac
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delta function. Due to the filtering properties of the latter the
integration in Eq. �33� disappears and one obtains for an
infinitely wide beam

I�q,�� = I0�k,n� �
l=−�

� �Skn�l�q��2

�q − l�q − k�2 + � 
kn

�Vkn
�g��


2 ,

I0�k,n� =
Td2

	


kn

�Vkn
�g��

. �34a�

In the inverse q space, each collective mode, due to its peri-
odic character, will give rise to multiple responses of Lorent-
zian type. The weight of each peak is determined by the
Fourier coefficients �Skn�l�q��2 while the width of each
Lorentzian line depends entirely on the coherence length �see
Eqs. �26� and �34a��. This not surprising, since the coherence
length lc�k ,n� describes the spatial localization of coherent
scattering sources.

In the general case, however each Lorentzian line is
smeared by the finite angular spectrum of the incident light
way, which is mathematically taken into account through a
convolution of the Lorentzian function and the Fejer kernel
�see Eq. �33��. Without unnecessary loss of accuracy, the
main lobe of the latter can be replaced by an equivalent
rectangular function �see below�, which makes the calcula-
tion straightforward, extremely rapid and reliable.

The expression �34a� can be rewritten in the domain of
temporal frequencies �,

I�q,�� =
I0�k,n��Vkn

�g��2


�k�n
2 + ���k�n + ��2�

l

�Skn�l�q��2. �34b�

The BLS lines for all the responses will be centered at the
frequency of resonance excitation of the mode by a thermal
source ���k�n�= ���. The responses will be seen at incidence
angles which correspond to the transferred wave numbers

k + l	/T, l = 0, � 1, � 2, . . . �35�

�Recall, −	 /T�k�	 /T�. In which Brillouin zone �l+1
−	 /T+2	l /T�q�	 /T+2	l /T� a mode gives a maximum
response depends on the mode eigenprofile m̃kn�x� �through
Skn�. The fundamental mode is characterized by a quasiho-
mogeneous distribution of dynamic magnetization across the
stripes and thus gives the maximum response in the first BZ.
The next mode is antisymmetric and has one node across the
stripe width. Its spectrum is obviously composed from odd
harmonics of the structure period 2	l /T, l= �1, �3, . . .
with the maximum response in the second BZ �l+1=2�, etc.

A real BLS setup has a finite q resolution as it collects
light from a finite range of incidence angles ��. Then the
corresponding range of uncertainty �k in q �and thus in k�
results in broadening of the BLS line. For simplicity we
may assume that within �� intensity of all spectral compo-
nents of light incident on the sample is the same. Thus in the
scattered light resonance lines for eigenexcitations with fre-
quencies ranging from �k−�k/2n to �k+�k/2n will be present
with equal amplitude. Then in order to account for this effect
one has to substitute the term 1


�k�n
2 +���k�n+��2 in Eq. �34b� by

its integral over the range of uncertainty in �k: U��k�
=�k−�k/2

k+�k/2 dk�

�k��n

2 +���k��n+��2 . Approximating �k�n=�kn+Vkn
�g��k�−k�

one obtains

U��k� = 	arctan��kn + � + Vkn
�g��k


kn



+ arctan�� + �kn + Vkn
�g��k


kn


/�
knVkn

�g�� . �36�

Figure 4 shows plots of I�q ,�� in which gray scale is for the
mode intensity I. It was calculated using Eq. �34a� with the
term 1


�k�n
2 +���k�n+��2 substituted by U�k� as defined by Eq. �36�.

The uncertainty in the transferred wave number was taken
5% of the width of a Brillouin zone 2	 /T. The lower panel
of this figure is for stripes placed far apart from one another.
Dipole coupling of stripes in this geometry is small for all
modes which results in a small group velocity and, conse-
quently in a small coherence length. As a result, all the
modes are practically dispersionless, as previously seen in
numerous experiments.16,19,21,40

The middle panel is for strongly dipole coupled stripes.
From this panel one clearly sees the opposite tendency: the
lowest �fundamental� mode gives rise to a BLS response in
the first BZ, the second one in the second BZ, and so on.
Cross sections of this figure along the lines q=0.2�105 and
0.6�105 rad /cm are given in Fig. 5. Positions of the respec-
tive cross sections are shown in Fig. 4 by the respective
vertical lines.

The middle panel is for an array of strongly dipole
coupled stripes but consisting of wider stripes than for the
upper panel. The width of the stripe is chosen such as it is
comparable with the free propagation path in an unstructured
film 
Vunstruct

�g� . From this figure one sees the BLS responses
for the highest-order modes practically collapse into a con-
tinuous dispersion law for an unstructured film. This phe-
nomenon was previously observed on uncoupled stripes.20

Recall that the highest-order modes have a negligible width
of the magnonic band and thus are not practically dipole
coupled. BLS intensity for stripes at a large distance from
each other is given for comparison in the lower panel.

In the last series of calculations we have estimated BLS
intensity for different collection solid angles which introduce
different uncertainties in the transferred wave numbers. This
work was partially inspired by Ref. 30 in which BLS from a
periodical array of elongated nanodots was experimentally
studied. To apply our theory we treat rows of nanodots as
500-nm-wide stripes of infinite length with 250 nm inter-
stripe separation. Our calculation shows that these effective
stripes are efficiently dipole coupled. The collective mode
dispersion as seen by BLS with a small collection solid angle
is shown in Fig. 6, upper right panel. The upper left panel
demonstrate the same calculation for a collection angle
which corresponds to 1

2 of the width of the BZ for this qua-
sicrystal lattice ��q=	 /T�. One sees a broad intensity peak
for the main mode and much narrower peaks for the higher-
order modes. Cross sections of the 2D plots in the upper
panels along the edge of the first BZ q=	 /T are shown in
the lower panels.
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The lowest collective mode gives rise to the broadest in-
tensity peak for �q=	 /T. This mode is characterized by the
largest correlation length due to the largest group velocity
�dispersion slope�. Furthermore, it is characterized by the
largest frequency band �magnonic band�. The closest higher-
order mode forms a much smaller magnonic band. Further-
more, it is almost dispersionless which results in a much
smaller correlation length for this mode. Thus, in our calcu-
lation decreasing the collection angle for the case of the
mode with a large correlation length results in a considerable
narrowing of the BLS peak and decrease in its intensity. On
the contrary, the first higher-order mode does not exhibit a
considerable change in the peak width with decrease in the
collection angle. Importantly, the peak intensity decreases
considerably similar to the lowest-order mode.

FIG. 4. “Intensities” of collective modes as seen by Brillouin
light scattering technique for different stripe widths w and separa-
tions d. Upper panel: w=350 nm and �=70 nm. Middle panel:
w=1050 nm and �=70 nm. Lower panel: w=�=350 nm. Laser
beam width d=�. Brighter gradations of gray correspond to larger
intensity. The other parameters of calculation are the same as in Fig.
2. The Gilbert damping constant entering the expression for mag-
netic damping 
nk=��nk is as for permalloy �=0.008. �The spot
structure seen in the data is an artefact of presentation of calculated
data by the plotting software used. It is connected with discreetness
of input data for the software.�
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FIG. 5. Cross sections of the 2D plot in Fig. 4, middle panel,
along the lines q=0.2�105 rad /cm �solid line� and 0.6
�105 rad /cm �dashed line�. Positions of the respective cross sec-
tions are shown in Fig. 4 by the respective vertical lines.

FIG. 6. Intensities for different collecting lens apertures. Left
panels: the lens collects the light from the solid angle corresponding
to 1

2 of the Brillouin zone. Right panel: 1/10 of the Brillouin zone.
Upper panels: intensities. Lower panels: cross sections of the upper
panels along the edge of the first Brillouin zone 	 /T. Brightness
scale is the same for both upper panels.
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Thus the behavior of the peak amplitude is in good agree-
ment with Ref. 30, which is not the case for the evolution of
the peak width. We suggest the following explanation for this
disagreement. First, the array in Ref. 30 is a set of nanodots.
The nanodots as 2D objects are characterized by a much
richer spectrum of eigenoscillations with broader frequency
bands than the quasi-1D nanostripes �see, e.g., Ref. 41�.
Therefore, increasing the collection angle results in collect-
ing a BLS response from a larger number of eigenexcitations
thus from a larger frequency band. If the dynamics is driven
by a spectrally narrow source, like a microwave generator,
the increase in the collection angle does not result in a
change in the peak width, as the peak width is given by the
linewidth of the microwave generator, which is negligible,
and the instrumental linewidth of the Sandercock interferom-
eter.

One has to note that a periodic stripe array represents a
diffraction lattice for the incident laser light. In particular, the
authors of Ref. 30 note that the diffracted beams originating
from the patterned sample are clearly visible to the naked
eye. Thus multiple maxima of diffraction of the laser light in
reflection can be formed. This scattering is “elastic” as the
frequency of light is conserved. In the backscattering geom-
etry of BLS experiment the light which has elastically scat-
tered into all orders of diffraction nd can then scatter from all
harmonics m̃knl of the collective modes. This modifies the
resonance scattering condition �35�. The more precise condi-
tion for resonance scattering of the light reads,

q = k + 2	�l − nd�/T . �37�

Following this condition inelastically scattered light col-
lected at an incidence angle �=arcsin��k+2	�l
−nd� /T���las /4	�� will represent a combination of responses
from all orders of elastic diffraction nd and of inelastic scat-
tering from all harmonics l of the collective modes which
satisfy the above condition for �. This reflects the double-
scattering nature of this contribution: at the first stage, the
light is diffracted elastically by the relief lattice and after this
the second MO scattering occurs. In the present calculation
for simplicity reasons we do not account for this effect, as for
a highly pronounced collective behavior the stripes should be
closely spaced ��200 nm apart�. This means that the elastic
scattering is dominated by near-field mechanisms, which
makes it relatively inefficient.

As a final note for this section we now discuss validity of
our theory of the magneto-optical interaction. Its obvious
limitation is its scalar character. An important consequence
of this is a loss of the so-called Stokes-anti-Stokes asymme-
try of BLS peaks for the Damon-Eschbach wave.42,43 This
effect represents a difference in the BLS amplitudes for the
positive and negative frequencies. This difference is seen,
e.g., in Fig. 5 of Ref. 22.

One can separate two contributions to this effect. One is
connected to the fact that the magneto-optical interaction is
described by a tensor magnitude: the magneto-optical tensor.
Its action on the circularly polarized vector amplitude of dy-
namic magnetization depends on the direction of the trans-
ferred wave number. An interested reader can find an exten-
sive discussion concerning this point in Ref. 44. As we do

not include the magneto-optical tensor into the derivation of
Eq. �34a�, and treat the magneto-optical interaction as a sca-
lar, we loose this contribution to the Stokes/anti-Stokes
asymmetry.

The second contribution to the Stokes-anti-Stokes asym-
metry appears in experiments for larger wave numbers such
as kL is on order of 1. This contribution is related to the
surface character of the Damon-Eshbach wave and to the
skin depth law valid for the optical field in the sample. In
simple words, the thickness profile of the Damon-Eshbach
wave propagating along the film surface facing the incident
optical beam has a larger overlap integral with the optical
field than the mode profile for the wave localized at the sec-
ond film surface. This contribution is not included in our
theory either, since to include it one should have treated the
magnetization dynamics in the stripes thickness resolved, as
it was done in a recent paper.45 In the present paper, to keep
the results simple we use the simple quasi-one-dimensional
description of the magnetization dynamics �see discussion in
the beginning of Sec. II A�. This description is valid for kL
�0.5.46 For these wave numbers the Damon-Eshbach wave
localization at the film surfaces is not important and is ne-
glected from very beginning of the derivation.

III. CONCLUSION

Formation of collective magnetostatic modes via dipolar
coupling between individual elements is the main physical
mechanism underlying magnonic wave phenomena in peri-
odic ferromagnetic structures. In the present paper, this fun-
damental problem has been addressed for the case of ther-
mally driven MSW on a one-dimensional array of magnetic
stripes.

It has been shown that partially phase-correlated oscilla-
tions localized on individual stripes can be regarded as an
ensemble of individual harmonic oscillators interpretable in
terms of independent degrees of freedom of the magnetic
system subject to the low-energy Rayleigh-Jeans statistics.

Further theoretical analysis, based on the spatial correla-
tion approach, has revealed the importance of the parameter
lc known as correlation or coherence length of a Bloch mode,
driven by a thermal “Langevin magnetic source.” The latter
describes the number of dipole coupled individual oscilla-
tions localized on individual stripes, whose phases are effec-
tively correlated according to the Bloch wave number q, im-
posed by the collective mode.

Numerical simulations of the BLS spectra, based on this
approach, have shown that the nth Bloch mode in strongly
coupled stripes contributes mainly to the scattering in the nth
Brillouin zone. This is not the case for weakly coupled
stripes with higher values of interwire spacing. In such ge-
ometries lc can decrease drastically and, as a result, for ex-
ample, the fundamental Bloch mode will contribute signifi-
cantly to the scattering in several lowest Brillouin zones. Our
calculations have also confirmed numerically the noncoher-
ent wide-angle character of the BLS, demonstrated experi-
mentally in Ref. 30.
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APPENDIX

Let us try to estimate the correlation function, describing
the Langevin force exciting elliptically polarized Bloch
modes, which is given below. This expression will be ex-
tremely useful in the context of the main text of the paper

�fkn�t�fk�n��t��
�� = �M

2 �u�k�nu�k��n��Rkn�t�Rk�n��t��
��

+ v�k�nv�k��n��Rkn�t��Rk�n��t���

+ u�k�nv�k��n��Rkn�t�Rk�n��t���

+ v�k�nu�k��n��Rkn�t��Rk�n��t��
��� . �A1�

Each particular correlation function, out of four, can be
evaluated independently. We will begin with the first and the
third.

�Rkn�t�Rk�n��t��
�� = �

−�

� �
−�

�

dxdx�mkn
��x�mk�n��x��

��h�th��x,t�h�th���x�,t��� , �A2a�

�Rkn�t�Rk�n��t��� = �
−�

� �
−�

�

dxdx�mkn
��x�mk�n�

��x��

��h�th��x,t�h�th��x�,t��� . �A2b�

In Eq. �A2� a key role is played by the averaged expressions
within the brackets,

�h�th��x,t�h�th���x�,t��� = ��hx
�th��x,t� + ihy

�th��x,t���hx
�th��x�,t�� − ihy

�th��x�,t����

= �hx
�th��x,t�hx

�th��x�,t��� + �hy
�th��x,t�hy

�th��x�,t��� + i�hx
�th��x,t�hy

�th��x�,t��� + �hy
�th��x,t�hx

�th��x�,t��� ,

�A3a�

�h�th��x,t�h�th��x�,t��� = ��hx
�th��x,t� + ihy

�th��x,t���hx
�th��x�,t�� + ihy

�th��x�,t����

= �hx
�th��x,t�hx

�th��x�,t��� − �hy
�th��x,t�hy

�th��x�,t��� + i�hx
�th��x,t�hy

�th��x�,t��� + �hy
�th��x,t�hx

�th��x�,t��� .

�A3b�

Here we used the expression of the Langevin force in circular polarizations h�x , t�=hx�x , t�+ ihy�x , t� �see Eq. �3��. It should be
reminded that the Cartesian components of the thermal magnetic field are purely real. Making use of Eq. �2� one can rewrite
Eq. �A3� as

�h�th��x,t�h�th���x�,t��� = 2C��x − x����t − t�� , �A4a�

�h�th��x,t�h�th��x�,t��� = 0. �A4b�

Moreover

�h�th���x,t�h�th��x�,t��� = �h�th��x,t�h�th���x�,t���� = 2C��x − x����t − t�� , �A4c�

�h�th���x,t�h�th���x�,t��� = �h�th��x,t�h�th��x�,t���� = 0. �A4d�

Inserting Eqs. �A4a� and �A4b� in Eqs. �A2a� and �A2b�, respectively, one obtains

�Rkn�t�Rk�n��t��
�� = 2C�M

2 �
−�

� �
−�

�

dxdx�mkn
��x�mk�n��x����x − x����t − t��

= 2C�M
2 ��t − t���

−�

�

dxmkn
��x�mk�n��x� = 2C�M

2 ��t − t����k − k���nn�, �A5a�

�Rkn�t�Rk�n��t��� = 0. �A5b�

Similarly

�Rkn�t��Rk�n��t��� = �Rkn�t�Rk�n��t��
��� = 2C�M

2 ��t − t����k − k���nn�, �A5c�

�Rkn
��t�Rk�n�

��t��� = �Rkn�t�Rk�n��t���
� = 0. �A5d�

Inserting Eqs. �A5a�–�A5d� into Eq. �A1� and taking into account the orthonormality of the eigenfunctions Eq. �7� one finally
obtains
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�fkn�t�fk�n��t��
�� = �u�k�nu�k��n�2C�M

2 ��t − t����k − k���nn� + v�k�nv�k��n�2C�M
2 ��t − t����k − k���nn��

= 2C�M
2 ��t − t����k − k���nn��u�k�n

2 + v�k�n
2 � =

2AC�M
2

��k�n
��t − t����k − k���nn�. �A6�

Similar calculations are applicable for the correlation function in the frequency domain

�fkn���fk�n�
� ���� = �M

2 �u�k�nu�k��n��
−�

� �
−�

�

mkn�x��mk�n��x����hx
�th��x,�� + ihy

�th��x,����hx
�th��x�,�� − ihy

�th��x�,����dxdx�

+ v�k�nv�k��n��
−�

� �
−�

�

mkn�x�mk�n��x�����hx
�th��x,�� − ihy

�th��x,����hx
�th��x�,�� + ihy

�th��x�,����dxdx�

+ u�k�nv�k��n��
−�

� �
−�

�

mkn�x��mk�n��x�����hx
�th��x,�� + ihy

�th��x,����hx
�th��x�,�� + ihy

�th��x�,����dxdx�

+ v�k�nu�k��n��
−�

� �
−�

�

mkn�x�mk�n��x����hx
�th��x,�� − ihy

�th��x,����hx
�th��x�,�� − ihy

�th��x�,����dxdx��
which leads finally to

�fkn���fk�n�
� ���� =

2AC�M
2

��k�n
1�����k − k���nn�. �A7�
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